reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
//===--- FuzzyMatch.h - Approximate identifier matching  ---------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// To check for a match between a Pattern ('u_p') and a Word ('unique_ptr'),
// we consider the possible partial match states:
//
//     u n i q u e _ p t r
//   +---------------------
//   |A . . . . . . . . . .
//  u|
//   |. . . . . . . . . . .
//  _|
//   |. . . . . . . O . . .
//  p|
//   |. . . . . . . . . . B
//
// Each dot represents some prefix of the pattern being matched against some
// prefix of the word.
//   - A is the initial state: '' matched against ''
//   - O is an intermediate state: 'u_' matched against 'unique_'
//   - B is the target state: 'u_p' matched against 'unique_ptr'
//
// We aim to find the best path from A->B.
//  - Moving right (consuming a word character)
//    Always legal: not all word characters must match.
//  - Moving diagonally (consuming both a word and pattern character)
//    Legal if the characters match.
//  - Moving down (consuming a pattern character) is never legal.
//    Never legal: all pattern characters must match something.
// Characters are matched case-insensitively.
// The first pattern character may only match the start of a word segment.
//
// The scoring is based on heuristics:
//  - when matching a character, apply a bonus or penalty depending on the
//    match quality (does case match, do word segments align, etc)
//  - when skipping a character, apply a penalty if it hurts the match
//    (it starts a word segment, or splits the matched region, etc)
//
// These heuristics require the ability to "look backward" one character, to
// see whether it was matched or not. Therefore the dynamic-programming matrix
// has an extra dimension (last character matched).
// Each entry also has an additional flag indicating whether the last-but-one
// character matched, which is needed to trace back through the scoring table
// and reconstruct the match.
//
// We treat strings as byte-sequences, so only ASCII has first-class support.
//
// This algorithm was inspired by VS code's client-side filtering, and aims
// to be mostly-compatible.
//
//===----------------------------------------------------------------------===//

#include "FuzzyMatch.h"
#include "llvm/ADT/Optional.h"
#include "llvm/Support/Format.h"

namespace clang {
namespace clangd {

constexpr int FuzzyMatcher::MaxPat;
constexpr int FuzzyMatcher::MaxWord;

static char lower(char C) { return C >= 'A' && C <= 'Z' ? C + ('a' - 'A') : C; }
// A "negative infinity" score that won't overflow.
// We use this to mark unreachable states and forbidden solutions.
// Score field is 15 bits wide, min value is -2^14, we use half of that.
static constexpr int AwfulScore = -(1 << 13);
static bool isAwful(int S) { return S < AwfulScore / 2; }
static constexpr int PerfectBonus = 4; // Perfect per-pattern-char score.

FuzzyMatcher::FuzzyMatcher(llvm::StringRef Pattern)
    : PatN(std::min<int>(MaxPat, Pattern.size())),
      ScoreScale(PatN ? float{1} / (PerfectBonus * PatN) : 0), WordN(0) {
  std::copy(Pattern.begin(), Pattern.begin() + PatN, Pat);
  for (int I = 0; I < PatN; ++I)
    LowPat[I] = lower(Pat[I]);
  Scores[0][0][Miss] = {0, Miss};
  Scores[0][0][Match] = {AwfulScore, Miss};
  for (int P = 0; P <= PatN; ++P)
    for (int W = 0; W < P; ++W)
      for (Action A : {Miss, Match})
        Scores[P][W][A] = {AwfulScore, Miss};
  PatTypeSet = calculateRoles(llvm::StringRef(Pat, PatN),
                              llvm::makeMutableArrayRef(PatRole, PatN));
}

llvm::Optional<float> FuzzyMatcher::match(llvm::StringRef Word) {
  if (!(WordContainsPattern = init(Word)))
    return llvm::None;
  if (!PatN)
    return 1;
  buildGraph();
  auto Best = std::max(Scores[PatN][WordN][Miss].Score,
                       Scores[PatN][WordN][Match].Score);
  if (isAwful(Best))
    return llvm::None;
  float Score =
      ScoreScale * std::min(PerfectBonus * PatN, std::max<int>(0, Best));
  // If the pattern is as long as the word, we have an exact string match,
  // since every pattern character must match something.
  if (WordN == PatN)
    Score *= 2; // May not be perfect 2 if case differs in a significant way.
  return Score;
}

// We get CharTypes from a lookup table. Each is 2 bits, 4 fit in each byte.
// The top 6 bits of the char select the byte, the bottom 2 select the offset.
// e.g. 'q' = 010100 01 = byte 28 (55), bits 3-2 (01) -> Lower.
constexpr static uint8_t CharTypes[] = {
    0x00, 0x00, 0x00, 0x00, // Control characters
    0x00, 0x00, 0x00, 0x00, // Control characters
    0xff, 0xff, 0xff, 0xff, // Punctuation
    0x55, 0x55, 0xf5, 0xff, // Numbers->Lower, more Punctuation.
    0xab, 0xaa, 0xaa, 0xaa, // @ and A-O
    0xaa, 0xaa, 0xea, 0xff, // P-Z, more Punctuation.
    0x57, 0x55, 0x55, 0x55, // ` and a-o
    0x55, 0x55, 0xd5, 0x3f, // p-z, Punctuation, DEL.
    0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, // Bytes over 127 -> Lower.
    0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, // (probably UTF-8).
    0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55,
    0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55,
};

// The Role can be determined from the Type of a character and its neighbors:
//
//   Example  | Chars | Type | Role
//   ---------+--------------+-----
//   F(o)oBar | Foo   | Ull  | Tail
//   Foo(B)ar | oBa   | lUl  | Head
//   (f)oo    | ^fo   | Ell  | Head
//   H(T)TP   | HTT   | UUU  | Tail
//
// Our lookup table maps a 6 bit key (Prev, Curr, Next) to a 2-bit Role.
// A byte packs 4 Roles. (Prev, Curr) selects a byte, Next selects the offset.
// e.g. Lower, Upper, Lower -> 01 10 01 -> byte 6 (aa), bits 3-2 (10) -> Head.
constexpr static uint8_t CharRoles[] = {
    // clang-format off
    //         Curr= Empty Lower Upper Separ
    /* Prev=Empty */ 0x00, 0xaa, 0xaa, 0xff, // At start, Lower|Upper->Head
    /* Prev=Lower */ 0x00, 0x55, 0xaa, 0xff, // In word, Upper->Head;Lower->Tail
    /* Prev=Upper */ 0x00, 0x55, 0x59, 0xff, // Ditto, but U(U)U->Tail
    /* Prev=Separ */ 0x00, 0xaa, 0xaa, 0xff, // After separator, like at start
    // clang-format on
};

template <typename T> static T packedLookup(const uint8_t *Data, int I) {
  return static_cast<T>((Data[I >> 2] >> ((I & 3) * 2)) & 3);
}
CharTypeSet calculateRoles(llvm::StringRef Text,
                           llvm::MutableArrayRef<CharRole> Roles) {
  assert(Text.size() == Roles.size());
  if (Text.size() == 0)
    return 0;
  CharType Type = packedLookup<CharType>(CharTypes, Text[0]);
  CharTypeSet TypeSet = 1 << Type;
  // Types holds a sliding window of (Prev, Curr, Next) types.
  // Initial value is (Empty, Empty, type of Text[0]).
  int Types = Type;
  // Rotate slides in the type of the next character.
  auto Rotate = [&](CharType T) { Types = ((Types << 2) | T) & 0x3f; };
  for (unsigned I = 0; I < Text.size() - 1; ++I) {
    // For each character, rotate in the next, and look up the role.
    Type = packedLookup<CharType>(CharTypes, Text[I + 1]);
    TypeSet |= 1 << Type;
    Rotate(Type);
    Roles[I] = packedLookup<CharRole>(CharRoles, Types);
  }
  // For the last character, the "next character" is Empty.
  Rotate(Empty);
  Roles[Text.size() - 1] = packedLookup<CharRole>(CharRoles, Types);
  return TypeSet;
}

// Sets up the data structures matching Word.
// Returns false if we can cheaply determine that no match is possible.
bool FuzzyMatcher::init(llvm::StringRef NewWord) {
  WordN = std::min<int>(MaxWord, NewWord.size());
  if (PatN > WordN)
    return false;
  std::copy(NewWord.begin(), NewWord.begin() + WordN, Word);
  if (PatN == 0)
    return true;
  for (int I = 0; I < WordN; ++I)
    LowWord[I] = lower(Word[I]);

  // Cheap subsequence check.
  for (int W = 0, P = 0; P != PatN; ++W) {
    if (W == WordN)
      return false;
    if (LowWord[W] == LowPat[P])
      ++P;
  }

  // FIXME: some words are hard to tokenize algorithmically.
  // e.g. vsprintf is V S Print F, and should match [pri] but not [int].
  // We could add a tokenization dictionary for common stdlib names.
  WordTypeSet = calculateRoles(llvm::StringRef(Word, WordN),
                               llvm::makeMutableArrayRef(WordRole, WordN));
  return true;
}

// The forwards pass finds the mappings of Pattern onto Word.
// Score = best score achieved matching Word[..W] against Pat[..P].
// Unlike other tables, indices range from 0 to N *inclusive*
// Matched = whether we chose to match Word[W] with Pat[P] or not.
//
// Points are mostly assigned to matched characters, with 1 being a good score
// and 3 being a great one. So we treat the score range as [0, 3 * PatN].
// This range is not strict: we can apply larger bonuses/penalties, or penalize
// non-matched characters.
void FuzzyMatcher::buildGraph() {
  for (int W = 0; W < WordN; ++W) {
    Scores[0][W + 1][Miss] = {Scores[0][W][Miss].Score - skipPenalty(W, Miss),
                              Miss};
    Scores[0][W + 1][Match] = {AwfulScore, Miss};
  }
  for (int P = 0; P < PatN; ++P) {
    for (int W = P; W < WordN; ++W) {
      auto &Score = Scores[P + 1][W + 1], &PreMiss = Scores[P + 1][W];

      auto MatchMissScore = PreMiss[Match].Score;
      auto MissMissScore = PreMiss[Miss].Score;
      if (P < PatN - 1) { // Skipping trailing characters is always free.
        MatchMissScore -= skipPenalty(W, Match);
        MissMissScore -= skipPenalty(W, Miss);
      }
      Score[Miss] = (MatchMissScore > MissMissScore)
                        ? ScoreInfo{MatchMissScore, Match}
                        : ScoreInfo{MissMissScore, Miss};

      auto &PreMatch = Scores[P][W];
      auto MatchMatchScore =
          allowMatch(P, W, Match)
              ? PreMatch[Match].Score + matchBonus(P, W, Match)
              : AwfulScore;
      auto MissMatchScore = allowMatch(P, W, Miss)
                                ? PreMatch[Miss].Score + matchBonus(P, W, Miss)
                                : AwfulScore;
      Score[Match] = (MatchMatchScore > MissMatchScore)
                         ? ScoreInfo{MatchMatchScore, Match}
                         : ScoreInfo{MissMatchScore, Miss};
    }
  }
}

bool FuzzyMatcher::allowMatch(int P, int W, Action Last) const {
  if (LowPat[P] != LowWord[W])
    return false;
  // We require a "strong" match:
  // - for the first pattern character.  [foo] !~ "barefoot"
  // - after a gap.                      [pat] !~ "patnther"
  if (Last == Miss) {
    // We're banning matches outright, so conservatively accept some other cases
    // where our segmentation might be wrong:
    //  - allow matching B in ABCDef (but not in NDEBUG)
    //  - we'd like to accept print in sprintf, but too many false positives
    if (WordRole[W] == Tail &&
        (Word[W] == LowWord[W] || !(WordTypeSet & 1 << Lower)))
      return false;
  }
  return true;
}

int FuzzyMatcher::skipPenalty(int W, Action Last) const {
  if (W == 0) // Skipping the first character.
    return 3;
  if (WordRole[W] == Head) // Skipping a segment.
    return 1; // We want to keep this lower than a consecutive match bonus.
  // Instead of penalizing non-consecutive matches, we give a bonus to a
  // consecutive match in matchBonus. This produces a better score distribution
  // than penalties in case of small patterns, e.g. 'up' for 'unique_ptr'.
  return 0;
}

int FuzzyMatcher::matchBonus(int P, int W, Action Last) const {
  assert(LowPat[P] == LowWord[W]);
  int S = 1;
  bool IsPatSingleCase =
      (PatTypeSet == 1 << Lower) || (PatTypeSet == 1 << Upper);
  // Bonus: case matches, or a Head in the pattern aligns with one in the word.
  // Single-case patterns lack segmentation signals and we assume any character
  // can be a head of a segment.
  if (Pat[P] == Word[W] ||
      (WordRole[W] == Head && (IsPatSingleCase || PatRole[P] == Head)))
    ++S;
  // Bonus: a consecutive match. First character match also gets a bonus to
  // ensure prefix final match score normalizes to 1.0.
  if (W == 0 || Last == Match)
    S += 2;
  // Penalty: matching inside a segment (and previous char wasn't matched).
  if (WordRole[W] == Tail && P && Last == Miss)
    S -= 3;
  // Penalty: a Head in the pattern matches in the middle of a word segment.
  if (PatRole[P] == Head && WordRole[W] == Tail)
    --S;
  // Penalty: matching the first pattern character in the middle of a segment.
  if (P == 0 && WordRole[W] == Tail)
    S -= 4;
  assert(S <= PerfectBonus);
  return S;
}

llvm::SmallString<256> FuzzyMatcher::dumpLast(llvm::raw_ostream &OS) const {
  llvm::SmallString<256> Result;
  OS << "=== Match \"" << llvm::StringRef(Word, WordN) << "\" against ["
     << llvm::StringRef(Pat, PatN) << "] ===\n";
  if (PatN == 0) {
    OS << "Pattern is empty: perfect match.\n";
    return Result = llvm::StringRef(Word, WordN);
  }
  if (WordN == 0) {
    OS << "Word is empty: no match.\n";
    return Result;
  }
  if (!WordContainsPattern) {
    OS << "Substring check failed.\n";
    return Result;
  } else if (isAwful(std::max(Scores[PatN][WordN][Match].Score,
                              Scores[PatN][WordN][Miss].Score))) {
    OS << "Substring check passed, but all matches are forbidden\n";
  }
  if (!(PatTypeSet & 1 << Upper))
    OS << "Lowercase query, so scoring ignores case\n";

  // Traverse Matched table backwards to reconstruct the Pattern/Word mapping.
  // The Score table has cumulative scores, subtracting along this path gives
  // us the per-letter scores.
  Action Last =
      (Scores[PatN][WordN][Match].Score > Scores[PatN][WordN][Miss].Score)
          ? Match
          : Miss;
  int S[MaxWord];
  Action A[MaxWord];
  for (int W = WordN - 1, P = PatN - 1; W >= 0; --W) {
    A[W] = Last;
    const auto &Cell = Scores[P + 1][W + 1][Last];
    if (Last == Match)
      --P;
    const auto &Prev = Scores[P + 1][W][Cell.Prev];
    S[W] = Cell.Score - Prev.Score;
    Last = Cell.Prev;
  }
  for (int I = 0; I < WordN; ++I) {
    if (A[I] == Match && (I == 0 || A[I - 1] == Miss))
      Result.push_back('[');
    if (A[I] == Miss && I > 0 && A[I - 1] == Match)
      Result.push_back(']');
    Result.push_back(Word[I]);
  }
  if (A[WordN - 1] == Match)
    Result.push_back(']');

  for (char C : llvm::StringRef(Word, WordN))
    OS << " " << C << " ";
  OS << "\n";
  for (int I = 0, J = 0; I < WordN; I++)
    OS << " " << (A[I] == Match ? Pat[J++] : ' ') << " ";
  OS << "\n";
  for (int I = 0; I < WordN; I++)
    OS << llvm::format("%2d ", S[I]);
  OS << "\n";

  OS << "\nSegmentation:";
  OS << "\n'" << llvm::StringRef(Word, WordN) << "'\n ";
  for (int I = 0; I < WordN; ++I)
    OS << "?-+ "[static_cast<int>(WordRole[I])];
  OS << "\n[" << llvm::StringRef(Pat, PatN) << "]\n ";
  for (int I = 0; I < PatN; ++I)
    OS << "?-+ "[static_cast<int>(PatRole[I])];
  OS << "\n";

  OS << "\nScoring table (last-Miss, last-Match):\n";
  OS << " |    ";
  for (char C : llvm::StringRef(Word, WordN))
    OS << "  " << C << " ";
  OS << "\n";
  OS << "-+----" << std::string(WordN * 4, '-') << "\n";
  for (int I = 0; I <= PatN; ++I) {
    for (Action A : {Miss, Match}) {
      OS << ((I && A == Miss) ? Pat[I - 1] : ' ') << "|";
      for (int J = 0; J <= WordN; ++J) {
        if (!isAwful(Scores[I][J][A].Score))
          OS << llvm::format("%3d%c", Scores[I][J][A].Score,
                             Scores[I][J][A].Prev == Match ? '*' : ' ');
        else
          OS << "    ";
      }
      OS << "\n";
    }
  }

  return Result;
}

} // namespace clangd
} // namespace clang