reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
//===- CriticalAntiDepBreaker.cpp - Anti-dep breaker ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the CriticalAntiDepBreaker class, which
// implements register anti-dependence breaking along a blocks
// critical path during post-RA scheduler.
//
//===----------------------------------------------------------------------===//

#include "CriticalAntiDepBreaker.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <map>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "post-RA-sched"

CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi,
                                               const RegisterClassInfo &RCI)
    : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()),
      TII(MF.getSubtarget().getInstrInfo()),
      TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI),
      Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0),
      DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {}

CriticalAntiDepBreaker::~CriticalAntiDepBreaker() = default;

void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
  const unsigned BBSize = BB->size();
  for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
    // Clear out the register class data.
    Classes[i] = nullptr;

    // Initialize the indices to indicate that no registers are live.
    KillIndices[i] = ~0u;
    DefIndices[i] = BBSize;
  }

  // Clear "do not change" set.
  KeepRegs.reset();

  bool IsReturnBlock = BB->isReturnBlock();

  // Examine the live-in regs of all successors.
  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
         SE = BB->succ_end(); SI != SE; ++SI)
    for (const auto &LI : (*SI)->liveins()) {
      for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) {
        unsigned Reg = *AI;
        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
        KillIndices[Reg] = BBSize;
        DefIndices[Reg] = ~0u;
      }
    }

  // Mark live-out callee-saved registers. In a return block this is
  // all callee-saved registers. In non-return this is any
  // callee-saved register that is not saved in the prolog.
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  BitVector Pristine = MFI.getPristineRegs(MF);
  for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I;
       ++I) {
    unsigned Reg = *I;
    if (!IsReturnBlock && !Pristine.test(Reg))
      continue;
    for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
      unsigned Reg = *AI;
      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
      KillIndices[Reg] = BBSize;
      DefIndices[Reg] = ~0u;
    }
  }
}

void CriticalAntiDepBreaker::FinishBlock() {
  RegRefs.clear();
  KeepRegs.reset();
}

void CriticalAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count,
                                     unsigned InsertPosIndex) {
  // Kill instructions can define registers but are really nops, and there might
  // be a real definition earlier that needs to be paired with uses dominated by
  // this kill.

  // FIXME: It may be possible to remove the isKill() restriction once PR18663
  // has been properly fixed. There can be value in processing kills as seen in
  // the AggressiveAntiDepBreaker class.
  if (MI.isDebugInstr() || MI.isKill())
    return;
  assert(Count < InsertPosIndex && "Instruction index out of expected range!");

  for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
    if (KillIndices[Reg] != ~0u) {
      // If Reg is currently live, then mark that it can't be renamed as
      // we don't know the extent of its live-range anymore (now that it
      // has been scheduled).
      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
      KillIndices[Reg] = Count;
    } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
      // Any register which was defined within the previous scheduling region
      // may have been rescheduled and its lifetime may overlap with registers
      // in ways not reflected in our current liveness state. For each such
      // register, adjust the liveness state to be conservatively correct.
      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);

      // Move the def index to the end of the previous region, to reflect
      // that the def could theoretically have been scheduled at the end.
      DefIndices[Reg] = InsertPosIndex;
    }
  }

  PrescanInstruction(MI);
  ScanInstruction(MI, Count);
}

/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
/// critical path.
static const SDep *CriticalPathStep(const SUnit *SU) {
  const SDep *Next = nullptr;
  unsigned NextDepth = 0;
  // Find the predecessor edge with the greatest depth.
  for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
       P != PE; ++P) {
    const SUnit *PredSU = P->getSUnit();
    unsigned PredLatency = P->getLatency();
    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
    // In the case of a latency tie, prefer an anti-dependency edge over
    // other types of edges.
    if (NextDepth < PredTotalLatency ||
        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
      NextDepth = PredTotalLatency;
      Next = &*P;
    }
  }
  return Next;
}

void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr &MI) {
  // It's not safe to change register allocation for source operands of
  // instructions that have special allocation requirements. Also assume all
  // registers used in a call must not be changed (ABI).
  // FIXME: The issue with predicated instruction is more complex. We are being
  // conservative here because the kill markers cannot be trusted after
  // if-conversion:
  // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14]
  // ...
  // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395]
  // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12]
  // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8)
  //
  // The first R6 kill is not really a kill since it's killed by a predicated
  // instruction which may not be executed. The second R6 def may or may not
  // re-define R6 so it's not safe to change it since the last R6 use cannot be
  // changed.
  bool Special =
      MI.isCall() || MI.hasExtraSrcRegAllocReq() || TII->isPredicated(MI);

  // Scan the register operands for this instruction and update
  // Classes and RegRefs.
  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI.getOperand(i);
    if (!MO.isReg()) continue;
    Register Reg = MO.getReg();
    if (Reg == 0) continue;
    const TargetRegisterClass *NewRC = nullptr;

    if (i < MI.getDesc().getNumOperands())
      NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF);

    // For now, only allow the register to be changed if its register
    // class is consistent across all uses.
    if (!Classes[Reg] && NewRC)
      Classes[Reg] = NewRC;
    else if (!NewRC || Classes[Reg] != NewRC)
      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);

    // Now check for aliases.
    for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
      // If an alias of the reg is used during the live range, give up.
      // Note that this allows us to skip checking if AntiDepReg
      // overlaps with any of the aliases, among other things.
      unsigned AliasReg = *AI;
      if (Classes[AliasReg]) {
        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
      }
    }

    // If we're still willing to consider this register, note the reference.
    if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
      RegRefs.insert(std::make_pair(Reg, &MO));

    // If this reg is tied and live (Classes[Reg] is set to -1), we can't change
    // it or any of its sub or super regs. We need to use KeepRegs to mark the
    // reg because not all uses of the same reg within an instruction are
    // necessarily tagged as tied.
    // Example: an x86 "xor %eax, %eax" will have one source operand tied to the
    // def register but not the second (see PR20020 for details).
    // FIXME: can this check be relaxed to account for undef uses
    // of a register? In the above 'xor' example, the uses of %eax are undef, so
    // earlier instructions could still replace %eax even though the 'xor'
    // itself can't be changed.
    if (MI.isRegTiedToUseOperand(i) &&
        Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) {
      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
           SubRegs.isValid(); ++SubRegs) {
        KeepRegs.set(*SubRegs);
      }
      for (MCSuperRegIterator SuperRegs(Reg, TRI);
           SuperRegs.isValid(); ++SuperRegs) {
        KeepRegs.set(*SuperRegs);
      }
    }

    if (MO.isUse() && Special) {
      if (!KeepRegs.test(Reg)) {
        for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
             SubRegs.isValid(); ++SubRegs)
          KeepRegs.set(*SubRegs);
      }
    }
  }
}

void CriticalAntiDepBreaker::ScanInstruction(MachineInstr &MI, unsigned Count) {
  // Update liveness.
  // Proceeding upwards, registers that are defed but not used in this
  // instruction are now dead.
  assert(!MI.isKill() && "Attempting to scan a kill instruction");

  if (!TII->isPredicated(MI)) {
    // Predicated defs are modeled as read + write, i.e. similar to two
    // address updates.
    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI.getOperand(i);

      if (MO.isRegMask())
        for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
          if (MO.clobbersPhysReg(i)) {
            DefIndices[i] = Count;
            KillIndices[i] = ~0u;
            KeepRegs.reset(i);
            Classes[i] = nullptr;
            RegRefs.erase(i);
          }

      if (!MO.isReg()) continue;
      Register Reg = MO.getReg();
      if (Reg == 0) continue;
      if (!MO.isDef()) continue;

      // Ignore two-addr defs.
      if (MI.isRegTiedToUseOperand(i))
        continue;

      // If we've already marked this reg as unchangeable, don't remove
      // it or any of its subregs from KeepRegs.
      bool Keep = KeepRegs.test(Reg);

      // For the reg itself and all subregs: update the def to current;
      // reset the kill state, any restrictions, and references.
      for (MCSubRegIterator SRI(Reg, TRI, true); SRI.isValid(); ++SRI) {
        unsigned SubregReg = *SRI;
        DefIndices[SubregReg] = Count;
        KillIndices[SubregReg] = ~0u;
        Classes[SubregReg] = nullptr;
        RegRefs.erase(SubregReg);
        if (!Keep)
          KeepRegs.reset(SubregReg);
      }
      // Conservatively mark super-registers as unusable.
      for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
        Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1);
    }
  }
  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI.getOperand(i);
    if (!MO.isReg()) continue;
    Register Reg = MO.getReg();
    if (Reg == 0) continue;
    if (!MO.isUse()) continue;

    const TargetRegisterClass *NewRC = nullptr;
    if (i < MI.getDesc().getNumOperands())
      NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF);

    // For now, only allow the register to be changed if its register
    // class is consistent across all uses.
    if (!Classes[Reg] && NewRC)
      Classes[Reg] = NewRC;
    else if (!NewRC || Classes[Reg] != NewRC)
      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);

    RegRefs.insert(std::make_pair(Reg, &MO));

    // It wasn't previously live but now it is, this is a kill.
    // Repeat for all aliases.
    for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
      unsigned AliasReg = *AI;
      if (KillIndices[AliasReg] == ~0u) {
        KillIndices[AliasReg] = Count;
        DefIndices[AliasReg] = ~0u;
      }
    }
  }
}

// Check all machine operands that reference the antidependent register and must
// be replaced by NewReg. Return true if any of their parent instructions may
// clobber the new register.
//
// Note: AntiDepReg may be referenced by a two-address instruction such that
// it's use operand is tied to a def operand. We guard against the case in which
// the two-address instruction also defines NewReg, as may happen with
// pre/postincrement loads. In this case, both the use and def operands are in
// RegRefs because the def is inserted by PrescanInstruction and not erased
// during ScanInstruction. So checking for an instruction with definitions of
// both NewReg and AntiDepReg covers it.
bool
CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
                                                RegRefIter RegRefEnd,
                                                unsigned NewReg) {
  for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
    MachineOperand *RefOper = I->second;

    // Don't allow the instruction defining AntiDepReg to earlyclobber its
    // operands, in case they may be assigned to NewReg. In this case antidep
    // breaking must fail, but it's too rare to bother optimizing.
    if (RefOper->isDef() && RefOper->isEarlyClobber())
      return true;

    // Handle cases in which this instruction defines NewReg.
    MachineInstr *MI = RefOper->getParent();
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      const MachineOperand &CheckOper = MI->getOperand(i);

      if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
        return true;

      if (!CheckOper.isReg() || !CheckOper.isDef() ||
          CheckOper.getReg() != NewReg)
        continue;

      // Don't allow the instruction to define NewReg and AntiDepReg.
      // When AntiDepReg is renamed it will be an illegal op.
      if (RefOper->isDef())
        return true;

      // Don't allow an instruction using AntiDepReg to be earlyclobbered by
      // NewReg.
      if (CheckOper.isEarlyClobber())
        return true;

      // Don't allow inline asm to define NewReg at all. Who knows what it's
      // doing with it.
      if (MI->isInlineAsm())
        return true;
    }
  }
  return false;
}

unsigned CriticalAntiDepBreaker::
findSuitableFreeRegister(RegRefIter RegRefBegin,
                         RegRefIter RegRefEnd,
                         unsigned AntiDepReg,
                         unsigned LastNewReg,
                         const TargetRegisterClass *RC,
                         SmallVectorImpl<unsigned> &Forbid) {
  ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC);
  for (unsigned i = 0; i != Order.size(); ++i) {
    unsigned NewReg = Order[i];
    // Don't replace a register with itself.
    if (NewReg == AntiDepReg) continue;
    // Don't replace a register with one that was recently used to repair
    // an anti-dependence with this AntiDepReg, because that would
    // re-introduce that anti-dependence.
    if (NewReg == LastNewReg) continue;
    // If any instructions that define AntiDepReg also define the NewReg, it's
    // not suitable.  For example, Instruction with multiple definitions can
    // result in this condition.
    if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
    // If NewReg is dead and NewReg's most recent def is not before
    // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
    assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
           && "Kill and Def maps aren't consistent for AntiDepReg!");
    assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
           && "Kill and Def maps aren't consistent for NewReg!");
    if (KillIndices[NewReg] != ~0u ||
        Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
        KillIndices[AntiDepReg] > DefIndices[NewReg])
      continue;
    // If NewReg overlaps any of the forbidden registers, we can't use it.
    bool Forbidden = false;
    for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(),
           ite = Forbid.end(); it != ite; ++it)
      if (TRI->regsOverlap(NewReg, *it)) {
        Forbidden = true;
        break;
      }
    if (Forbidden) continue;
    return NewReg;
  }

  // No registers are free and available!
  return 0;
}

unsigned CriticalAntiDepBreaker::
BreakAntiDependencies(const std::vector<SUnit> &SUnits,
                      MachineBasicBlock::iterator Begin,
                      MachineBasicBlock::iterator End,
                      unsigned InsertPosIndex,
                      DbgValueVector &DbgValues) {
  // The code below assumes that there is at least one instruction,
  // so just duck out immediately if the block is empty.
  if (SUnits.empty()) return 0;

  // Keep a map of the MachineInstr*'s back to the SUnit representing them.
  // This is used for updating debug information.
  //
  // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
  DenseMap<MachineInstr *, const SUnit *> MISUnitMap;

  // Find the node at the bottom of the critical path.
  const SUnit *Max = nullptr;
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    const SUnit *SU = &SUnits[i];
    MISUnitMap[SU->getInstr()] = SU;
    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
      Max = SU;
  }
  assert(Max && "Failed to find bottom of the critical path");

#ifndef NDEBUG
  {
    LLVM_DEBUG(dbgs() << "Critical path has total latency "
                      << (Max->getDepth() + Max->Latency) << "\n");
    LLVM_DEBUG(dbgs() << "Available regs:");
    for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
      if (KillIndices[Reg] == ~0u)
        LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI));
    }
    LLVM_DEBUG(dbgs() << '\n');
  }
#endif

  // Track progress along the critical path through the SUnit graph as we walk
  // the instructions.
  const SUnit *CriticalPathSU = Max;
  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();

  // Consider this pattern:
  //   A = ...
  //   ... = A
  //   A = ...
  //   ... = A
  //   A = ...
  //   ... = A
  //   A = ...
  //   ... = A
  // There are three anti-dependencies here, and without special care,
  // we'd break all of them using the same register:
  //   A = ...
  //   ... = A
  //   B = ...
  //   ... = B
  //   B = ...
  //   ... = B
  //   B = ...
  //   ... = B
  // because at each anti-dependence, B is the first register that
  // isn't A which is free.  This re-introduces anti-dependencies
  // at all but one of the original anti-dependencies that we were
  // trying to break.  To avoid this, keep track of the most recent
  // register that each register was replaced with, avoid
  // using it to repair an anti-dependence on the same register.
  // This lets us produce this:
  //   A = ...
  //   ... = A
  //   B = ...
  //   ... = B
  //   C = ...
  //   ... = C
  //   B = ...
  //   ... = B
  // This still has an anti-dependence on B, but at least it isn't on the
  // original critical path.
  //
  // TODO: If we tracked more than one register here, we could potentially
  // fix that remaining critical edge too. This is a little more involved,
  // because unlike the most recent register, less recent registers should
  // still be considered, though only if no other registers are available.
  std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);

  // Attempt to break anti-dependence edges on the critical path. Walk the
  // instructions from the bottom up, tracking information about liveness
  // as we go to help determine which registers are available.
  unsigned Broken = 0;
  unsigned Count = InsertPosIndex - 1;
  for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) {
    MachineInstr &MI = *--I;
    // Kill instructions can define registers but are really nops, and there
    // might be a real definition earlier that needs to be paired with uses
    // dominated by this kill.

    // FIXME: It may be possible to remove the isKill() restriction once PR18663
    // has been properly fixed. There can be value in processing kills as seen
    // in the AggressiveAntiDepBreaker class.
    if (MI.isDebugInstr() || MI.isKill())
      continue;

    // Check if this instruction has a dependence on the critical path that
    // is an anti-dependence that we may be able to break. If it is, set
    // AntiDepReg to the non-zero register associated with the anti-dependence.
    //
    // We limit our attention to the critical path as a heuristic to avoid
    // breaking anti-dependence edges that aren't going to significantly
    // impact the overall schedule. There are a limited number of registers
    // and we want to save them for the important edges.
    //
    // TODO: Instructions with multiple defs could have multiple
    // anti-dependencies. The current code here only knows how to break one
    // edge per instruction. Note that we'd have to be able to break all of
    // the anti-dependencies in an instruction in order to be effective.
    unsigned AntiDepReg = 0;
    if (&MI == CriticalPathMI) {
      if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
        const SUnit *NextSU = Edge->getSUnit();

        // Only consider anti-dependence edges.
        if (Edge->getKind() == SDep::Anti) {
          AntiDepReg = Edge->getReg();
          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
          if (!MRI.isAllocatable(AntiDepReg))
            // Don't break anti-dependencies on non-allocatable registers.
            AntiDepReg = 0;
          else if (KeepRegs.test(AntiDepReg))
            // Don't break anti-dependencies if a use down below requires
            // this exact register.
            AntiDepReg = 0;
          else {
            // If the SUnit has other dependencies on the SUnit that it
            // anti-depends on, don't bother breaking the anti-dependency
            // since those edges would prevent such units from being
            // scheduled past each other regardless.
            //
            // Also, if there are dependencies on other SUnits with the
            // same register as the anti-dependency, don't attempt to
            // break it.
            for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
              if (P->getSUnit() == NextSU ?
                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
                AntiDepReg = 0;
                break;
              }
          }
        }
        CriticalPathSU = NextSU;
        CriticalPathMI = CriticalPathSU->getInstr();
      } else {
        // We've reached the end of the critical path.
        CriticalPathSU = nullptr;
        CriticalPathMI = nullptr;
      }
    }

    PrescanInstruction(MI);

    SmallVector<unsigned, 2> ForbidRegs;

    // If MI's defs have a special allocation requirement, don't allow
    // any def registers to be changed. Also assume all registers
    // defined in a call must not be changed (ABI).
    if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI))
      // If this instruction's defs have special allocation requirement, don't
      // break this anti-dependency.
      AntiDepReg = 0;
    else if (AntiDepReg) {
      // If this instruction has a use of AntiDepReg, breaking it
      // is invalid.  If the instruction defines other registers,
      // save a list of them so that we don't pick a new register
      // that overlaps any of them.
      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
        MachineOperand &MO = MI.getOperand(i);
        if (!MO.isReg()) continue;
        Register Reg = MO.getReg();
        if (Reg == 0) continue;
        if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
          AntiDepReg = 0;
          break;
        }
        if (MO.isDef() && Reg != AntiDepReg)
          ForbidRegs.push_back(Reg);
      }
    }

    // Determine AntiDepReg's register class, if it is live and is
    // consistently used within a single class.
    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg]
                                                    : nullptr;
    assert((AntiDepReg == 0 || RC != nullptr) &&
           "Register should be live if it's causing an anti-dependence!");
    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
      AntiDepReg = 0;

    // Look for a suitable register to use to break the anti-dependence.
    //
    // TODO: Instead of picking the first free register, consider which might
    // be the best.
    if (AntiDepReg != 0) {
      std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
                std::multimap<unsigned, MachineOperand *>::iterator>
        Range = RegRefs.equal_range(AntiDepReg);
      if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
                                                     AntiDepReg,
                                                     LastNewReg[AntiDepReg],
                                                     RC, ForbidRegs)) {
        LLVM_DEBUG(dbgs() << "Breaking anti-dependence edge on "
                          << printReg(AntiDepReg, TRI) << " with "
                          << RegRefs.count(AntiDepReg) << " references"
                          << " using " << printReg(NewReg, TRI) << "!\n");

        // Update the references to the old register to refer to the new
        // register.
        for (std::multimap<unsigned, MachineOperand *>::iterator
             Q = Range.first, QE = Range.second; Q != QE; ++Q) {
          Q->second->setReg(NewReg);
          // If the SU for the instruction being updated has debug information
          // related to the anti-dependency register, make sure to update that
          // as well.
          const SUnit *SU = MISUnitMap[Q->second->getParent()];
          if (!SU) continue;
          UpdateDbgValues(DbgValues, Q->second->getParent(),
                          AntiDepReg, NewReg);
        }

        // We just went back in time and modified history; the
        // liveness information for the anti-dependence reg is now
        // inconsistent. Set the state as if it were dead.
        Classes[NewReg] = Classes[AntiDepReg];
        DefIndices[NewReg] = DefIndices[AntiDepReg];
        KillIndices[NewReg] = KillIndices[AntiDepReg];
        assert(((KillIndices[NewReg] == ~0u) !=
                (DefIndices[NewReg] == ~0u)) &&
             "Kill and Def maps aren't consistent for NewReg!");

        Classes[AntiDepReg] = nullptr;
        DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
        KillIndices[AntiDepReg] = ~0u;
        assert(((KillIndices[AntiDepReg] == ~0u) !=
                (DefIndices[AntiDepReg] == ~0u)) &&
             "Kill and Def maps aren't consistent for AntiDepReg!");

        RegRefs.erase(AntiDepReg);
        LastNewReg[AntiDepReg] = NewReg;
        ++Broken;
      }
    }

    ScanInstruction(MI, Count);
  }

  return Broken;
}