reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
//===-- DWARFCallFrameInfo.cpp ----------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "lldb/Symbol/DWARFCallFrameInfo.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/Section.h"
#include "lldb/Core/dwarf.h"
#include "lldb/Host/Host.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/Thread.h"
#include "lldb/Utility/ArchSpec.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/Timer.h"
#include <list>
#include <cstring>

using namespace lldb;
using namespace lldb_private;

// GetDwarfEHPtr
//
// Used for calls when the value type is specified by a DWARF EH Frame pointer
// encoding.
static uint64_t
GetGNUEHPointer(const DataExtractor &DE, offset_t *offset_ptr,
                uint32_t eh_ptr_enc, addr_t pc_rel_addr, addr_t text_addr,
                addr_t data_addr) //, BSDRelocs *data_relocs) const
{
  if (eh_ptr_enc == DW_EH_PE_omit)
    return ULLONG_MAX; // Value isn't in the buffer...

  uint64_t baseAddress = 0;
  uint64_t addressValue = 0;
  const uint32_t addr_size = DE.GetAddressByteSize();
  assert(addr_size == 4 || addr_size == 8);

  bool signExtendValue = false;
  // Decode the base part or adjust our offset
  switch (eh_ptr_enc & 0x70) {
  case DW_EH_PE_pcrel:
    signExtendValue = true;
    baseAddress = *offset_ptr;
    if (pc_rel_addr != LLDB_INVALID_ADDRESS)
      baseAddress += pc_rel_addr;
    //      else
    //          Log::GlobalWarning ("PC relative pointer encoding found with
    //          invalid pc relative address.");
    break;

  case DW_EH_PE_textrel:
    signExtendValue = true;
    if (text_addr != LLDB_INVALID_ADDRESS)
      baseAddress = text_addr;
    //      else
    //          Log::GlobalWarning ("text relative pointer encoding being
    //          decoded with invalid text section address, setting base address
    //          to zero.");
    break;

  case DW_EH_PE_datarel:
    signExtendValue = true;
    if (data_addr != LLDB_INVALID_ADDRESS)
      baseAddress = data_addr;
    //      else
    //          Log::GlobalWarning ("data relative pointer encoding being
    //          decoded with invalid data section address, setting base address
    //          to zero.");
    break;

  case DW_EH_PE_funcrel:
    signExtendValue = true;
    break;

  case DW_EH_PE_aligned: {
    // SetPointerSize should be called prior to extracting these so the pointer
    // size is cached
    assert(addr_size != 0);
    if (addr_size) {
      // Align to a address size boundary first
      uint32_t alignOffset = *offset_ptr % addr_size;
      if (alignOffset)
        offset_ptr += addr_size - alignOffset;
    }
  } break;

  default:
    break;
  }

  // Decode the value part
  switch (eh_ptr_enc & DW_EH_PE_MASK_ENCODING) {
  case DW_EH_PE_absptr: {
    addressValue = DE.GetAddress(offset_ptr);
    //          if (data_relocs)
    //              addressValue = data_relocs->Relocate(*offset_ptr -
    //              addr_size, *this, addressValue);
  } break;
  case DW_EH_PE_uleb128:
    addressValue = DE.GetULEB128(offset_ptr);
    break;
  case DW_EH_PE_udata2:
    addressValue = DE.GetU16(offset_ptr);
    break;
  case DW_EH_PE_udata4:
    addressValue = DE.GetU32(offset_ptr);
    break;
  case DW_EH_PE_udata8:
    addressValue = DE.GetU64(offset_ptr);
    break;
  case DW_EH_PE_sleb128:
    addressValue = DE.GetSLEB128(offset_ptr);
    break;
  case DW_EH_PE_sdata2:
    addressValue = (int16_t)DE.GetU16(offset_ptr);
    break;
  case DW_EH_PE_sdata4:
    addressValue = (int32_t)DE.GetU32(offset_ptr);
    break;
  case DW_EH_PE_sdata8:
    addressValue = (int64_t)DE.GetU64(offset_ptr);
    break;
  default:
    // Unhandled encoding type
    assert(eh_ptr_enc);
    break;
  }

  // Since we promote everything to 64 bit, we may need to sign extend
  if (signExtendValue && addr_size < sizeof(baseAddress)) {
    uint64_t sign_bit = 1ull << ((addr_size * 8ull) - 1ull);
    if (sign_bit & addressValue) {
      uint64_t mask = ~sign_bit + 1;
      addressValue |= mask;
    }
  }
  return baseAddress + addressValue;
}

DWARFCallFrameInfo::DWARFCallFrameInfo(ObjectFile &objfile,
                                       SectionSP &section_sp, Type type)
    : m_objfile(objfile), m_section_sp(section_sp), m_type(type) {}

bool DWARFCallFrameInfo::GetUnwindPlan(const Address &addr,
                                       UnwindPlan &unwind_plan) {
  return GetUnwindPlan(AddressRange(addr, 1), unwind_plan);
}

bool DWARFCallFrameInfo::GetUnwindPlan(const AddressRange &range,
                                       UnwindPlan &unwind_plan) {
  FDEEntryMap::Entry fde_entry;
  Address addr = range.GetBaseAddress();

  // Make sure that the Address we're searching for is the same object file as
  // this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
  ModuleSP module_sp = addr.GetModule();
  if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr ||
      module_sp->GetObjectFile() != &m_objfile)
    return false;

  if (llvm::Optional<FDEEntryMap::Entry> entry = GetFirstFDEEntryInRange(range))
    return FDEToUnwindPlan(entry->data, addr, unwind_plan);
  return false;
}

bool DWARFCallFrameInfo::GetAddressRange(Address addr, AddressRange &range) {

  // Make sure that the Address we're searching for is the same object file as
  // this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
  ModuleSP module_sp = addr.GetModule();
  if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr ||
      module_sp->GetObjectFile() != &m_objfile)
    return false;

  if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
    return false;
  GetFDEIndex();
  FDEEntryMap::Entry *fde_entry =
      m_fde_index.FindEntryThatContains(addr.GetFileAddress());
  if (!fde_entry)
    return false;

  range = AddressRange(fde_entry->base, fde_entry->size,
                       m_objfile.GetSectionList());
  return true;
}

llvm::Optional<DWARFCallFrameInfo::FDEEntryMap::Entry>
DWARFCallFrameInfo::GetFirstFDEEntryInRange(const AddressRange &range) {
  if (!m_section_sp || m_section_sp->IsEncrypted())
    return llvm::None;

  GetFDEIndex();

  addr_t start_file_addr = range.GetBaseAddress().GetFileAddress();
  const FDEEntryMap::Entry *fde =
      m_fde_index.FindEntryThatContainsOrFollows(start_file_addr);
  if (fde && fde->DoesIntersect(
                 FDEEntryMap::Range(start_file_addr, range.GetByteSize())))
    return *fde;

  return llvm::None;
}

void DWARFCallFrameInfo::GetFunctionAddressAndSizeVector(
    FunctionAddressAndSizeVector &function_info) {
  GetFDEIndex();
  const size_t count = m_fde_index.GetSize();
  function_info.Clear();
  if (count > 0)
    function_info.Reserve(count);
  for (size_t i = 0; i < count; ++i) {
    const FDEEntryMap::Entry *func_offset_data_entry =
        m_fde_index.GetEntryAtIndex(i);
    if (func_offset_data_entry) {
      FunctionAddressAndSizeVector::Entry function_offset_entry(
          func_offset_data_entry->base, func_offset_data_entry->size);
      function_info.Append(function_offset_entry);
    }
  }
}

const DWARFCallFrameInfo::CIE *
DWARFCallFrameInfo::GetCIE(dw_offset_t cie_offset) {
  cie_map_t::iterator pos = m_cie_map.find(cie_offset);

  if (pos != m_cie_map.end()) {
    // Parse and cache the CIE
    if (pos->second == nullptr)
      pos->second = ParseCIE(cie_offset);

    return pos->second.get();
  }
  return nullptr;
}

DWARFCallFrameInfo::CIESP
DWARFCallFrameInfo::ParseCIE(const dw_offset_t cie_offset) {
  CIESP cie_sp(new CIE(cie_offset));
  lldb::offset_t offset = cie_offset;
  if (!m_cfi_data_initialized)
    GetCFIData();
  uint32_t length = m_cfi_data.GetU32(&offset);
  dw_offset_t cie_id, end_offset;
  bool is_64bit = (length == UINT32_MAX);
  if (is_64bit) {
    length = m_cfi_data.GetU64(&offset);
    cie_id = m_cfi_data.GetU64(&offset);
    end_offset = cie_offset + length + 12;
  } else {
    cie_id = m_cfi_data.GetU32(&offset);
    end_offset = cie_offset + length + 4;
  }
  if (length > 0 && ((m_type == DWARF && cie_id == UINT32_MAX) ||
                     (m_type == EH && cie_id == 0ul))) {
    size_t i;
    //    cie.offset = cie_offset;
    //    cie.length = length;
    //    cie.cieID = cieID;
    cie_sp->ptr_encoding = DW_EH_PE_absptr; // default
    cie_sp->version = m_cfi_data.GetU8(&offset);
    if (cie_sp->version > CFI_VERSION4) {
      Host::SystemLog(Host::eSystemLogError,
                      "CIE parse error: CFI version %d is not supported\n",
                      cie_sp->version);
      return nullptr;
    }

    for (i = 0; i < CFI_AUG_MAX_SIZE; ++i) {
      cie_sp->augmentation[i] = m_cfi_data.GetU8(&offset);
      if (cie_sp->augmentation[i] == '\0') {
        // Zero out remaining bytes in augmentation string
        for (size_t j = i + 1; j < CFI_AUG_MAX_SIZE; ++j)
          cie_sp->augmentation[j] = '\0';

        break;
      }
    }

    if (i == CFI_AUG_MAX_SIZE &&
        cie_sp->augmentation[CFI_AUG_MAX_SIZE - 1] != '\0') {
      Host::SystemLog(Host::eSystemLogError,
                      "CIE parse error: CIE augmentation string was too large "
                      "for the fixed sized buffer of %d bytes.\n",
                      CFI_AUG_MAX_SIZE);
      return nullptr;
    }

    // m_cfi_data uses address size from target architecture of the process may
    // ignore these fields?
    if (m_type == DWARF && cie_sp->version >= CFI_VERSION4) {
      cie_sp->address_size = m_cfi_data.GetU8(&offset);
      cie_sp->segment_size = m_cfi_data.GetU8(&offset);
    }

    cie_sp->code_align = (uint32_t)m_cfi_data.GetULEB128(&offset);
    cie_sp->data_align = (int32_t)m_cfi_data.GetSLEB128(&offset);

    cie_sp->return_addr_reg_num =
        m_type == DWARF && cie_sp->version >= CFI_VERSION3
            ? static_cast<uint32_t>(m_cfi_data.GetULEB128(&offset))
            : m_cfi_data.GetU8(&offset);

    if (cie_sp->augmentation[0]) {
      // Get the length of the eh_frame augmentation data which starts with a
      // ULEB128 length in bytes
      const size_t aug_data_len = (size_t)m_cfi_data.GetULEB128(&offset);
      const size_t aug_data_end = offset + aug_data_len;
      const size_t aug_str_len = strlen(cie_sp->augmentation);
      // A 'z' may be present as the first character of the string.
      // If present, the Augmentation Data field shall be present. The contents
      // of the Augmentation Data shall be interpreted according to other
      // characters in the Augmentation String.
      if (cie_sp->augmentation[0] == 'z') {
        // Extract the Augmentation Data
        size_t aug_str_idx = 0;
        for (aug_str_idx = 1; aug_str_idx < aug_str_len; aug_str_idx++) {
          char aug = cie_sp->augmentation[aug_str_idx];
          switch (aug) {
          case 'L':
            // Indicates the presence of one argument in the Augmentation Data
            // of the CIE, and a corresponding argument in the Augmentation
            // Data of the FDE. The argument in the Augmentation Data of the
            // CIE is 1-byte and represents the pointer encoding used for the
            // argument in the Augmentation Data of the FDE, which is the
            // address of a language-specific data area (LSDA). The size of the
            // LSDA pointer is specified by the pointer encoding used.
            cie_sp->lsda_addr_encoding = m_cfi_data.GetU8(&offset);
            break;

          case 'P':
            // Indicates the presence of two arguments in the Augmentation Data
            // of the CIE. The first argument is 1-byte and represents the
            // pointer encoding used for the second argument, which is the
            // address of a personality routine handler. The size of the
            // personality routine pointer is specified by the pointer encoding
            // used.
            //
            // The address of the personality function will be stored at this
            // location.  Pre-execution, it will be all zero's so don't read it
            // until we're trying to do an unwind & the reloc has been
            // resolved.
            {
              uint8_t arg_ptr_encoding = m_cfi_data.GetU8(&offset);
              const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
              cie_sp->personality_loc = GetGNUEHPointer(
                  m_cfi_data, &offset, arg_ptr_encoding, pc_rel_addr,
                  LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS);
            }
            break;

          case 'R':
            // A 'R' may be present at any position after the
            // first character of the string. The Augmentation Data shall
            // include a 1 byte argument that represents the pointer encoding
            // for the address pointers used in the FDE. Example: 0x1B ==
            // DW_EH_PE_pcrel | DW_EH_PE_sdata4
            cie_sp->ptr_encoding = m_cfi_data.GetU8(&offset);
            break;
          }
        }
      } else if (strcmp(cie_sp->augmentation, "eh") == 0) {
        // If the Augmentation string has the value "eh", then the EH Data
        // field shall be present
      }

      // Set the offset to be the end of the augmentation data just in case we
      // didn't understand any of the data.
      offset = (uint32_t)aug_data_end;
    }

    if (end_offset > offset) {
      cie_sp->inst_offset = offset;
      cie_sp->inst_length = end_offset - offset;
    }
    while (offset < end_offset) {
      uint8_t inst = m_cfi_data.GetU8(&offset);
      uint8_t primary_opcode = inst & 0xC0;
      uint8_t extended_opcode = inst & 0x3F;

      if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode,
                                   cie_sp->data_align, offset,
                                   cie_sp->initial_row))
        break; // Stop if we hit an unrecognized opcode
    }
  }

  return cie_sp;
}

void DWARFCallFrameInfo::GetCFIData() {
  if (!m_cfi_data_initialized) {
    Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_UNWIND));
    if (log)
      m_objfile.GetModule()->LogMessage(log, "Reading EH frame info");
    m_objfile.ReadSectionData(m_section_sp.get(), m_cfi_data);
    m_cfi_data_initialized = true;
  }
}
// Scan through the eh_frame or debug_frame section looking for FDEs and noting
// the start/end addresses of the functions and a pointer back to the
// function's FDE for later expansion. Internalize CIEs as we come across them.

void DWARFCallFrameInfo::GetFDEIndex() {
  if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
    return;

  if (m_fde_index_initialized)
    return;

  std::lock_guard<std::mutex> guard(m_fde_index_mutex);

  if (m_fde_index_initialized) // if two threads hit the locker
    return;

  static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
  Timer scoped_timer(func_cat, "%s - %s", LLVM_PRETTY_FUNCTION,
                     m_objfile.GetFileSpec().GetFilename().AsCString(""));

  bool clear_address_zeroth_bit = false;
  if (ArchSpec arch = m_objfile.GetArchitecture()) {
    if (arch.GetTriple().getArch() == llvm::Triple::arm ||
        arch.GetTriple().getArch() == llvm::Triple::thumb)
      clear_address_zeroth_bit = true;
  }

  lldb::offset_t offset = 0;
  if (!m_cfi_data_initialized)
    GetCFIData();
  while (m_cfi_data.ValidOffsetForDataOfSize(offset, 8)) {
    const dw_offset_t current_entry = offset;
    dw_offset_t cie_id, next_entry, cie_offset;
    uint32_t len = m_cfi_data.GetU32(&offset);
    bool is_64bit = (len == UINT32_MAX);
    if (is_64bit) {
      len = m_cfi_data.GetU64(&offset);
      cie_id = m_cfi_data.GetU64(&offset);
      next_entry = current_entry + len + 12;
      cie_offset = current_entry + 12 - cie_id;
    } else {
      cie_id = m_cfi_data.GetU32(&offset);
      next_entry = current_entry + len + 4;
      cie_offset = current_entry + 4 - cie_id;
    }

    if (next_entry > m_cfi_data.GetByteSize() + 1) {
      Host::SystemLog(Host::eSystemLogError, "error: Invalid fde/cie next "
                                             "entry offset of 0x%x found in "
                                             "cie/fde at 0x%x\n",
                      next_entry, current_entry);
      // Don't trust anything in this eh_frame section if we find blatantly
      // invalid data.
      m_fde_index.Clear();
      m_fde_index_initialized = true;
      return;
    }

    // An FDE entry contains CIE_pointer in debug_frame in same place as cie_id
    // in eh_frame. CIE_pointer is an offset into the .debug_frame section. So,
    // variable cie_offset should be equal to cie_id for debug_frame.
    // FDE entries with cie_id == 0 shouldn't be ignored for it.
    if ((cie_id == 0 && m_type == EH) || cie_id == UINT32_MAX || len == 0) {
      auto cie_sp = ParseCIE(current_entry);
      if (!cie_sp) {
        // Cannot parse, the reason is already logged
        m_fde_index.Clear();
        m_fde_index_initialized = true;
        return;
      }

      m_cie_map[current_entry] = std::move(cie_sp);
      offset = next_entry;
      continue;
    }

    if (m_type == DWARF)
      cie_offset = cie_id;

    if (cie_offset > m_cfi_data.GetByteSize()) {
      Host::SystemLog(Host::eSystemLogError,
                      "error: Invalid cie offset of 0x%x "
                      "found in cie/fde at 0x%x\n",
                      cie_offset, current_entry);
      // Don't trust anything in this eh_frame section if we find blatantly
      // invalid data.
      m_fde_index.Clear();
      m_fde_index_initialized = true;
      return;
    }

    const CIE *cie = GetCIE(cie_offset);
    if (cie) {
      const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
      const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
      const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;

      lldb::addr_t addr =
          GetGNUEHPointer(m_cfi_data, &offset, cie->ptr_encoding, pc_rel_addr,
                          text_addr, data_addr);
      if (clear_address_zeroth_bit)
        addr &= ~1ull;

      lldb::addr_t length = GetGNUEHPointer(
          m_cfi_data, &offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING,
          pc_rel_addr, text_addr, data_addr);
      FDEEntryMap::Entry fde(addr, length, current_entry);
      m_fde_index.Append(fde);
    } else {
      Host::SystemLog(Host::eSystemLogError, "error: unable to find CIE at "
                                             "0x%8.8x for cie_id = 0x%8.8x for "
                                             "entry at 0x%8.8x.\n",
                      cie_offset, cie_id, current_entry);
    }
    offset = next_entry;
  }
  m_fde_index.Sort();
  m_fde_index_initialized = true;
}

bool DWARFCallFrameInfo::FDEToUnwindPlan(dw_offset_t dwarf_offset,
                                         Address startaddr,
                                         UnwindPlan &unwind_plan) {
  Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_UNWIND);
  lldb::offset_t offset = dwarf_offset;
  lldb::offset_t current_entry = offset;

  if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
    return false;

  if (!m_cfi_data_initialized)
    GetCFIData();

  uint32_t length = m_cfi_data.GetU32(&offset);
  dw_offset_t cie_offset;
  bool is_64bit = (length == UINT32_MAX);
  if (is_64bit) {
    length = m_cfi_data.GetU64(&offset);
    cie_offset = m_cfi_data.GetU64(&offset);
  } else {
    cie_offset = m_cfi_data.GetU32(&offset);
  }

  // FDE entries with zeroth cie_offset may occur for debug_frame.
  assert(!(m_type == EH && 0 == cie_offset) && cie_offset != UINT32_MAX);

  // Translate the CIE_id from the eh_frame format, which is relative to the
  // FDE offset, into a __eh_frame section offset
  if (m_type == EH) {
    unwind_plan.SetSourceName("eh_frame CFI");
    cie_offset = current_entry + (is_64bit ? 12 : 4) - cie_offset;
    unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
  } else {
    unwind_plan.SetSourceName("DWARF CFI");
    // In theory the debug_frame info should be valid at all call sites
    // ("asynchronous unwind info" as it is sometimes called) but in practice
    // gcc et al all emit call frame info for the prologue and call sites, but
    // not for the epilogue or all the other locations during the function
    // reliably.
    unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
  }
  unwind_plan.SetSourcedFromCompiler(eLazyBoolYes);

  const CIE *cie = GetCIE(cie_offset);
  assert(cie != nullptr);

  const dw_offset_t end_offset = current_entry + length + (is_64bit ? 12 : 4);

  const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
  const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
  const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
  lldb::addr_t range_base =
      GetGNUEHPointer(m_cfi_data, &offset, cie->ptr_encoding, pc_rel_addr,
                      text_addr, data_addr);
  lldb::addr_t range_len = GetGNUEHPointer(
      m_cfi_data, &offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING,
      pc_rel_addr, text_addr, data_addr);
  AddressRange range(range_base, m_objfile.GetAddressByteSize(),
                     m_objfile.GetSectionList());
  range.SetByteSize(range_len);

  addr_t lsda_data_file_address = LLDB_INVALID_ADDRESS;

  if (cie->augmentation[0] == 'z') {
    uint32_t aug_data_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
    if (aug_data_len != 0 && cie->lsda_addr_encoding != DW_EH_PE_omit) {
      offset_t saved_offset = offset;
      lsda_data_file_address =
          GetGNUEHPointer(m_cfi_data, &offset, cie->lsda_addr_encoding,
                          pc_rel_addr, text_addr, data_addr);
      if (offset - saved_offset != aug_data_len) {
        // There is more in the augmentation region than we know how to process;
        // don't read anything.
        lsda_data_file_address = LLDB_INVALID_ADDRESS;
      }
      offset = saved_offset;
    }
    offset += aug_data_len;
  }
  unwind_plan.SetUnwindPlanForSignalTrap(
    strchr(cie->augmentation, 'S') ? eLazyBoolYes : eLazyBoolNo);

  Address lsda_data;
  Address personality_function_ptr;

  if (lsda_data_file_address != LLDB_INVALID_ADDRESS &&
      cie->personality_loc != LLDB_INVALID_ADDRESS) {
    m_objfile.GetModule()->ResolveFileAddress(lsda_data_file_address,
                                              lsda_data);
    m_objfile.GetModule()->ResolveFileAddress(cie->personality_loc,
                                              personality_function_ptr);
  }

  if (lsda_data.IsValid() && personality_function_ptr.IsValid()) {
    unwind_plan.SetLSDAAddress(lsda_data);
    unwind_plan.SetPersonalityFunctionPtr(personality_function_ptr);
  }

  uint32_t code_align = cie->code_align;
  int32_t data_align = cie->data_align;

  unwind_plan.SetPlanValidAddressRange(range);
  UnwindPlan::Row *cie_initial_row = new UnwindPlan::Row;
  *cie_initial_row = cie->initial_row;
  UnwindPlan::RowSP row(cie_initial_row);

  unwind_plan.SetRegisterKind(GetRegisterKind());
  unwind_plan.SetReturnAddressRegister(cie->return_addr_reg_num);

  std::vector<UnwindPlan::RowSP> stack;

  UnwindPlan::Row::RegisterLocation reg_location;
  while (m_cfi_data.ValidOffset(offset) && offset < end_offset) {
    uint8_t inst = m_cfi_data.GetU8(&offset);
    uint8_t primary_opcode = inst & 0xC0;
    uint8_t extended_opcode = inst & 0x3F;

    if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode, data_align,
                                 offset, *row)) {
      if (primary_opcode) {
        switch (primary_opcode) {
        case DW_CFA_advance_loc: // (Row Creation Instruction)
        { // 0x40 - high 2 bits are 0x1, lower 6 bits are delta
          // takes a single argument that represents a constant delta. The
          // required action is to create a new table row with a location value
          // that is computed by taking the current entry's location value and
          // adding (delta * code_align). All other values in the new row are
          // initially identical to the current row.
          unwind_plan.AppendRow(row);
          UnwindPlan::Row *newrow = new UnwindPlan::Row;
          *newrow = *row.get();
          row.reset(newrow);
          row->SlideOffset(extended_opcode * code_align);
          break;
        }

        case DW_CFA_restore: { // 0xC0 - high 2 bits are 0x3, lower 6 bits are
                               // register
          // takes a single argument that represents a register number. The
          // required action is to change the rule for the indicated register
          // to the rule assigned it by the initial_instructions in the CIE.
          uint32_t reg_num = extended_opcode;
          // We only keep enough register locations around to unwind what is in
          // our thread, and these are organized by the register index in that
          // state, so we need to convert our eh_frame register number from the
          // EH frame info, to a register index

          if (unwind_plan.IsValidRowIndex(0) &&
              unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num,
                                                            reg_location))
            row->SetRegisterInfo(reg_num, reg_location);
          break;
        }
        }
      } else {
        switch (extended_opcode) {
        case DW_CFA_set_loc: // 0x1 (Row Creation Instruction)
        {
          // DW_CFA_set_loc takes a single argument that represents an address.
          // The required action is to create a new table row using the
          // specified address as the location. All other values in the new row
          // are initially identical to the current row. The new location value
          // should always be greater than the current one.
          unwind_plan.AppendRow(row);
          UnwindPlan::Row *newrow = new UnwindPlan::Row;
          *newrow = *row.get();
          row.reset(newrow);
          row->SetOffset(m_cfi_data.GetPointer(&offset) -
                         startaddr.GetFileAddress());
          break;
        }

        case DW_CFA_advance_loc1: // 0x2 (Row Creation Instruction)
        {
          // takes a single uword argument that represents a constant delta.
          // This instruction is identical to DW_CFA_advance_loc except for the
          // encoding and size of the delta argument.
          unwind_plan.AppendRow(row);
          UnwindPlan::Row *newrow = new UnwindPlan::Row;
          *newrow = *row.get();
          row.reset(newrow);
          row->SlideOffset(m_cfi_data.GetU8(&offset) * code_align);
          break;
        }

        case DW_CFA_advance_loc2: // 0x3 (Row Creation Instruction)
        {
          // takes a single uword argument that represents a constant delta.
          // This instruction is identical to DW_CFA_advance_loc except for the
          // encoding and size of the delta argument.
          unwind_plan.AppendRow(row);
          UnwindPlan::Row *newrow = new UnwindPlan::Row;
          *newrow = *row.get();
          row.reset(newrow);
          row->SlideOffset(m_cfi_data.GetU16(&offset) * code_align);
          break;
        }

        case DW_CFA_advance_loc4: // 0x4 (Row Creation Instruction)
        {
          // takes a single uword argument that represents a constant delta.
          // This instruction is identical to DW_CFA_advance_loc except for the
          // encoding and size of the delta argument.
          unwind_plan.AppendRow(row);
          UnwindPlan::Row *newrow = new UnwindPlan::Row;
          *newrow = *row.get();
          row.reset(newrow);
          row->SlideOffset(m_cfi_data.GetU32(&offset) * code_align);
          break;
        }

        case DW_CFA_restore_extended: // 0x6
        {
          // takes a single unsigned LEB128 argument that represents a register
          // number. This instruction is identical to DW_CFA_restore except for
          // the encoding and size of the register argument.
          uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
          if (unwind_plan.IsValidRowIndex(0) &&
              unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num,
                                                            reg_location))
            row->SetRegisterInfo(reg_num, reg_location);
          break;
        }

        case DW_CFA_remember_state: // 0xA
        {
          // These instructions define a stack of information. Encountering the
          // DW_CFA_remember_state instruction means to save the rules for
          // every register on the current row on the stack. Encountering the
          // DW_CFA_restore_state instruction means to pop the set of rules off
          // the stack and place them in the current row. (This operation is
          // useful for compilers that move epilogue code into the body of a
          // function.)
          stack.push_back(row);
          UnwindPlan::Row *newrow = new UnwindPlan::Row;
          *newrow = *row.get();
          row.reset(newrow);
          break;
        }

        case DW_CFA_restore_state: // 0xB
        {
          // These instructions define a stack of information. Encountering the
          // DW_CFA_remember_state instruction means to save the rules for
          // every register on the current row on the stack. Encountering the
          // DW_CFA_restore_state instruction means to pop the set of rules off
          // the stack and place them in the current row. (This operation is
          // useful for compilers that move epilogue code into the body of a
          // function.)
          if (stack.empty()) {
            LLDB_LOGF(log,
                      "DWARFCallFrameInfo::%s(dwarf_offset: %" PRIx32
                      ", startaddr: %" PRIx64
                      " encountered DW_CFA_restore_state but state stack "
                      "is empty. Corrupt unwind info?",
                      __FUNCTION__, dwarf_offset, startaddr.GetFileAddress());
            break;
          }
          lldb::addr_t offset = row->GetOffset();
          row = stack.back();
          stack.pop_back();
          row->SetOffset(offset);
          break;
        }

        case DW_CFA_GNU_args_size: // 0x2e
        {
          // The DW_CFA_GNU_args_size instruction takes an unsigned LEB128
          // operand representing an argument size. This instruction specifies
          // the total of the size of the arguments which have been pushed onto
          // the stack.

          // TODO: Figure out how we should handle this.
          m_cfi_data.GetULEB128(&offset);
          break;
        }

        case DW_CFA_val_offset:    // 0x14
        case DW_CFA_val_offset_sf: // 0x15
        default:
          break;
        }
      }
    }
  }
  unwind_plan.AppendRow(row);

  return true;
}

bool DWARFCallFrameInfo::HandleCommonDwarfOpcode(uint8_t primary_opcode,
                                                 uint8_t extended_opcode,
                                                 int32_t data_align,
                                                 lldb::offset_t &offset,
                                                 UnwindPlan::Row &row) {
  UnwindPlan::Row::RegisterLocation reg_location;

  if (primary_opcode) {
    switch (primary_opcode) {
    case DW_CFA_offset: { // 0x80 - high 2 bits are 0x2, lower 6 bits are
                          // register
      // takes two arguments: an unsigned LEB128 constant representing a
      // factored offset and a register number. The required action is to
      // change the rule for the register indicated by the register number to
      // be an offset(N) rule with a value of (N = factored offset *
      // data_align).
      uint8_t reg_num = extended_opcode;
      int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
      reg_location.SetAtCFAPlusOffset(op_offset);
      row.SetRegisterInfo(reg_num, reg_location);
      return true;
    }
    }
  } else {
    switch (extended_opcode) {
    case DW_CFA_nop: // 0x0
      return true;

    case DW_CFA_offset_extended: // 0x5
    {
      // takes two unsigned LEB128 arguments representing a register number and
      // a factored offset. This instruction is identical to DW_CFA_offset
      // except for the encoding and size of the register argument.
      uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
      int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
      UnwindPlan::Row::RegisterLocation reg_location;
      reg_location.SetAtCFAPlusOffset(op_offset);
      row.SetRegisterInfo(reg_num, reg_location);
      return true;
    }

    case DW_CFA_undefined: // 0x7
    {
      // takes a single unsigned LEB128 argument that represents a register
      // number. The required action is to set the rule for the specified
      // register to undefined.
      uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
      UnwindPlan::Row::RegisterLocation reg_location;
      reg_location.SetUndefined();
      row.SetRegisterInfo(reg_num, reg_location);
      return true;
    }

    case DW_CFA_same_value: // 0x8
    {
      // takes a single unsigned LEB128 argument that represents a register
      // number. The required action is to set the rule for the specified
      // register to same value.
      uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
      UnwindPlan::Row::RegisterLocation reg_location;
      reg_location.SetSame();
      row.SetRegisterInfo(reg_num, reg_location);
      return true;
    }

    case DW_CFA_register: // 0x9
    {
      // takes two unsigned LEB128 arguments representing register numbers. The
      // required action is to set the rule for the first register to be the
      // second register.
      uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
      uint32_t other_reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
      UnwindPlan::Row::RegisterLocation reg_location;
      reg_location.SetInRegister(other_reg_num);
      row.SetRegisterInfo(reg_num, reg_location);
      return true;
    }

    case DW_CFA_def_cfa: // 0xC    (CFA Definition Instruction)
    {
      // Takes two unsigned LEB128 operands representing a register number and
      // a (non-factored) offset. The required action is to define the current
      // CFA rule to use the provided register and offset.
      uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
      int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
      row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, op_offset);
      return true;
    }

    case DW_CFA_def_cfa_register: // 0xD    (CFA Definition Instruction)
    {
      // takes a single unsigned LEB128 argument representing a register
      // number. The required action is to define the current CFA rule to use
      // the provided register (but to keep the old offset).
      uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
      row.GetCFAValue().SetIsRegisterPlusOffset(reg_num,
                                                row.GetCFAValue().GetOffset());
      return true;
    }

    case DW_CFA_def_cfa_offset: // 0xE    (CFA Definition Instruction)
    {
      // Takes a single unsigned LEB128 operand representing a (non-factored)
      // offset. The required action is to define the current CFA rule to use
      // the provided offset (but to keep the old register).
      int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
      row.GetCFAValue().SetIsRegisterPlusOffset(
          row.GetCFAValue().GetRegisterNumber(), op_offset);
      return true;
    }

    case DW_CFA_def_cfa_expression: // 0xF    (CFA Definition Instruction)
    {
      size_t block_len = (size_t)m_cfi_data.GetULEB128(&offset);
      const uint8_t *block_data =
          static_cast<const uint8_t *>(m_cfi_data.GetData(&offset, block_len));
      row.GetCFAValue().SetIsDWARFExpression(block_data, block_len);
      return true;
    }

    case DW_CFA_expression: // 0x10
    {
      // Takes two operands: an unsigned LEB128 value representing a register
      // number, and a DW_FORM_block value representing a DWARF expression. The
      // required action is to change the rule for the register indicated by
      // the register number to be an expression(E) rule where E is the DWARF
      // expression. That is, the DWARF expression computes the address. The
      // value of the CFA is pushed on the DWARF evaluation stack prior to
      // execution of the DWARF expression.
      uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
      uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
      const uint8_t *block_data =
          static_cast<const uint8_t *>(m_cfi_data.GetData(&offset, block_len));
      UnwindPlan::Row::RegisterLocation reg_location;
      reg_location.SetAtDWARFExpression(block_data, block_len);
      row.SetRegisterInfo(reg_num, reg_location);
      return true;
    }

    case DW_CFA_offset_extended_sf: // 0x11
    {
      // takes two operands: an unsigned LEB128 value representing a register
      // number and a signed LEB128 factored offset. This instruction is
      // identical to DW_CFA_offset_extended except that the second operand is
      // signed and factored.
      uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
      int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
      UnwindPlan::Row::RegisterLocation reg_location;
      reg_location.SetAtCFAPlusOffset(op_offset);
      row.SetRegisterInfo(reg_num, reg_location);
      return true;
    }

    case DW_CFA_def_cfa_sf: // 0x12   (CFA Definition Instruction)
    {
      // Takes two operands: an unsigned LEB128 value representing a register
      // number and a signed LEB128 factored offset. This instruction is
      // identical to DW_CFA_def_cfa except that the second operand is signed
      // and factored.
      uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
      int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
      row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, op_offset);
      return true;
    }

    case DW_CFA_def_cfa_offset_sf: // 0x13   (CFA Definition Instruction)
    {
      // takes a signed LEB128 operand representing a factored offset. This
      // instruction is identical to  DW_CFA_def_cfa_offset except that the
      // operand is signed and factored.
      int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
      uint32_t cfa_regnum = row.GetCFAValue().GetRegisterNumber();
      row.GetCFAValue().SetIsRegisterPlusOffset(cfa_regnum, op_offset);
      return true;
    }

    case DW_CFA_val_expression: // 0x16
    {
      // takes two operands: an unsigned LEB128 value representing a register
      // number, and a DW_FORM_block value representing a DWARF expression. The
      // required action is to change the rule for the register indicated by
      // the register number to be a val_expression(E) rule where E is the
      // DWARF expression. That is, the DWARF expression computes the value of
      // the given register. The value of the CFA is pushed on the DWARF
      // evaluation stack prior to execution of the DWARF expression.
      uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
      uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
      const uint8_t *block_data =
          (const uint8_t *)m_cfi_data.GetData(&offset, block_len);
      reg_location.SetIsDWARFExpression(block_data, block_len);
      row.SetRegisterInfo(reg_num, reg_location);
      return true;
    }
    }
  }
  return false;
}

void DWARFCallFrameInfo::ForEachFDEEntries(
    const std::function<bool(lldb::addr_t, uint32_t, dw_offset_t)> &callback) {
  GetFDEIndex();

  for (size_t i = 0, c = m_fde_index.GetSize(); i < c; ++i) {
    const FDEEntryMap::Entry &entry = m_fde_index.GetEntryRef(i);
    if (!callback(entry.base, entry.size, entry.data))
      break;
  }
}