reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
//===-- VPlanHCFGBuilder.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the construction of a VPlan-based Hierarchical CFG
/// (H-CFG) for an incoming IR. This construction comprises the following
/// components and steps:
//
/// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that
/// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top
/// Region) is created to enclose and serve as parent of all the VPBasicBlocks
/// in the plain CFG.
/// NOTE: At this point, there is a direct correspondence between all the
/// VPBasicBlocks created for the initial plain CFG and the incoming
/// BasicBlocks. However, this might change in the future.
///
//===----------------------------------------------------------------------===//

#include "VPlanHCFGBuilder.h"
#include "LoopVectorizationPlanner.h"
#include "llvm/Analysis/LoopIterator.h"

#define DEBUG_TYPE "loop-vectorize"

using namespace llvm;

namespace {
// Class that is used to build the plain CFG for the incoming IR.
class PlainCFGBuilder {
private:
  // The outermost loop of the input loop nest considered for vectorization.
  Loop *TheLoop;

  // Loop Info analysis.
  LoopInfo *LI;

  // Vectorization plan that we are working on.
  VPlan &Plan;

  // Output Top Region.
  VPRegionBlock *TopRegion = nullptr;

  // Builder of the VPlan instruction-level representation.
  VPBuilder VPIRBuilder;

  // NOTE: The following maps are intentionally destroyed after the plain CFG
  // construction because subsequent VPlan-to-VPlan transformation may
  // invalidate them.
  // Map incoming BasicBlocks to their newly-created VPBasicBlocks.
  DenseMap<BasicBlock *, VPBasicBlock *> BB2VPBB;
  // Map incoming Value definitions to their newly-created VPValues.
  DenseMap<Value *, VPValue *> IRDef2VPValue;

  // Hold phi node's that need to be fixed once the plain CFG has been built.
  SmallVector<PHINode *, 8> PhisToFix;

  // Utility functions.
  void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB);
  void fixPhiNodes();
  VPBasicBlock *getOrCreateVPBB(BasicBlock *BB);
#ifndef NDEBUG
  bool isExternalDef(Value *Val);
#endif
  VPValue *getOrCreateVPOperand(Value *IRVal);
  void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB);

public:
  PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P)
      : TheLoop(Lp), LI(LI), Plan(P) {}

  // Build the plain CFG and return its Top Region.
  VPRegionBlock *buildPlainCFG();
};
} // anonymous namespace

// Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB
// must have no predecessors.
void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) {
  SmallVector<VPBlockBase *, 8> VPBBPreds;
  // Collect VPBB predecessors.
  for (BasicBlock *Pred : predecessors(BB))
    VPBBPreds.push_back(getOrCreateVPBB(Pred));

  VPBB->setPredecessors(VPBBPreds);
}

// Add operands to VPInstructions representing phi nodes from the input IR.
void PlainCFGBuilder::fixPhiNodes() {
  for (auto *Phi : PhisToFix) {
    assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode.");
    VPValue *VPVal = IRDef2VPValue[Phi];
    assert(isa<VPInstruction>(VPVal) && "Expected VPInstruction for phi node.");
    auto *VPPhi = cast<VPInstruction>(VPVal);
    assert(VPPhi->getNumOperands() == 0 &&
           "Expected VPInstruction with no operands.");

    for (Value *Op : Phi->operands())
      VPPhi->addOperand(getOrCreateVPOperand(Op));
  }
}

// Create a new empty VPBasicBlock for an incoming BasicBlock or retrieve an
// existing one if it was already created.
VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) {
  auto BlockIt = BB2VPBB.find(BB);
  if (BlockIt != BB2VPBB.end())
    // Retrieve existing VPBB.
    return BlockIt->second;

  // Create new VPBB.
  LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << BB->getName() << "\n");
  VPBasicBlock *VPBB = new VPBasicBlock(BB->getName());
  BB2VPBB[BB] = VPBB;
  VPBB->setParent(TopRegion);
  return VPBB;
}

#ifndef NDEBUG
// Return true if \p Val is considered an external definition. An external
// definition is either:
// 1. A Value that is not an Instruction. This will be refined in the future.
// 2. An Instruction that is outside of the CFG snippet represented in VPlan,
// i.e., is not part of: a) the loop nest, b) outermost loop PH and, c)
// outermost loop exits.
bool PlainCFGBuilder::isExternalDef(Value *Val) {
  // All the Values that are not Instructions are considered external
  // definitions for now.
  Instruction *Inst = dyn_cast<Instruction>(Val);
  if (!Inst)
    return true;

  BasicBlock *InstParent = Inst->getParent();
  assert(InstParent && "Expected instruction parent.");

  // Check whether Instruction definition is in loop PH.
  BasicBlock *PH = TheLoop->getLoopPreheader();
  assert(PH && "Expected loop pre-header.");

  if (InstParent == PH)
    // Instruction definition is in outermost loop PH.
    return false;

  // Check whether Instruction definition is in the loop exit.
  BasicBlock *Exit = TheLoop->getUniqueExitBlock();
  assert(Exit && "Expected loop with single exit.");
  if (InstParent == Exit) {
    // Instruction definition is in outermost loop exit.
    return false;
  }

  // Check whether Instruction definition is in loop body.
  return !TheLoop->contains(Inst);
}
#endif

// Create a new VPValue or retrieve an existing one for the Instruction's
// operand \p IRVal. This function must only be used to create/retrieve VPValues
// for *Instruction's operands* and not to create regular VPInstruction's. For
// the latter, please, look at 'createVPInstructionsForVPBB'.
VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) {
  auto VPValIt = IRDef2VPValue.find(IRVal);
  if (VPValIt != IRDef2VPValue.end())
    // Operand has an associated VPInstruction or VPValue that was previously
    // created.
    return VPValIt->second;

  // Operand doesn't have a previously created VPInstruction/VPValue. This
  // means that operand is:
  //   A) a definition external to VPlan,
  //   B) any other Value without specific representation in VPlan.
  // For now, we use VPValue to represent A and B and classify both as external
  // definitions. We may introduce specific VPValue subclasses for them in the
  // future.
  assert(isExternalDef(IRVal) && "Expected external definition as operand.");

  // A and B: Create VPValue and add it to the pool of external definitions and
  // to the Value->VPValue map.
  VPValue *NewVPVal = new VPValue(IRVal);
  Plan.addExternalDef(NewVPVal);
  IRDef2VPValue[IRVal] = NewVPVal;
  return NewVPVal;
}

// Create new VPInstructions in a VPBasicBlock, given its BasicBlock
// counterpart. This function must be invoked in RPO so that the operands of a
// VPInstruction in \p BB have been visited before (except for Phi nodes).
void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB,
                                                  BasicBlock *BB) {
  VPIRBuilder.setInsertPoint(VPBB);
  for (Instruction &InstRef : *BB) {
    Instruction *Inst = &InstRef;

    // There shouldn't be any VPValue for Inst at this point. Otherwise, we
    // visited Inst when we shouldn't, breaking the RPO traversal order.
    assert(!IRDef2VPValue.count(Inst) &&
           "Instruction shouldn't have been visited.");

    if (auto *Br = dyn_cast<BranchInst>(Inst)) {
      // Branch instruction is not explicitly represented in VPlan but we need
      // to represent its condition bit when it's conditional.
      if (Br->isConditional())
        getOrCreateVPOperand(Br->getCondition());

      // Skip the rest of the Instruction processing for Branch instructions.
      continue;
    }

    VPInstruction *NewVPInst;
    if (auto *Phi = dyn_cast<PHINode>(Inst)) {
      // Phi node's operands may have not been visited at this point. We create
      // an empty VPInstruction that we will fix once the whole plain CFG has
      // been built.
      NewVPInst = cast<VPInstruction>(VPIRBuilder.createNaryOp(
          Inst->getOpcode(), {} /*No operands*/, Inst));
      PhisToFix.push_back(Phi);
    } else {
      // Translate LLVM-IR operands into VPValue operands and set them in the
      // new VPInstruction.
      SmallVector<VPValue *, 4> VPOperands;
      for (Value *Op : Inst->operands())
        VPOperands.push_back(getOrCreateVPOperand(Op));

      // Build VPInstruction for any arbitraty Instruction without specific
      // representation in VPlan.
      NewVPInst = cast<VPInstruction>(
          VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst));
    }

    IRDef2VPValue[Inst] = NewVPInst;
  }
}

// Main interface to build the plain CFG.
VPRegionBlock *PlainCFGBuilder::buildPlainCFG() {
  // 1. Create the Top Region. It will be the parent of all VPBBs.
  TopRegion = new VPRegionBlock("TopRegion", false /*isReplicator*/);

  // 2. Scan the body of the loop in a topological order to visit each basic
  // block after having visited its predecessor basic blocks. Create a VPBB for
  // each BB and link it to its successor and predecessor VPBBs. Note that
  // predecessors must be set in the same order as they are in the incomming IR.
  // Otherwise, there might be problems with existing phi nodes and algorithm
  // based on predecessors traversal.

  // Loop PH needs to be explicitly visited since it's not taken into account by
  // LoopBlocksDFS.
  BasicBlock *PreheaderBB = TheLoop->getLoopPreheader();
  assert((PreheaderBB->getTerminator()->getNumSuccessors() == 1) &&
         "Unexpected loop preheader");
  VPBasicBlock *PreheaderVPBB = getOrCreateVPBB(PreheaderBB);
  createVPInstructionsForVPBB(PreheaderVPBB, PreheaderBB);
  // Create empty VPBB for Loop H so that we can link PH->H.
  VPBlockBase *HeaderVPBB = getOrCreateVPBB(TheLoop->getHeader());
  // Preheader's predecessors will be set during the loop RPO traversal below.
  PreheaderVPBB->setOneSuccessor(HeaderVPBB);

  LoopBlocksRPO RPO(TheLoop);
  RPO.perform(LI);

  for (BasicBlock *BB : RPO) {
    // Create or retrieve the VPBasicBlock for this BB and create its
    // VPInstructions.
    VPBasicBlock *VPBB = getOrCreateVPBB(BB);
    createVPInstructionsForVPBB(VPBB, BB);

    // Set VPBB successors. We create empty VPBBs for successors if they don't
    // exist already. Recipes will be created when the successor is visited
    // during the RPO traversal.
    Instruction *TI = BB->getTerminator();
    assert(TI && "Terminator expected.");
    unsigned NumSuccs = TI->getNumSuccessors();

    if (NumSuccs == 1) {
      VPBasicBlock *SuccVPBB = getOrCreateVPBB(TI->getSuccessor(0));
      assert(SuccVPBB && "VPBB Successor not found.");
      VPBB->setOneSuccessor(SuccVPBB);
    } else if (NumSuccs == 2) {
      VPBasicBlock *SuccVPBB0 = getOrCreateVPBB(TI->getSuccessor(0));
      assert(SuccVPBB0 && "Successor 0 not found.");
      VPBasicBlock *SuccVPBB1 = getOrCreateVPBB(TI->getSuccessor(1));
      assert(SuccVPBB1 && "Successor 1 not found.");

      // Get VPBB's condition bit.
      assert(isa<BranchInst>(TI) && "Unsupported terminator!");
      auto *Br = cast<BranchInst>(TI);
      Value *BrCond = Br->getCondition();
      // Look up the branch condition to get the corresponding VPValue
      // representing the condition bit in VPlan (which may be in another VPBB).
      assert(IRDef2VPValue.count(BrCond) &&
             "Missing condition bit in IRDef2VPValue!");
      VPValue *VPCondBit = IRDef2VPValue[BrCond];

      // Link successors using condition bit.
      VPBB->setTwoSuccessors(SuccVPBB0, SuccVPBB1, VPCondBit);
    } else
      llvm_unreachable("Number of successors not supported.");

    // Set VPBB predecessors in the same order as they are in the incoming BB.
    setVPBBPredsFromBB(VPBB, BB);
  }

  // 3. Process outermost loop exit. We created an empty VPBB for the loop
  // single exit BB during the RPO traversal of the loop body but Instructions
  // weren't visited because it's not part of the the loop.
  BasicBlock *LoopExitBB = TheLoop->getUniqueExitBlock();
  assert(LoopExitBB && "Loops with multiple exits are not supported.");
  VPBasicBlock *LoopExitVPBB = BB2VPBB[LoopExitBB];
  createVPInstructionsForVPBB(LoopExitVPBB, LoopExitBB);
  // Loop exit was already set as successor of the loop exiting BB.
  // We only set its predecessor VPBB now.
  setVPBBPredsFromBB(LoopExitVPBB, LoopExitBB);

  // 4. The whole CFG has been built at this point so all the input Values must
  // have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding
  // VPlan operands.
  fixPhiNodes();

  // 5. Final Top Region setup. Set outermost loop pre-header and single exit as
  // Top Region entry and exit.
  TopRegion->setEntry(PreheaderVPBB);
  TopRegion->setExit(LoopExitVPBB);
  return TopRegion;
}

VPRegionBlock *VPlanHCFGBuilder::buildPlainCFG() {
  PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan);
  return PCFGBuilder.buildPlainCFG();
}

// Public interface to build a H-CFG.
void VPlanHCFGBuilder::buildHierarchicalCFG() {
  // Build Top Region enclosing the plain CFG and set it as VPlan entry.
  VPRegionBlock *TopRegion = buildPlainCFG();
  Plan.setEntry(TopRegion);
  LLVM_DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan);

  Verifier.verifyHierarchicalCFG(TopRegion);

  // Compute plain CFG dom tree for VPLInfo.
  VPDomTree.recalculate(*TopRegion);
  LLVM_DEBUG(dbgs() << "Dominator Tree after building the plain CFG.\n";
             VPDomTree.print(dbgs()));

  // Compute VPLInfo and keep it in Plan.
  VPLoopInfo &VPLInfo = Plan.getVPLoopInfo();
  VPLInfo.analyze(VPDomTree);
  LLVM_DEBUG(dbgs() << "VPLoop Info After buildPlainCFG:\n";
             VPLInfo.print(dbgs()));
}