reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
//===--- Dex.cpp - Dex Symbol Index Implementation --------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "Dex.h"
#include "FileDistance.h"
#include "FuzzyMatch.h"
#include "Logger.h"
#include "Quality.h"
#include "Trace.h"
#include "index/Index.h"
#include "index/dex/Iterator.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/ScopedPrinter.h"
#include <algorithm>
#include <queue>

namespace clang {
namespace clangd {
namespace dex {

std::unique_ptr<SymbolIndex> Dex::build(SymbolSlab Symbols, RefSlab Refs,
                                        RelationSlab Rels) {
  auto Size = Symbols.bytes() + Refs.bytes();
  // There is no need to include "Rels" in Data because the relations are self-
  // contained, without references into a backing store.
  auto Data = std::make_pair(std::move(Symbols), std::move(Refs));
  return std::make_unique<Dex>(Data.first, Data.second, Rels, std::move(Data),
                                Size);
}

namespace {

// Mark symbols which are can be used for code completion.
const Token RestrictedForCodeCompletion =
    Token(Token::Kind::Sentinel, "Restricted For Code Completion");

// Returns the tokens which are given symbol's characteristics. Currently, the
// generated tokens only contain fuzzy matching trigrams and symbol's scope,
// but in the future this will also return path proximity tokens and other
// types of tokens such as symbol type (if applicable).
// Returns the tokens which are given symbols's characteristics. For example,
// trigrams and scopes.
// FIXME(kbobyrev): Support more token types:
// * Namespace proximity
std::vector<Token> generateSearchTokens(const Symbol &Sym) {
  std::vector<Token> Result = generateIdentifierTrigrams(Sym.Name);
  Result.emplace_back(Token::Kind::Scope, Sym.Scope);
  // Skip token generation for symbols with unknown declaration location.
  if (!llvm::StringRef(Sym.CanonicalDeclaration.FileURI).empty())
    for (const auto &ProximityURI :
         generateProximityURIs(Sym.CanonicalDeclaration.FileURI))
      Result.emplace_back(Token::Kind::ProximityURI, ProximityURI);
  if (Sym.Flags & Symbol::IndexedForCodeCompletion)
    Result.emplace_back(RestrictedForCodeCompletion);
  if (!Sym.Type.empty())
    Result.emplace_back(Token::Kind::Type, Sym.Type);
  return Result;
}

} // namespace

void Dex::buildIndex() {
  this->Corpus = dex::Corpus(Symbols.size());
  std::vector<std::pair<float, const Symbol *>> ScoredSymbols(Symbols.size());

  for (size_t I = 0; I < Symbols.size(); ++I) {
    const Symbol *Sym = Symbols[I];
    LookupTable[Sym->ID] = Sym;
    ScoredSymbols[I] = {quality(*Sym), Sym};
  }

  // Symbols are sorted by symbol qualities so that items in the posting lists
  // are stored in the descending order of symbol quality.
  llvm::sort(ScoredSymbols, std::greater<std::pair<float, const Symbol *>>());

  // SymbolQuality was empty up until now.
  SymbolQuality.resize(Symbols.size());
  // Populate internal storage using Symbol + Score pairs.
  for (size_t I = 0; I < ScoredSymbols.size(); ++I) {
    SymbolQuality[I] = ScoredSymbols[I].first;
    Symbols[I] = ScoredSymbols[I].second;
  }

  // Populate TempInvertedIndex with lists for index symbols.
  llvm::DenseMap<Token, std::vector<DocID>> TempInvertedIndex;
  for (DocID SymbolRank = 0; SymbolRank < Symbols.size(); ++SymbolRank) {
    const auto *Sym = Symbols[SymbolRank];
    for (const auto &Token : generateSearchTokens(*Sym))
      TempInvertedIndex[Token].push_back(SymbolRank);
  }

  // Convert lists of items to posting lists.
  for (const auto &TokenToPostingList : TempInvertedIndex)
    InvertedIndex.insert(
        {TokenToPostingList.first, PostingList(TokenToPostingList.second)});
}

std::unique_ptr<Iterator> Dex::iterator(const Token &Tok) const {
  auto It = InvertedIndex.find(Tok);
  return It == InvertedIndex.end() ? Corpus.none()
                                   : It->second.iterator(&It->first);
}

// Constructs BOOST iterators for Path Proximities.
std::unique_ptr<Iterator> Dex::createFileProximityIterator(
    llvm::ArrayRef<std::string> ProximityPaths) const {
  std::vector<std::unique_ptr<Iterator>> BoostingIterators;
  // Deduplicate parent URIs extracted from the ProximityPaths.
  llvm::StringSet<> ParentURIs;
  llvm::StringMap<SourceParams> Sources;
  for (const auto &Path : ProximityPaths) {
    Sources[Path] = SourceParams();
    auto PathURI = URI::create(Path);
    const auto PathProximityURIs = generateProximityURIs(PathURI.toString());
    for (const auto &ProximityURI : PathProximityURIs)
      ParentURIs.insert(ProximityURI);
  }
  // Use SymbolRelevanceSignals for symbol relevance evaluation: use defaults
  // for all parameters except for Proximity Path distance signal.
  SymbolRelevanceSignals PathProximitySignals;
  // DistanceCalculator will find the shortest distance from ProximityPaths to
  // any URI extracted from the ProximityPaths.
  URIDistance DistanceCalculator(Sources);
  PathProximitySignals.FileProximityMatch = &DistanceCalculator;
  // Try to build BOOST iterator for each Proximity Path provided by
  // ProximityPaths. Boosting factor should depend on the distance to the
  // Proximity Path: the closer processed path is, the higher boosting factor.
  for (const auto &ParentURI : ParentURIs.keys()) {
    // FIXME(kbobyrev): Append LIMIT on top of every BOOST iterator.
    auto It = iterator(Token(Token::Kind::ProximityURI, ParentURI));
    if (It->kind() != Iterator::Kind::False) {
      PathProximitySignals.SymbolURI = ParentURI;
      BoostingIterators.push_back(
          Corpus.boost(std::move(It), PathProximitySignals.evaluate()));
    }
  }
  BoostingIterators.push_back(Corpus.all());
  return Corpus.unionOf(std::move(BoostingIterators));
}

// Constructs BOOST iterators for preferred types.
std::unique_ptr<Iterator>
Dex::createTypeBoostingIterator(llvm::ArrayRef<std::string> Types) const {
  std::vector<std::unique_ptr<Iterator>> BoostingIterators;
  SymbolRelevanceSignals PreferredTypeSignals;
  PreferredTypeSignals.TypeMatchesPreferred = true;
  auto Boost = PreferredTypeSignals.evaluate();
  for (const auto &T : Types)
    BoostingIterators.push_back(
        Corpus.boost(iterator(Token(Token::Kind::Type, T)), Boost));
  BoostingIterators.push_back(Corpus.all());
  return Corpus.unionOf(std::move(BoostingIterators));
}

/// Constructs iterators over tokens extracted from the query and exhausts it
/// while applying Callback to each symbol in the order of decreasing quality
/// of the matched symbols.
bool Dex::fuzzyFind(const FuzzyFindRequest &Req,
                    llvm::function_ref<void(const Symbol &)> Callback) const {
  assert(!StringRef(Req.Query).contains("::") &&
         "There must be no :: in query.");
  trace::Span Tracer("Dex fuzzyFind");
  FuzzyMatcher Filter(Req.Query);
  // For short queries we use specialized trigrams that don't yield all results.
  // Prevent clients from postfiltering them for longer queries.
  bool More = !Req.Query.empty() && Req.Query.size() < 3;

  std::vector<std::unique_ptr<Iterator>> Criteria;
  const auto TrigramTokens = generateQueryTrigrams(Req.Query);

  // Generate query trigrams and construct AND iterator over all query
  // trigrams.
  std::vector<std::unique_ptr<Iterator>> TrigramIterators;
  for (const auto &Trigram : TrigramTokens)
    TrigramIterators.push_back(iterator(Trigram));
  Criteria.push_back(Corpus.intersect(move(TrigramIterators)));

  // Generate scope tokens for search query.
  std::vector<std::unique_ptr<Iterator>> ScopeIterators;
  for (const auto &Scope : Req.Scopes)
    ScopeIterators.push_back(iterator(Token(Token::Kind::Scope, Scope)));
  if (Req.AnyScope)
    ScopeIterators.push_back(
        Corpus.boost(Corpus.all(), ScopeIterators.empty() ? 1.0 : 0.2));
  Criteria.push_back(Corpus.unionOf(move(ScopeIterators)));

  // Add proximity paths boosting (all symbols, some boosted).
  Criteria.push_back(createFileProximityIterator(Req.ProximityPaths));
  // Add boosting for preferred types.
  Criteria.push_back(createTypeBoostingIterator(Req.PreferredTypes));

  if (Req.RestrictForCodeCompletion)
    Criteria.push_back(iterator(RestrictedForCodeCompletion));

  // Use TRUE iterator if both trigrams and scopes from the query are not
  // present in the symbol index.
  auto Root = Corpus.intersect(move(Criteria));
  // Retrieve more items than it was requested: some of  the items with high
  // final score might not be retrieved otherwise.
  // FIXME(kbobyrev): Tune this ratio.
  if (Req.Limit)
    Root = Corpus.limit(move(Root), *Req.Limit * 100);
  SPAN_ATTACH(Tracer, "query", llvm::to_string(*Root));
  vlog("Dex query tree: {0}", *Root);

  using IDAndScore = std::pair<DocID, float>;
  std::vector<IDAndScore> IDAndScores = consume(*Root);

  auto Compare = [](const IDAndScore &LHS, const IDAndScore &RHS) {
    return LHS.second > RHS.second;
  };
  TopN<IDAndScore, decltype(Compare)> Top(
      Req.Limit ? *Req.Limit : std::numeric_limits<size_t>::max(), Compare);
  for (const auto &IDAndScore : IDAndScores) {
    const DocID SymbolDocID = IDAndScore.first;
    const auto *Sym = Symbols[SymbolDocID];
    const llvm::Optional<float> Score = Filter.match(Sym->Name);
    if (!Score)
      continue;
    // Combine Fuzzy Matching score, precomputed symbol quality and boosting
    // score for a cumulative final symbol score.
    const float FinalScore =
        (*Score) * SymbolQuality[SymbolDocID] * IDAndScore.second;
    // If Top.push(...) returns true, it means that it had to pop an item. In
    // this case, it is possible to retrieve more symbols.
    if (Top.push({SymbolDocID, FinalScore}))
      More = true;
  }

  // Apply callback to the top Req.Limit items in the descending
  // order of cumulative score.
  for (const auto &Item : std::move(Top).items())
    Callback(*Symbols[Item.first]);
  return More;
}

void Dex::lookup(const LookupRequest &Req,
                 llvm::function_ref<void(const Symbol &)> Callback) const {
  trace::Span Tracer("Dex lookup");
  for (const auto &ID : Req.IDs) {
    auto I = LookupTable.find(ID);
    if (I != LookupTable.end())
      Callback(*I->second);
  }
}

void Dex::refs(const RefsRequest &Req,
               llvm::function_ref<void(const Ref &)> Callback) const {
  trace::Span Tracer("Dex refs");
  uint32_t Remaining =
      Req.Limit.getValueOr(std::numeric_limits<uint32_t>::max());
  for (const auto &ID : Req.IDs)
    for (const auto &Ref : Refs.lookup(ID)) {
      if (Remaining > 0 && static_cast<int>(Req.Filter & Ref.Kind)) {
        --Remaining;
        Callback(Ref);
      }
    }
}

void Dex::relations(
    const RelationsRequest &Req,
    llvm::function_ref<void(const SymbolID &, const Symbol &)> Callback) const {
  trace::Span Tracer("Dex relations");
  uint32_t Remaining =
      Req.Limit.getValueOr(std::numeric_limits<uint32_t>::max());
  for (const SymbolID &Subject : Req.Subjects) {
    LookupRequest LookupReq;
    auto It = Relations.find(
        std::make_pair(Subject, static_cast<uint8_t>(Req.Predicate)));
    if (It != Relations.end()) {
      for (const auto &Object : It->second) {
        if (Remaining > 0) {
          --Remaining;
          LookupReq.IDs.insert(Object);
        }
      }
    }
    lookup(LookupReq, [&](const Symbol &Object) { Callback(Subject, Object); });
  }
}

size_t Dex::estimateMemoryUsage() const {
  size_t Bytes = Symbols.size() * sizeof(const Symbol *);
  Bytes += SymbolQuality.size() * sizeof(float);
  Bytes += LookupTable.getMemorySize();
  Bytes += InvertedIndex.getMemorySize();
  for (const auto &TokenToPostingList : InvertedIndex)
    Bytes += TokenToPostingList.second.bytes();
  Bytes += Refs.getMemorySize();
  Bytes += Relations.getMemorySize();
  return Bytes + BackingDataSize;
}

std::vector<std::string> generateProximityURIs(llvm::StringRef URIPath) {
  std::vector<std::string> Result;
  auto ParsedURI = URI::parse(URIPath);
  assert(ParsedURI &&
         "Non-empty argument of generateProximityURIs() should be a valid "
         "URI.");
  llvm::StringRef Body = ParsedURI->body();
  // FIXME(kbobyrev): Currently, this is a heuristic which defines the maximum
  // size of resulting vector. Some projects might want to have higher limit if
  // the file hierarchy is deeper. For the generic case, it would be useful to
  // calculate Limit in the index build stage by calculating the maximum depth
  // of the project source tree at runtime.
  size_t Limit = 5;
  // Insert original URI before the loop: this would save a redundant iteration
  // with a URI parse.
  Result.emplace_back(ParsedURI->toString());
  while (!Body.empty() && --Limit > 0) {
    // FIXME(kbobyrev): Parsing and encoding path to URIs is not necessary and
    // could be optimized.
    Body = llvm::sys::path::parent_path(Body, llvm::sys::path::Style::posix);
    if (!Body.empty())
      Result.emplace_back(
          URI(ParsedURI->scheme(), ParsedURI->authority(), Body).toString());
  }
  return Result;
}

} // namespace dex
} // namespace clangd
} // namespace clang