reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
//===--- Iterator.cpp - Query Symbol Retrieval ------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "Iterator.h"
#include "llvm/Support/Casting.h"
#include <algorithm>
#include <cassert>
#include <numeric>

namespace clang {
namespace clangd {
namespace dex {
namespace {

/// Implements Iterator over the intersection of other iterators.
///
/// AndIterator iterates through common items among all children. It becomes
/// exhausted as soon as any child becomes exhausted. After each mutation, the
/// iterator restores the invariant: all children must point to the same item.
class AndIterator : public Iterator {
public:
  explicit AndIterator(std::vector<std::unique_ptr<Iterator>> AllChildren)
      : Iterator(Kind::And), Children(std::move(AllChildren)) {
    assert(!Children.empty() && "AND iterator should have at least one child.");
    // Establish invariants.
    for (const auto &Child : Children)
      ReachedEnd |= Child->reachedEnd();
    sync();
    // When children are sorted by the estimateSize(), sync() calls are more
    // effective. Each sync() starts with the first child and makes sure all
    // children point to the same element. If any child is "above" the previous
    // ones, the algorithm resets and and advances the children to the next
    // highest element starting from the front. When child iterators in the
    // beginning have smaller estimated size, the sync() will have less restarts
    // and become more effective.
    llvm::sort(Children, [](const std::unique_ptr<Iterator> &LHS,
                            const std::unique_ptr<Iterator> &RHS) {
      return LHS->estimateSize() < RHS->estimateSize();
    });
  }

  bool reachedEnd() const override { return ReachedEnd; }

  /// Advances all children to the next common item.
  void advance() override {
    assert(!reachedEnd() && "AND iterator can't advance() at the end.");
    Children.front()->advance();
    sync();
  }

  /// Advances all children to the next common item with DocumentID >= ID.
  void advanceTo(DocID ID) override {
    assert(!reachedEnd() && "AND iterator can't advanceTo() at the end.");
    Children.front()->advanceTo(ID);
    sync();
  }

  DocID peek() const override { return Children.front()->peek(); }

  float consume() override {
    assert(!reachedEnd() && "AND iterator can't consume() at the end.");
    float Boost = 1;
    for (const auto &Child : Children)
      Boost *= Child->consume();
    return Boost;
  }

  size_t estimateSize() const override {
    return Children.front()->estimateSize();
  }

private:
  llvm::raw_ostream &dump(llvm::raw_ostream &OS) const override {
    OS << "(& ";
    auto Separator = "";
    for (const auto &Child : Children) {
      OS << Separator << *Child;
      Separator = " ";
    }
    OS << ')';
    return OS;
  }

  /// Restores class invariants: each child will point to the same element after
  /// sync.
  void sync() {
    ReachedEnd |= Children.front()->reachedEnd();
    if (ReachedEnd)
      return;
    auto SyncID = Children.front()->peek();
    // Indicates whether any child needs to be advanced to new SyncID.
    bool NeedsAdvance = false;
    do {
      NeedsAdvance = false;
      for (auto &Child : Children) {
        Child->advanceTo(SyncID);
        ReachedEnd |= Child->reachedEnd();
        // If any child reaches end And iterator can not match any other items.
        // In this case, just terminate the process.
        if (ReachedEnd)
          return;
        // If any child goes beyond given ID (i.e. ID is not the common item),
        // all children should be advanced to the next common item.
        if (Child->peek() > SyncID) {
          SyncID = Child->peek();
          NeedsAdvance = true;
        }
      }
    } while (NeedsAdvance);
  }

  /// AndIterator owns its children and ensures that all of them point to the
  /// same element. As soon as one child gets exhausted, AndIterator can no
  /// longer advance and has reached its end.
  std::vector<std::unique_ptr<Iterator>> Children;
  /// Indicates whether any child is exhausted. It is cheaper to maintain and
  /// update the field, rather than traversing the whole subtree in each
  /// reachedEnd() call.
  bool ReachedEnd = false;
  friend Corpus; // For optimizations.
};

/// Implements Iterator over the union of other iterators.
///
/// OrIterator iterates through all items which can be pointed to by at least
/// one child. To preserve the sorted order, this iterator always advances the
/// child with smallest Child->peek() value. OrIterator becomes exhausted as
/// soon as all of its children are exhausted.
class OrIterator : public Iterator {
public:
  explicit OrIterator(std::vector<std::unique_ptr<Iterator>> AllChildren)
      : Iterator(Kind::Or), Children(std::move(AllChildren)) {
    assert(!Children.empty() && "OR iterator should have at least one child.");
  }

  /// Returns true if all children are exhausted.
  bool reachedEnd() const override {
    for (const auto &Child : Children)
      if (!Child->reachedEnd())
        return false;
    return true;
  }

  /// Moves each child pointing to the smallest DocID to the next item.
  void advance() override {
    assert(!reachedEnd() && "OR iterator can't advance() at the end.");
    const auto SmallestID = peek();
    for (const auto &Child : Children)
      if (!Child->reachedEnd() && Child->peek() == SmallestID)
        Child->advance();
  }

  /// Advances each child to the next existing element with DocumentID >= ID.
  void advanceTo(DocID ID) override {
    assert(!reachedEnd() && "OR iterator can't advanceTo() at the end.");
    for (const auto &Child : Children)
      if (!Child->reachedEnd())
        Child->advanceTo(ID);
  }

  /// Returns the element under cursor of the child with smallest Child->peek()
  /// value.
  DocID peek() const override {
    assert(!reachedEnd() && "OR iterator can't peek() at the end.");
    DocID Result = std::numeric_limits<DocID>::max();

    for (const auto &Child : Children)
      if (!Child->reachedEnd())
        Result = std::min(Result, Child->peek());

    return Result;
  }

  // Returns the maximum boosting score among all Children when iterator
  // points to the current ID.
  float consume() override {
    assert(!reachedEnd() && "OR iterator can't consume() at the end.");
    const DocID ID = peek();
    float Boost = 1;
    for (const auto &Child : Children)
      if (!Child->reachedEnd() && Child->peek() == ID)
        Boost = std::max(Boost, Child->consume());
    return Boost;
  }

  size_t estimateSize() const override {
    size_t Size = 0;
    for (const auto &Child : Children)
      Size = std::max(Size, Child->estimateSize());
    return Size;
  }

private:
  llvm::raw_ostream &dump(llvm::raw_ostream &OS) const override {
    OS << "(| ";
    auto Separator = "";
    for (const auto &Child : Children) {
      OS << Separator << *Child;
      Separator = " ";
    }
    OS << ')';
    return OS;
  }

  // FIXME(kbobyrev): Would storing Children in min-heap be faster?
  std::vector<std::unique_ptr<Iterator>> Children;
  friend Corpus; // For optimizations.
};

/// TrueIterator handles PostingLists which contain all items of the index. It
/// stores size of the virtual posting list, and all operations are performed
/// in O(1).
class TrueIterator : public Iterator {
public:
  explicit TrueIterator(DocID Size) : Iterator(Kind::True), Size(Size) {}

  bool reachedEnd() const override { return Index >= Size; }

  void advance() override {
    assert(!reachedEnd() && "TRUE iterator can't advance() at the end.");
    ++Index;
  }

  void advanceTo(DocID ID) override {
    assert(!reachedEnd() && "TRUE iterator can't advanceTo() at the end.");
    Index = std::min(ID, Size);
  }

  DocID peek() const override {
    assert(!reachedEnd() && "TRUE iterator can't peek() at the end.");
    return Index;
  }

  float consume() override {
    assert(!reachedEnd() && "TRUE iterator can't consume() at the end.");
    return 1;
  }

  size_t estimateSize() const override { return Size; }

private:
  llvm::raw_ostream &dump(llvm::raw_ostream &OS) const override {
    return OS << "true";
  }

  DocID Index = 0;
  /// Size of the underlying virtual PostingList.
  DocID Size;
};

/// FalseIterator yields no results.
class FalseIterator : public Iterator {
public:
  FalseIterator() : Iterator(Kind::False) {}
  bool reachedEnd() const override { return true; }
  void advance() override { assert(false); }
  void advanceTo(DocID ID) override { assert(false); }
  DocID peek() const override {
    assert(false);
    return 0;
  }
  float consume() override {
    assert(false);
    return 1;
  }
  size_t estimateSize() const override { return 0; }

private:
  llvm::raw_ostream &dump(llvm::raw_ostream &OS) const override {
    return OS << "false";
  }
};

/// Boost iterator is a wrapper around its child which multiplies scores of
/// each retrieved item by a given factor.
class BoostIterator : public Iterator {
public:
  BoostIterator(std::unique_ptr<Iterator> Child, float Factor)
      : Child(std::move(Child)), Factor(Factor) {}

  bool reachedEnd() const override { return Child->reachedEnd(); }

  void advance() override { Child->advance(); }

  void advanceTo(DocID ID) override { Child->advanceTo(ID); }

  DocID peek() const override { return Child->peek(); }

  float consume() override { return Child->consume() * Factor; }

  size_t estimateSize() const override { return Child->estimateSize(); }

private:
  llvm::raw_ostream &dump(llvm::raw_ostream &OS) const override {
    return OS << "(* " << Factor << ' ' << *Child << ')';
  }

  std::unique_ptr<Iterator> Child;
  float Factor;
};

/// This iterator limits the number of items retrieved from the child iterator
/// on top of the query tree. To ensure that query tree with LIMIT iterators
/// inside works correctly, users have to call Root->consume(Root->peek()) each
/// time item is retrieved at the root of query tree.
class LimitIterator : public Iterator {
public:
  LimitIterator(std::unique_ptr<Iterator> Child, size_t Limit)
      : Child(std::move(Child)), Limit(Limit), ItemsLeft(Limit) {}

  bool reachedEnd() const override {
    return ItemsLeft == 0 || Child->reachedEnd();
  }

  void advance() override { Child->advance(); }

  void advanceTo(DocID ID) override { Child->advanceTo(ID); }

  DocID peek() const override { return Child->peek(); }

  /// Decreases the limit in case the element consumed at top of the query tree
  /// comes from the underlying iterator.
  float consume() override {
    assert(!reachedEnd() && "LimitIterator can't consume() at the end.");
    --ItemsLeft;
    return Child->consume();
  }

  size_t estimateSize() const override {
    return std::min(Child->estimateSize(), Limit);
  }

private:
  llvm::raw_ostream &dump(llvm::raw_ostream &OS) const override {
    return OS << "(LIMIT " << Limit << " " << *Child << ')';
  }

  std::unique_ptr<Iterator> Child;
  size_t Limit;
  size_t ItemsLeft;
};

} // end namespace

std::vector<std::pair<DocID, float>> consume(Iterator &It) {
  std::vector<std::pair<DocID, float>> Result;
  for (; !It.reachedEnd(); It.advance())
    Result.emplace_back(It.peek(), It.consume());
  return Result;
}

std::unique_ptr<Iterator>
Corpus::intersect(std::vector<std::unique_ptr<Iterator>> Children) const {
  std::vector<std::unique_ptr<Iterator>> RealChildren;
  for (auto &Child : Children) {
    switch (Child->kind()) {
    case Iterator::Kind::True:
      break; // No effect, drop the iterator.
    case Iterator::Kind::False:
      return std::move(Child); // Intersection is empty.
    case Iterator::Kind::And: {
      // Inline nested AND into parent AND.
      auto &NewChildren = static_cast<AndIterator *>(Child.get())->Children;
      std::move(NewChildren.begin(), NewChildren.end(),
                std::back_inserter(RealChildren));
      break;
    }
    default:
      RealChildren.push_back(std::move(Child));
    }
  }
  switch (RealChildren.size()) {
  case 0:
    return all();
  case 1:
    return std::move(RealChildren.front());
  default:
    return std::make_unique<AndIterator>(std::move(RealChildren));
  }
}

std::unique_ptr<Iterator>
Corpus::unionOf(std::vector<std::unique_ptr<Iterator>> Children) const {
  std::vector<std::unique_ptr<Iterator>> RealChildren;
  for (auto &Child : Children) {
    switch (Child->kind()) {
    case Iterator::Kind::False:
      break; // No effect, drop the iterator.
    case Iterator::Kind::Or: {
      // Inline nested OR into parent OR.
      auto &NewChildren = static_cast<OrIterator *>(Child.get())->Children;
      std::move(NewChildren.begin(), NewChildren.end(),
                std::back_inserter(RealChildren));
      break;
    }
    case Iterator::Kind::True:
      // Don't return all(), which would discard sibling boosts.
    default:
      RealChildren.push_back(std::move(Child));
    }
  }
  switch (RealChildren.size()) {
  case 0:
    return none();
  case 1:
    return std::move(RealChildren.front());
  default:
    return std::make_unique<OrIterator>(std::move(RealChildren));
  }
}

std::unique_ptr<Iterator> Corpus::all() const {
  return std::make_unique<TrueIterator>(Size);
}

std::unique_ptr<Iterator> Corpus::none() const {
  return std::make_unique<FalseIterator>();
}

std::unique_ptr<Iterator> Corpus::boost(std::unique_ptr<Iterator> Child,
                                        float Factor) const {
  if (Factor == 1)
    return Child;
  if (Child->kind() == Iterator::Kind::False)
    return Child;
  return std::make_unique<BoostIterator>(std::move(Child), Factor);
}

std::unique_ptr<Iterator> Corpus::limit(std::unique_ptr<Iterator> Child,
                                        size_t Limit) const {
  if (Child->kind() == Iterator::Kind::False)
    return Child;
  return std::make_unique<LimitIterator>(std::move(Child), Limit);
}

} // namespace dex
} // namespace clangd
} // namespace clang