reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
//===-- UnwindPlan.h --------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef liblldb_UnwindPlan_h
#define liblldb_UnwindPlan_h

#include <map>
#include <memory>
#include <vector>

#include "lldb/Core/AddressRange.h"
#include "lldb/Utility/ConstString.h"
#include "lldb/Utility/Stream.h"
#include "lldb/lldb-private.h"

namespace lldb_private {

// The UnwindPlan object specifies how to unwind out of a function - where this
// function saves the caller's register values before modifying them (for non-
// volatile aka saved registers) and how to find this frame's Canonical Frame
// Address (CFA) or Aligned Frame Address (AFA).

// CFA is a DWARF's Canonical Frame Address.
// Most commonly, registers are saved on the stack, offset some bytes from the
// Canonical Frame Address, or CFA, which is the starting address of this
// function's stack frame (the CFA is same as the eh_frame's CFA, whatever that
// may be on a given architecture). The CFA address for the stack frame does
// not change during the lifetime of the function.

// AFA is an artificially introduced Aligned Frame Address.
// It is used only for stack frames with realignment (e.g. when some of the
// locals has an alignment requirement higher than the stack alignment right
// after the function call). It is used to access register values saved on the
// stack after the realignment (and so they are inaccessible through the CFA).
// AFA usually equals the stack pointer value right after the realignment.

// Internally, the UnwindPlan is structured as a vector of register locations
// organized by code address in the function, showing which registers have been
// saved at that point and where they are saved. It can be thought of as the
// expanded table form of the DWARF CFI encoded information.

// Other unwind information sources will be converted into UnwindPlans before
// being added to a FuncUnwinders object.  The unwind source may be an eh_frame
// FDE, a DWARF debug_frame FDE, or assembly language based prologue analysis.
// The UnwindPlan is the canonical form of this information that the unwinder
// code will use when walking the stack.

class UnwindPlan {
public:
  class Row {
  public:
    class RegisterLocation {
    public:
      enum RestoreType {
        unspecified,       // not specified, we may be able to assume this
                           // is the same register. gcc doesn't specify all
                           // initial values so we really don't know...
        undefined,         // reg is not available, e.g. volatile reg
        same,              // reg is unchanged
        atCFAPlusOffset,   // reg = deref(CFA + offset)
        isCFAPlusOffset,   // reg = CFA + offset
        atAFAPlusOffset,   // reg = deref(AFA + offset)
        isAFAPlusOffset,   // reg = AFA + offset
        inOtherRegister,   // reg = other reg
        atDWARFExpression, // reg = deref(eval(dwarf_expr))
        isDWARFExpression  // reg = eval(dwarf_expr)
      };

      RegisterLocation() : m_type(unspecified), m_location() {}

      bool operator==(const RegisterLocation &rhs) const;

      bool operator!=(const RegisterLocation &rhs) const {
        return !(*this == rhs);
      }

      void SetUnspecified() { m_type = unspecified; }

      void SetUndefined() { m_type = undefined; }

      void SetSame() { m_type = same; }

      bool IsSame() const { return m_type == same; }

      bool IsUnspecified() const { return m_type == unspecified; }

      bool IsUndefined() const { return m_type == undefined; }

      bool IsCFAPlusOffset() const { return m_type == isCFAPlusOffset; }

      bool IsAtCFAPlusOffset() const { return m_type == atCFAPlusOffset; }

      bool IsAFAPlusOffset() const { return m_type == isAFAPlusOffset; }

      bool IsAtAFAPlusOffset() const { return m_type == atAFAPlusOffset; }

      bool IsInOtherRegister() const { return m_type == inOtherRegister; }

      bool IsAtDWARFExpression() const { return m_type == atDWARFExpression; }

      bool IsDWARFExpression() const { return m_type == isDWARFExpression; }

      void SetAtCFAPlusOffset(int32_t offset) {
        m_type = atCFAPlusOffset;
        m_location.offset = offset;
      }

      void SetIsCFAPlusOffset(int32_t offset) {
        m_type = isCFAPlusOffset;
        m_location.offset = offset;
      }

      void SetAtAFAPlusOffset(int32_t offset) {
        m_type = atAFAPlusOffset;
        m_location.offset = offset;
      }

      void SetIsAFAPlusOffset(int32_t offset) {
        m_type = isAFAPlusOffset;
        m_location.offset = offset;
      }

      void SetInRegister(uint32_t reg_num) {
        m_type = inOtherRegister;
        m_location.reg_num = reg_num;
      }

      uint32_t GetRegisterNumber() const {
        if (m_type == inOtherRegister)
          return m_location.reg_num;
        return LLDB_INVALID_REGNUM;
      }

      RestoreType GetLocationType() const { return m_type; }

      int32_t GetOffset() const {
        switch(m_type)
        {
        case atCFAPlusOffset:
        case isCFAPlusOffset:
        case atAFAPlusOffset:
        case isAFAPlusOffset:
          return m_location.offset;
        default:
          return 0;
        }
      }

      void GetDWARFExpr(const uint8_t **opcodes, uint16_t &len) const {
        if (m_type == atDWARFExpression || m_type == isDWARFExpression) {
          *opcodes = m_location.expr.opcodes;
          len = m_location.expr.length;
        } else {
          *opcodes = nullptr;
          len = 0;
        }
      }

      void SetAtDWARFExpression(const uint8_t *opcodes, uint32_t len);

      void SetIsDWARFExpression(const uint8_t *opcodes, uint32_t len);

      const uint8_t *GetDWARFExpressionBytes() {
        if (m_type == atDWARFExpression || m_type == isDWARFExpression)
          return m_location.expr.opcodes;
        return nullptr;
      }

      int GetDWARFExpressionLength() {
        if (m_type == atDWARFExpression || m_type == isDWARFExpression)
          return m_location.expr.length;
        return 0;
      }

      void Dump(Stream &s, const UnwindPlan *unwind_plan,
                const UnwindPlan::Row *row, Thread *thread, bool verbose) const;

    private:
      RestoreType m_type; // How do we locate this register?
      union {
        // For m_type == atCFAPlusOffset or m_type == isCFAPlusOffset
        int32_t offset;
        // For m_type == inOtherRegister
        uint32_t reg_num; // The register number
        // For m_type == atDWARFExpression or m_type == isDWARFExpression
        struct {
          const uint8_t *opcodes;
          uint16_t length;
        } expr;
      } m_location;
    };

    class FAValue {
    public:
      enum ValueType {
        unspecified,            // not specified
        isRegisterPlusOffset,   // FA = register + offset
        isRegisterDereferenced, // FA = [reg]
        isDWARFExpression,      // FA = eval(dwarf_expr)
        isRaSearch,             // FA = SP + offset + ???
      };

      FAValue() : m_type(unspecified), m_value() {}

      bool operator==(const FAValue &rhs) const;

      bool operator!=(const FAValue &rhs) const { return !(*this == rhs); }

      void SetUnspecified() { m_type = unspecified; }

      bool IsUnspecified() const { return m_type == unspecified; }

      void SetRaSearch(int32_t offset) {
        m_type = isRaSearch;
        m_value.ra_search_offset = offset;
      }

      bool IsRegisterPlusOffset() const {
        return m_type == isRegisterPlusOffset;
      }

      void SetIsRegisterPlusOffset(uint32_t reg_num, int32_t offset) {
        m_type = isRegisterPlusOffset;
        m_value.reg.reg_num = reg_num;
        m_value.reg.offset = offset;
      }

      bool IsRegisterDereferenced() const {
        return m_type == isRegisterDereferenced;
      }

      void SetIsRegisterDereferenced(uint32_t reg_num) {
        m_type = isRegisterDereferenced;
        m_value.reg.reg_num = reg_num;
      }

      bool IsDWARFExpression() const { return m_type == isDWARFExpression; }

      void SetIsDWARFExpression(const uint8_t *opcodes, uint32_t len) {
        m_type = isDWARFExpression;
        m_value.expr.opcodes = opcodes;
        m_value.expr.length = len;
      }

      uint32_t GetRegisterNumber() const {
        if (m_type == isRegisterDereferenced || m_type == isRegisterPlusOffset)
          return m_value.reg.reg_num;
        return LLDB_INVALID_REGNUM;
      }

      ValueType GetValueType() const { return m_type; }

      int32_t GetOffset() const {
        switch (m_type) {
          case isRegisterPlusOffset:
            return m_value.reg.offset;
          case isRaSearch:
            return m_value.ra_search_offset;
          default:
            return 0;
        }
      }

      void IncOffset(int32_t delta) {
        if (m_type == isRegisterPlusOffset)
          m_value.reg.offset += delta;
      }

      void SetOffset(int32_t offset) {
        if (m_type == isRegisterPlusOffset)
          m_value.reg.offset = offset;
      }

      void GetDWARFExpr(const uint8_t **opcodes, uint16_t &len) const {
        if (m_type == isDWARFExpression) {
          *opcodes = m_value.expr.opcodes;
          len = m_value.expr.length;
        } else {
          *opcodes = nullptr;
          len = 0;
        }
      }

      const uint8_t *GetDWARFExpressionBytes() {
        if (m_type == isDWARFExpression)
          return m_value.expr.opcodes;
        return nullptr;
      }

      int GetDWARFExpressionLength() {
        if (m_type == isDWARFExpression)
          return m_value.expr.length;
        return 0;
      }

      void Dump(Stream &s, const UnwindPlan *unwind_plan, Thread *thread) const;

    private:
      ValueType m_type; // How do we compute CFA value?
      union {
        struct {
          // For m_type == isRegisterPlusOffset or m_type ==
          // isRegisterDereferenced
          uint32_t reg_num; // The register number
          // For m_type == isRegisterPlusOffset
          int32_t offset;
        } reg;
        // For m_type == isDWARFExpression
        struct {
          const uint8_t *opcodes;
          uint16_t length;
        } expr;
        // For m_type == isRaSearch
        int32_t ra_search_offset;
      } m_value;
    }; // class FAValue

  public:
    Row();

    Row(const UnwindPlan::Row &rhs) = default;

    bool operator==(const Row &rhs) const;

    bool GetRegisterInfo(uint32_t reg_num,
                         RegisterLocation &register_location) const;

    void SetRegisterInfo(uint32_t reg_num,
                         const RegisterLocation register_location);

    void RemoveRegisterInfo(uint32_t reg_num);

    lldb::addr_t GetOffset() const { return m_offset; }

    void SetOffset(lldb::addr_t offset) { m_offset = offset; }

    void SlideOffset(lldb::addr_t offset) { m_offset += offset; }

    FAValue &GetCFAValue() { return m_cfa_value; }

    FAValue &GetAFAValue() { return m_afa_value; }

    bool SetRegisterLocationToAtCFAPlusOffset(uint32_t reg_num, int32_t offset,
                                              bool can_replace);

    bool SetRegisterLocationToIsCFAPlusOffset(uint32_t reg_num, int32_t offset,
                                              bool can_replace);

    bool SetRegisterLocationToUndefined(uint32_t reg_num, bool can_replace,
                                        bool can_replace_only_if_unspecified);

    bool SetRegisterLocationToUnspecified(uint32_t reg_num, bool can_replace);

    bool SetRegisterLocationToRegister(uint32_t reg_num, uint32_t other_reg_num,
                                       bool can_replace);

    bool SetRegisterLocationToSame(uint32_t reg_num, bool must_replace);

    void Clear();

    void Dump(Stream &s, const UnwindPlan *unwind_plan, Thread *thread,
              lldb::addr_t base_addr) const;

  protected:
    typedef std::map<uint32_t, RegisterLocation> collection;
    lldb::addr_t m_offset; // Offset into the function for this row

    FAValue m_cfa_value;
    FAValue m_afa_value;
    collection m_register_locations;
  }; // class Row

public:
  typedef std::shared_ptr<Row> RowSP;

  UnwindPlan(lldb::RegisterKind reg_kind)
      : m_row_list(), m_plan_valid_address_range(), m_register_kind(reg_kind),
        m_return_addr_register(LLDB_INVALID_REGNUM), m_source_name(),
        m_plan_is_sourced_from_compiler(eLazyBoolCalculate),
        m_plan_is_valid_at_all_instruction_locations(eLazyBoolCalculate),
        m_plan_is_for_signal_trap(eLazyBoolCalculate),
        m_lsda_address(), m_personality_func_addr() {}

  // Performs a deep copy of the plan, including all the rows (expensive).
  UnwindPlan(const UnwindPlan &rhs)
      : m_plan_valid_address_range(rhs.m_plan_valid_address_range),
        m_register_kind(rhs.m_register_kind),
        m_return_addr_register(rhs.m_return_addr_register),
        m_source_name(rhs.m_source_name),
        m_plan_is_sourced_from_compiler(rhs.m_plan_is_sourced_from_compiler),
        m_plan_is_valid_at_all_instruction_locations(
            rhs.m_plan_is_valid_at_all_instruction_locations),
        m_lsda_address(rhs.m_lsda_address),
        m_personality_func_addr(rhs.m_personality_func_addr) {
    m_row_list.reserve(rhs.m_row_list.size());
    for (const RowSP &row_sp : rhs.m_row_list)
      m_row_list.emplace_back(new Row(*row_sp));
  }

  ~UnwindPlan() = default;

  void Dump(Stream &s, Thread *thread, lldb::addr_t base_addr) const;

  void AppendRow(const RowSP &row_sp);

  void InsertRow(const RowSP &row_sp, bool replace_existing = false);

  // Returns a pointer to the best row for the given offset into the function's
  // instructions. If offset is -1 it indicates that the function start is
  // unknown - the final row in the UnwindPlan is returned. In practice, the
  // UnwindPlan for a function with no known start address will be the
  // architectural default UnwindPlan which will only have one row.
  UnwindPlan::RowSP GetRowForFunctionOffset(int offset) const;

  lldb::RegisterKind GetRegisterKind() const { return m_register_kind; }

  void SetRegisterKind(lldb::RegisterKind kind) { m_register_kind = kind; }

  void SetReturnAddressRegister(uint32_t regnum) {
    m_return_addr_register = regnum;
  }

  uint32_t GetReturnAddressRegister(void) { return m_return_addr_register; }

  uint32_t GetInitialCFARegister() const {
    if (m_row_list.empty())
      return LLDB_INVALID_REGNUM;
    return m_row_list.front()->GetCFAValue().GetRegisterNumber();
  }

  // This UnwindPlan may not be valid at every address of the function span.
  // For instance, a FastUnwindPlan will not be valid at the prologue setup
  // instructions - only in the body of the function.
  void SetPlanValidAddressRange(const AddressRange &range);

  const AddressRange &GetAddressRange() const {
    return m_plan_valid_address_range;
  }

  bool PlanValidAtAddress(Address addr);

  bool IsValidRowIndex(uint32_t idx) const;

  const UnwindPlan::RowSP GetRowAtIndex(uint32_t idx) const;

  const UnwindPlan::RowSP GetLastRow() const;

  lldb_private::ConstString GetSourceName() const;

  void SetSourceName(const char *);

  // Was this UnwindPlan emitted by a compiler?
  lldb_private::LazyBool GetSourcedFromCompiler() const {
    return m_plan_is_sourced_from_compiler;
  }

  // Was this UnwindPlan emitted by a compiler?
  void SetSourcedFromCompiler(lldb_private::LazyBool from_compiler) {
    m_plan_is_sourced_from_compiler = from_compiler;
  }

  // Is this UnwindPlan valid at all instructions?  If not, then it is assumed
  // valid at call sites, e.g. for exception handling.
  lldb_private::LazyBool GetUnwindPlanValidAtAllInstructions() const {
    return m_plan_is_valid_at_all_instruction_locations;
  }

  // Is this UnwindPlan valid at all instructions?  If not, then it is assumed
  // valid at call sites, e.g. for exception handling.
  void SetUnwindPlanValidAtAllInstructions(
      lldb_private::LazyBool valid_at_all_insn) {
    m_plan_is_valid_at_all_instruction_locations = valid_at_all_insn;
  }

  // Is this UnwindPlan for a signal trap frame?  If so, then its saved pc
  // may have been set manually by the signal dispatch code and therefore
  // not follow a call to the child frame.
  lldb_private::LazyBool GetUnwindPlanForSignalTrap() const {
    return m_plan_is_for_signal_trap;
  }

  void SetUnwindPlanForSignalTrap(lldb_private::LazyBool is_for_signal_trap) {
    m_plan_is_for_signal_trap = is_for_signal_trap;
  }

  int GetRowCount() const;

  void Clear() {
    m_row_list.clear();
    m_plan_valid_address_range.Clear();
    m_register_kind = lldb::eRegisterKindDWARF;
    m_source_name.Clear();
    m_plan_is_sourced_from_compiler = eLazyBoolCalculate;
    m_plan_is_valid_at_all_instruction_locations = eLazyBoolCalculate;
    m_plan_is_for_signal_trap = eLazyBoolCalculate;
    m_lsda_address.Clear();
    m_personality_func_addr.Clear();
  }

  const RegisterInfo *GetRegisterInfo(Thread *thread, uint32_t reg_num) const;

  Address GetLSDAAddress() const { return m_lsda_address; }

  void SetLSDAAddress(Address lsda_addr) { m_lsda_address = lsda_addr; }

  Address GetPersonalityFunctionPtr() const { return m_personality_func_addr; }

  void SetPersonalityFunctionPtr(Address presonality_func_ptr) {
    m_personality_func_addr = presonality_func_ptr;
  }

private:
  typedef std::vector<RowSP> collection;
  collection m_row_list;
  AddressRange m_plan_valid_address_range;
  lldb::RegisterKind m_register_kind; // The RegisterKind these register numbers
                                      // are in terms of - will need to be
  // translated to lldb native reg nums at unwind time
  uint32_t m_return_addr_register; // The register that has the return address
                                   // for the caller frame
                                   // e.g. the lr on arm
  lldb_private::ConstString
      m_source_name; // for logging, where this UnwindPlan originated from
  lldb_private::LazyBool m_plan_is_sourced_from_compiler;
  lldb_private::LazyBool m_plan_is_valid_at_all_instruction_locations;
  lldb_private::LazyBool m_plan_is_for_signal_trap;

  Address m_lsda_address; // Where the language specific data area exists in the
                          // module - used
                          // in exception handling.
  Address m_personality_func_addr; // The address of a pointer to the
                                   // personality function - used in
                                   // exception handling.
};                                 // class UnwindPlan

} // namespace lldb_private

#endif // liblldb_UnwindPlan_h