reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
//===- ThreadSafetyUtil.h ---------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines some basic utility classes for use by ThreadSafetyTIL.h
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYUTIL_H
#define LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYUTIL_H

#include "clang/AST/Decl.h"
#include "clang/Basic/LLVM.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/Allocator.h"
#include <cassert>
#include <cstddef>
#include <cstring>
#include <iterator>
#include <ostream>
#include <string>
#include <vector>

namespace clang {

class Expr;

namespace threadSafety {
namespace til {

// Simple wrapper class to abstract away from the details of memory management.
// SExprs are allocated in pools, and deallocated all at once.
class MemRegionRef {
private:
  union AlignmentType {
    double d;
    void *p;
    long double dd;
    long long ii;
  };

public:
  MemRegionRef() = default;
  MemRegionRef(llvm::BumpPtrAllocator *A) : Allocator(A) {}

  void *allocate(size_t Sz) {
    return Allocator->Allocate(Sz, alignof(AlignmentType));
  }

  template <typename T> T *allocateT() { return Allocator->Allocate<T>(); }

  template <typename T> T *allocateT(size_t NumElems) {
    return Allocator->Allocate<T>(NumElems);
  }

private:
  llvm::BumpPtrAllocator *Allocator = nullptr;
};

} // namespace til
} // namespace threadSafety

} // namespace clang

inline void *operator new(size_t Sz,
                          clang::threadSafety::til::MemRegionRef &R) {
  return R.allocate(Sz);
}

namespace clang {
namespace threadSafety {

std::string getSourceLiteralString(const Expr *CE);

namespace til {

// A simple fixed size array class that does not manage its own memory,
// suitable for use with bump pointer allocation.
template <class T> class SimpleArray {
public:
  SimpleArray() = default;
  SimpleArray(T *Dat, size_t Cp, size_t Sz = 0)
      : Data(Dat), Size(Sz), Capacity(Cp) {}
  SimpleArray(MemRegionRef A, size_t Cp)
      : Data(Cp == 0 ? nullptr : A.allocateT<T>(Cp)), Capacity(Cp) {}
  SimpleArray(const SimpleArray<T> &A) = delete;

  SimpleArray(SimpleArray<T> &&A)
      : Data(A.Data), Size(A.Size), Capacity(A.Capacity) {
    A.Data = nullptr;
    A.Size = 0;
    A.Capacity = 0;
  }

  SimpleArray &operator=(SimpleArray &&RHS) {
    if (this != &RHS) {
      Data = RHS.Data;
      Size = RHS.Size;
      Capacity = RHS.Capacity;

      RHS.Data = nullptr;
      RHS.Size = RHS.Capacity = 0;
    }
    return *this;
  }

  // Reserve space for at least Ncp items, reallocating if necessary.
  void reserve(size_t Ncp, MemRegionRef A) {
    if (Ncp <= Capacity)
      return;
    T *Odata = Data;
    Data = A.allocateT<T>(Ncp);
    Capacity = Ncp;
    memcpy(Data, Odata, sizeof(T) * Size);
  }

  // Reserve space for at least N more items.
  void reserveCheck(size_t N, MemRegionRef A) {
    if (Capacity == 0)
      reserve(u_max(InitialCapacity, N), A);
    else if (Size + N < Capacity)
      reserve(u_max(Size + N, Capacity * 2), A);
  }

  using iterator = T *;
  using const_iterator = const T *;
  using reverse_iterator = std::reverse_iterator<iterator>;
  using const_reverse_iterator = std::reverse_iterator<const_iterator>;

  size_t size() const { return Size; }
  size_t capacity() const { return Capacity; }

  T &operator[](unsigned i) {
    assert(i < Size && "Array index out of bounds.");
    return Data[i];
  }

  const T &operator[](unsigned i) const {
    assert(i < Size && "Array index out of bounds.");
    return Data[i];
  }

  T &back() {
    assert(Size && "No elements in the array.");
    return Data[Size - 1];
  }

  const T &back() const {
    assert(Size && "No elements in the array.");
    return Data[Size - 1];
  }

  iterator begin() { return Data; }
  iterator end() { return Data + Size; }

  const_iterator begin() const { return Data; }
  const_iterator end() const { return Data + Size; }

  const_iterator cbegin() const { return Data; }
  const_iterator cend() const { return Data + Size; }

  reverse_iterator rbegin() { return reverse_iterator(end()); }
  reverse_iterator rend() { return reverse_iterator(begin()); }

  const_reverse_iterator rbegin() const {
    return const_reverse_iterator(end());
  }

  const_reverse_iterator rend() const {
    return const_reverse_iterator(begin());
  }

  void push_back(const T &Elem) {
    assert(Size < Capacity);
    Data[Size++] = Elem;
  }

  // drop last n elements from array
  void drop(unsigned n = 0) {
    assert(Size > n);
    Size -= n;
  }

  void setValues(unsigned Sz, const T& C) {
    assert(Sz <= Capacity);
    Size = Sz;
    for (unsigned i = 0; i < Sz; ++i) {
      Data[i] = C;
    }
  }

  template <class Iter> unsigned append(Iter I, Iter E) {
    size_t Osz = Size;
    size_t J = Osz;
    for (; J < Capacity && I != E; ++J, ++I)
      Data[J] = *I;
    Size = J;
    return J - Osz;
  }

  llvm::iterator_range<reverse_iterator> reverse() {
    return llvm::make_range(rbegin(), rend());
  }

  llvm::iterator_range<const_reverse_iterator> reverse() const {
    return llvm::make_range(rbegin(), rend());
  }

private:
  // std::max is annoying here, because it requires a reference,
  // thus forcing InitialCapacity to be initialized outside the .h file.
  size_t u_max(size_t i, size_t j) { return (i < j) ? j : i; }

  static const size_t InitialCapacity = 4;

  T *Data = nullptr;
  size_t Size = 0;
  size_t Capacity = 0;
};

}  // namespace til

// A copy on write vector.
// The vector can be in one of three states:
// * invalid -- no operations are permitted.
// * read-only -- read operations are permitted.
// * writable -- read and write operations are permitted.
// The init(), destroy(), and makeWritable() methods will change state.
template<typename T>
class CopyOnWriteVector {
  class VectorData {
  public:
    unsigned NumRefs = 1;
    std::vector<T> Vect;

    VectorData() = default;
    VectorData(const VectorData &VD) : Vect(VD.Vect) {}
  };

public:
  CopyOnWriteVector() = default;
  CopyOnWriteVector(CopyOnWriteVector &&V) : Data(V.Data) { V.Data = nullptr; }

  CopyOnWriteVector &operator=(CopyOnWriteVector &&V) {
    destroy();
    Data = V.Data;
    V.Data = nullptr;
    return *this;
  }

  // No copy constructor or copy assignment.  Use clone() with move assignment.
  CopyOnWriteVector(const CopyOnWriteVector &) = delete;
  CopyOnWriteVector &operator=(const CopyOnWriteVector &) = delete;

  ~CopyOnWriteVector() { destroy(); }

  // Returns true if this holds a valid vector.
  bool valid() const  { return Data; }

  // Returns true if this vector is writable.
  bool writable() const { return Data && Data->NumRefs == 1; }

  // If this vector is not valid, initialize it to a valid vector.
  void init() {
    if (!Data) {
      Data = new VectorData();
    }
  }

  // Destroy this vector; thus making it invalid.
  void destroy() {
    if (!Data)
      return;
    if (Data->NumRefs <= 1)
      delete Data;
    else
      --Data->NumRefs;
    Data = nullptr;
  }

  // Make this vector writable, creating a copy if needed.
  void makeWritable() {
    if (!Data) {
      Data = new VectorData();
      return;
    }
    if (Data->NumRefs == 1)
      return;   // already writeable.
    --Data->NumRefs;
    Data = new VectorData(*Data);
  }

  // Create a lazy copy of this vector.
  CopyOnWriteVector clone() { return CopyOnWriteVector(Data); }

  using const_iterator = typename std::vector<T>::const_iterator;

  const std::vector<T> &elements() const { return Data->Vect; }

  const_iterator begin() const { return elements().cbegin(); }
  const_iterator end() const { return elements().cend(); }

  const T& operator[](unsigned i) const { return elements()[i]; }

  unsigned size() const { return Data ? elements().size() : 0; }

  // Return true if V and this vector refer to the same data.
  bool sameAs(const CopyOnWriteVector &V) const { return Data == V.Data; }

  // Clear vector.  The vector must be writable.
  void clear() {
    assert(writable() && "Vector is not writable!");
    Data->Vect.clear();
  }

  // Push a new element onto the end.  The vector must be writable.
  void push_back(const T &Elem) {
    assert(writable() && "Vector is not writable!");
    Data->Vect.push_back(Elem);
  }

  // Gets a mutable reference to the element at index(i).
  // The vector must be writable.
  T& elem(unsigned i) {
    assert(writable() && "Vector is not writable!");
    return Data->Vect[i];
  }

  // Drops elements from the back until the vector has size i.
  void downsize(unsigned i) {
    assert(writable() && "Vector is not writable!");
    Data->Vect.erase(Data->Vect.begin() + i, Data->Vect.end());
  }

private:
  CopyOnWriteVector(VectorData *D) : Data(D) {
    if (!Data)
      return;
    ++Data->NumRefs;
  }

  VectorData *Data = nullptr;
};

inline std::ostream& operator<<(std::ostream& ss, const StringRef str) {
  return ss.write(str.data(), str.size());
}

} // namespace threadSafety
} // namespace clang

#endif // LLVM_CLANG_THREAD_SAFETY_UTIL_H