reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
//=== BuiltinFunctionChecker.cpp --------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This checker evaluates clang builtin functions.
//
//===----------------------------------------------------------------------===//

#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/Basic/Builtins.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"

using namespace clang;
using namespace ento;

namespace {

class BuiltinFunctionChecker : public Checker<eval::Call> {
public:
  bool evalCall(const CallEvent &Call, CheckerContext &C) const;
};

}

bool BuiltinFunctionChecker::evalCall(const CallEvent &Call,
                                      CheckerContext &C) const {
  ProgramStateRef state = C.getState();
  const auto *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
  if (!FD)
    return false;

  const LocationContext *LCtx = C.getLocationContext();
  const Expr *CE = Call.getOriginExpr();

  switch (FD->getBuiltinID()) {
  default:
    return false;

  case Builtin::BI__builtin_assume: {
    assert (Call.getNumArgs() > 0);
    SVal Arg = Call.getArgSVal(0);
    if (Arg.isUndef())
      return true; // Return true to model purity.

    state = state->assume(Arg.castAs<DefinedOrUnknownSVal>(), true);
    // FIXME: do we want to warn here? Not right now. The most reports might
    // come from infeasible paths, thus being false positives.
    if (!state) {
      C.generateSink(C.getState(), C.getPredecessor());
      return true;
    }

    C.addTransition(state);
    return true;
  }

  case Builtin::BI__builtin_unpredictable:
  case Builtin::BI__builtin_expect:
  case Builtin::BI__builtin_assume_aligned:
  case Builtin::BI__builtin_addressof: {
    // For __builtin_unpredictable, __builtin_expect, and
    // __builtin_assume_aligned, just return the value of the subexpression.
    // __builtin_addressof is going from a reference to a pointer, but those
    // are represented the same way in the analyzer.
    assert (Call.getNumArgs() > 0);
    SVal Arg = Call.getArgSVal(0);
    C.addTransition(state->BindExpr(CE, LCtx, Arg));
    return true;
  }

  case Builtin::BI__builtin_alloca_with_align:
  case Builtin::BI__builtin_alloca: {
    // FIXME: Refactor into StoreManager itself?
    MemRegionManager& RM = C.getStoreManager().getRegionManager();
    const AllocaRegion* R =
      RM.getAllocaRegion(CE, C.blockCount(), C.getLocationContext());

    // Set the extent of the region in bytes. This enables us to use the
    // SVal of the argument directly. If we save the extent in bits, we
    // cannot represent values like symbol*8.
    auto Size = Call.getArgSVal(0);
    if (Size.isUndef())
      return true; // Return true to model purity.

    SValBuilder& svalBuilder = C.getSValBuilder();
    DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder);
    DefinedOrUnknownSVal extentMatchesSizeArg =
      svalBuilder.evalEQ(state, Extent, Size.castAs<DefinedOrUnknownSVal>());
    state = state->assume(extentMatchesSizeArg, true);
    assert(state && "The region should not have any previous constraints");

    C.addTransition(state->BindExpr(CE, LCtx, loc::MemRegionVal(R)));
    return true;
  }

  case Builtin::BI__builtin_dynamic_object_size:
  case Builtin::BI__builtin_object_size:
  case Builtin::BI__builtin_constant_p: {
    // This must be resolvable at compile time, so we defer to the constant
    // evaluator for a value.
    SValBuilder &SVB = C.getSValBuilder();
    SVal V = UnknownVal();
    Expr::EvalResult EVResult;
    if (CE->EvaluateAsInt(EVResult, C.getASTContext(), Expr::SE_NoSideEffects)) {
      // Make sure the result has the correct type.
      llvm::APSInt Result = EVResult.Val.getInt();
      BasicValueFactory &BVF = SVB.getBasicValueFactory();
      BVF.getAPSIntType(CE->getType()).apply(Result);
      V = SVB.makeIntVal(Result);
    }

    if (FD->getBuiltinID() == Builtin::BI__builtin_constant_p) {
      // If we didn't manage to figure out if the value is constant or not,
      // it is safe to assume that it's not constant and unsafe to assume
      // that it's constant.
      if (V.isUnknown())
        V = SVB.makeIntVal(0, CE->getType());
    }

    C.addTransition(state->BindExpr(CE, LCtx, V));
    return true;
  }
  }
}

void ento::registerBuiltinFunctionChecker(CheckerManager &mgr) {
  mgr.registerChecker<BuiltinFunctionChecker>();
}

bool ento::shouldRegisterBuiltinFunctionChecker(const LangOptions &LO) {
  return true;
}