reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
//===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------===//
//
// This file implements the PredicateInfo class.
//
//===----------------------------------------------------------------===//

#include "llvm/Transforms/Utils/PredicateInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/IR/AssemblyAnnotationWriter.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DebugCounter.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Transforms/Utils.h"
#include <algorithm>
#define DEBUG_TYPE "predicateinfo"
using namespace llvm;
using namespace PatternMatch;
using namespace llvm::PredicateInfoClasses;

INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
                      "PredicateInfo Printer", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
                    "PredicateInfo Printer", false, false)
static cl::opt<bool> VerifyPredicateInfo(
    "verify-predicateinfo", cl::init(false), cl::Hidden,
    cl::desc("Verify PredicateInfo in legacy printer pass."));
DEBUG_COUNTER(RenameCounter, "predicateinfo-rename",
              "Controls which variables are renamed with predicateinfo");

namespace {
// Given a predicate info that is a type of branching terminator, get the
// branching block.
const BasicBlock *getBranchBlock(const PredicateBase *PB) {
  assert(isa<PredicateWithEdge>(PB) &&
         "Only branches and switches should have PHIOnly defs that "
         "require branch blocks.");
  return cast<PredicateWithEdge>(PB)->From;
}

// Given a predicate info that is a type of branching terminator, get the
// branching terminator.
static Instruction *getBranchTerminator(const PredicateBase *PB) {
  assert(isa<PredicateWithEdge>(PB) &&
         "Not a predicate info type we know how to get a terminator from.");
  return cast<PredicateWithEdge>(PB)->From->getTerminator();
}

// Given a predicate info that is a type of branching terminator, get the
// edge this predicate info represents
const std::pair<BasicBlock *, BasicBlock *>
getBlockEdge(const PredicateBase *PB) {
  assert(isa<PredicateWithEdge>(PB) &&
         "Not a predicate info type we know how to get an edge from.");
  const auto *PEdge = cast<PredicateWithEdge>(PB);
  return std::make_pair(PEdge->From, PEdge->To);
}
}

namespace llvm {
namespace PredicateInfoClasses {
enum LocalNum {
  // Operations that must appear first in the block.
  LN_First,
  // Operations that are somewhere in the middle of the block, and are sorted on
  // demand.
  LN_Middle,
  // Operations that must appear last in a block, like successor phi node uses.
  LN_Last
};

// Associate global and local DFS info with defs and uses, so we can sort them
// into a global domination ordering.
struct ValueDFS {
  int DFSIn = 0;
  int DFSOut = 0;
  unsigned int LocalNum = LN_Middle;
  // Only one of Def or Use will be set.
  Value *Def = nullptr;
  Use *U = nullptr;
  // Neither PInfo nor EdgeOnly participate in the ordering
  PredicateBase *PInfo = nullptr;
  bool EdgeOnly = false;
};

// Perform a strict weak ordering on instructions and arguments.
static bool valueComesBefore(OrderedInstructions &OI, const Value *A,
                             const Value *B) {
  auto *ArgA = dyn_cast_or_null<Argument>(A);
  auto *ArgB = dyn_cast_or_null<Argument>(B);
  if (ArgA && !ArgB)
    return true;
  if (ArgB && !ArgA)
    return false;
  if (ArgA && ArgB)
    return ArgA->getArgNo() < ArgB->getArgNo();
  return OI.dfsBefore(cast<Instruction>(A), cast<Instruction>(B));
}

// This compares ValueDFS structures, creating OrderedBasicBlocks where
// necessary to compare uses/defs in the same block.  Doing so allows us to walk
// the minimum number of instructions necessary to compute our def/use ordering.
struct ValueDFS_Compare {
  DominatorTree &DT;
  OrderedInstructions &OI;
  ValueDFS_Compare(DominatorTree &DT, OrderedInstructions &OI)
      : DT(DT), OI(OI) {}

  bool operator()(const ValueDFS &A, const ValueDFS &B) const {
    if (&A == &B)
      return false;
    // The only case we can't directly compare them is when they in the same
    // block, and both have localnum == middle.  In that case, we have to use
    // comesbefore to see what the real ordering is, because they are in the
    // same basic block.

    assert((A.DFSIn != B.DFSIn || A.DFSOut == B.DFSOut) &&
           "Equal DFS-in numbers imply equal out numbers");
    bool SameBlock = A.DFSIn == B.DFSIn;

    // We want to put the def that will get used for a given set of phi uses,
    // before those phi uses.
    // So we sort by edge, then by def.
    // Note that only phi nodes uses and defs can come last.
    if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last)
      return comparePHIRelated(A, B);

    bool isADef = A.Def;
    bool isBDef = B.Def;
    if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle)
      return std::tie(A.DFSIn, A.LocalNum, isADef) <
             std::tie(B.DFSIn, B.LocalNum, isBDef);
    return localComesBefore(A, B);
  }

  // For a phi use, or a non-materialized def, return the edge it represents.
  const std::pair<BasicBlock *, BasicBlock *>
  getBlockEdge(const ValueDFS &VD) const {
    if (!VD.Def && VD.U) {
      auto *PHI = cast<PHINode>(VD.U->getUser());
      return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent());
    }
    // This is really a non-materialized def.
    return ::getBlockEdge(VD.PInfo);
  }

  // For two phi related values, return the ordering.
  bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const {
    BasicBlock *ASrc, *ADest, *BSrc, *BDest;
    std::tie(ASrc, ADest) = getBlockEdge(A);
    std::tie(BSrc, BDest) = getBlockEdge(B);

#ifndef NDEBUG
    // This function should only be used for values in the same BB, check that.
    DomTreeNode *DomASrc = DT.getNode(ASrc);
    DomTreeNode *DomBSrc = DT.getNode(BSrc);
    assert(DomASrc->getDFSNumIn() == (unsigned)A.DFSIn &&
           "DFS numbers for A should match the ones of the source block");
    assert(DomBSrc->getDFSNumIn() == (unsigned)B.DFSIn &&
           "DFS numbers for B should match the ones of the source block");
    assert(A.DFSIn == B.DFSIn && "Values must be in the same block");
#endif
    (void)ASrc;
    (void)BSrc;

    // Use DFS numbers to compare destination blocks, to guarantee a
    // deterministic order.
    DomTreeNode *DomADest = DT.getNode(ADest);
    DomTreeNode *DomBDest = DT.getNode(BDest);
    unsigned AIn = DomADest->getDFSNumIn();
    unsigned BIn = DomBDest->getDFSNumIn();
    bool isADef = A.Def;
    bool isBDef = B.Def;
    assert((!A.Def || !A.U) && (!B.Def || !B.U) &&
           "Def and U cannot be set at the same time");
    // Now sort by edge destination and then defs before uses.
    return std::tie(AIn, isADef) < std::tie(BIn, isBDef);
  }

  // Get the definition of an instruction that occurs in the middle of a block.
  Value *getMiddleDef(const ValueDFS &VD) const {
    if (VD.Def)
      return VD.Def;
    // It's possible for the defs and uses to be null.  For branches, the local
    // numbering will say the placed predicaeinfos should go first (IE
    // LN_beginning), so we won't be in this function. For assumes, we will end
    // up here, beause we need to order the def we will place relative to the
    // assume.  So for the purpose of ordering, we pretend the def is the assume
    // because that is where we will insert the info.
    if (!VD.U) {
      assert(VD.PInfo &&
             "No def, no use, and no predicateinfo should not occur");
      assert(isa<PredicateAssume>(VD.PInfo) &&
             "Middle of block should only occur for assumes");
      return cast<PredicateAssume>(VD.PInfo)->AssumeInst;
    }
    return nullptr;
  }

  // Return either the Def, if it's not null, or the user of the Use, if the def
  // is null.
  const Instruction *getDefOrUser(const Value *Def, const Use *U) const {
    if (Def)
      return cast<Instruction>(Def);
    return cast<Instruction>(U->getUser());
  }

  // This performs the necessary local basic block ordering checks to tell
  // whether A comes before B, where both are in the same basic block.
  bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const {
    auto *ADef = getMiddleDef(A);
    auto *BDef = getMiddleDef(B);

    // See if we have real values or uses. If we have real values, we are
    // guaranteed they are instructions or arguments. No matter what, we are
    // guaranteed they are in the same block if they are instructions.
    auto *ArgA = dyn_cast_or_null<Argument>(ADef);
    auto *ArgB = dyn_cast_or_null<Argument>(BDef);

    if (ArgA || ArgB)
      return valueComesBefore(OI, ArgA, ArgB);

    auto *AInst = getDefOrUser(ADef, A.U);
    auto *BInst = getDefOrUser(BDef, B.U);
    return valueComesBefore(OI, AInst, BInst);
  }
};

} // namespace PredicateInfoClasses

bool PredicateInfo::stackIsInScope(const ValueDFSStack &Stack,
                                   const ValueDFS &VDUse) const {
  if (Stack.empty())
    return false;
  // If it's a phi only use, make sure it's for this phi node edge, and that the
  // use is in a phi node.  If it's anything else, and the top of the stack is
  // EdgeOnly, we need to pop the stack.  We deliberately sort phi uses next to
  // the defs they must go with so that we can know it's time to pop the stack
  // when we hit the end of the phi uses for a given def.
  if (Stack.back().EdgeOnly) {
    if (!VDUse.U)
      return false;
    auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser());
    if (!PHI)
      return false;
    // Check edge
    BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U);
    if (EdgePred != getBranchBlock(Stack.back().PInfo))
      return false;

    // Use dominates, which knows how to handle edge dominance.
    return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U);
  }

  return (VDUse.DFSIn >= Stack.back().DFSIn &&
          VDUse.DFSOut <= Stack.back().DFSOut);
}

void PredicateInfo::popStackUntilDFSScope(ValueDFSStack &Stack,
                                          const ValueDFS &VD) {
  while (!Stack.empty() && !stackIsInScope(Stack, VD))
    Stack.pop_back();
}

// Convert the uses of Op into a vector of uses, associating global and local
// DFS info with each one.
void PredicateInfo::convertUsesToDFSOrdered(
    Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) {
  for (auto &U : Op->uses()) {
    if (auto *I = dyn_cast<Instruction>(U.getUser())) {
      ValueDFS VD;
      // Put the phi node uses in the incoming block.
      BasicBlock *IBlock;
      if (auto *PN = dyn_cast<PHINode>(I)) {
        IBlock = PN->getIncomingBlock(U);
        // Make phi node users appear last in the incoming block
        // they are from.
        VD.LocalNum = LN_Last;
      } else {
        // If it's not a phi node use, it is somewhere in the middle of the
        // block.
        IBlock = I->getParent();
        VD.LocalNum = LN_Middle;
      }
      DomTreeNode *DomNode = DT.getNode(IBlock);
      // It's possible our use is in an unreachable block. Skip it if so.
      if (!DomNode)
        continue;
      VD.DFSIn = DomNode->getDFSNumIn();
      VD.DFSOut = DomNode->getDFSNumOut();
      VD.U = &U;
      DFSOrderedSet.push_back(VD);
    }
  }
}

// Collect relevant operations from Comparison that we may want to insert copies
// for.
void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) {
  auto *Op0 = Comparison->getOperand(0);
  auto *Op1 = Comparison->getOperand(1);
  if (Op0 == Op1)
    return;
  CmpOperands.push_back(Comparison);
  // Only want real values, not constants.  Additionally, operands with one use
  // are only being used in the comparison, which means they will not be useful
  // for us to consider for predicateinfo.
  //
  if ((isa<Instruction>(Op0) || isa<Argument>(Op0)) && !Op0->hasOneUse())
    CmpOperands.push_back(Op0);
  if ((isa<Instruction>(Op1) || isa<Argument>(Op1)) && !Op1->hasOneUse())
    CmpOperands.push_back(Op1);
}

// Add Op, PB to the list of value infos for Op, and mark Op to be renamed.
void PredicateInfo::addInfoFor(SmallVectorImpl<Value *> &OpsToRename, Value *Op,
                               PredicateBase *PB) {
  auto &OperandInfo = getOrCreateValueInfo(Op);
  if (OperandInfo.Infos.empty())
    OpsToRename.push_back(Op);
  AllInfos.push_back(PB);
  OperandInfo.Infos.push_back(PB);
}

// Process an assume instruction and place relevant operations we want to rename
// into OpsToRename.
void PredicateInfo::processAssume(IntrinsicInst *II, BasicBlock *AssumeBB,
                                  SmallVectorImpl<Value *> &OpsToRename) {
  // See if we have a comparison we support
  SmallVector<Value *, 8> CmpOperands;
  SmallVector<Value *, 2> ConditionsToProcess;
  CmpInst::Predicate Pred;
  Value *Operand = II->getOperand(0);
  if (m_c_And(m_Cmp(Pred, m_Value(), m_Value()),
              m_Cmp(Pred, m_Value(), m_Value()))
          .match(II->getOperand(0))) {
    ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(0));
    ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(1));
    ConditionsToProcess.push_back(Operand);
  } else if (isa<CmpInst>(Operand)) {

    ConditionsToProcess.push_back(Operand);
  }
  for (auto Cond : ConditionsToProcess) {
    if (auto *Cmp = dyn_cast<CmpInst>(Cond)) {
      collectCmpOps(Cmp, CmpOperands);
      // Now add our copy infos for our operands
      for (auto *Op : CmpOperands) {
        auto *PA = new PredicateAssume(Op, II, Cmp);
        addInfoFor(OpsToRename, Op, PA);
      }
      CmpOperands.clear();
    } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) {
      // Otherwise, it should be an AND.
      assert(BinOp->getOpcode() == Instruction::And &&
             "Should have been an AND");
      auto *PA = new PredicateAssume(BinOp, II, BinOp);
      addInfoFor(OpsToRename, BinOp, PA);
    } else {
      llvm_unreachable("Unknown type of condition");
    }
  }
}

// Process a block terminating branch, and place relevant operations to be
// renamed into OpsToRename.
void PredicateInfo::processBranch(BranchInst *BI, BasicBlock *BranchBB,
                                  SmallVectorImpl<Value *> &OpsToRename) {
  BasicBlock *FirstBB = BI->getSuccessor(0);
  BasicBlock *SecondBB = BI->getSuccessor(1);
  SmallVector<BasicBlock *, 2> SuccsToProcess;
  SuccsToProcess.push_back(FirstBB);
  SuccsToProcess.push_back(SecondBB);
  SmallVector<Value *, 2> ConditionsToProcess;

  auto InsertHelper = [&](Value *Op, bool isAnd, bool isOr, Value *Cond) {
    for (auto *Succ : SuccsToProcess) {
      // Don't try to insert on a self-edge. This is mainly because we will
      // eliminate during renaming anyway.
      if (Succ == BranchBB)
        continue;
      bool TakenEdge = (Succ == FirstBB);
      // For and, only insert on the true edge
      // For or, only insert on the false edge
      if ((isAnd && !TakenEdge) || (isOr && TakenEdge))
        continue;
      PredicateBase *PB =
          new PredicateBranch(Op, BranchBB, Succ, Cond, TakenEdge);
      addInfoFor(OpsToRename, Op, PB);
      if (!Succ->getSinglePredecessor())
        EdgeUsesOnly.insert({BranchBB, Succ});
    }
  };

  // Match combinations of conditions.
  CmpInst::Predicate Pred;
  bool isAnd = false;
  bool isOr = false;
  SmallVector<Value *, 8> CmpOperands;
  if (match(BI->getCondition(), m_And(m_Cmp(Pred, m_Value(), m_Value()),
                                      m_Cmp(Pred, m_Value(), m_Value()))) ||
      match(BI->getCondition(), m_Or(m_Cmp(Pred, m_Value(), m_Value()),
                                     m_Cmp(Pred, m_Value(), m_Value())))) {
    auto *BinOp = cast<BinaryOperator>(BI->getCondition());
    if (BinOp->getOpcode() == Instruction::And)
      isAnd = true;
    else if (BinOp->getOpcode() == Instruction::Or)
      isOr = true;
    ConditionsToProcess.push_back(BinOp->getOperand(0));
    ConditionsToProcess.push_back(BinOp->getOperand(1));
    ConditionsToProcess.push_back(BI->getCondition());
  } else if (isa<CmpInst>(BI->getCondition())) {
    ConditionsToProcess.push_back(BI->getCondition());
  }
  for (auto Cond : ConditionsToProcess) {
    if (auto *Cmp = dyn_cast<CmpInst>(Cond)) {
      collectCmpOps(Cmp, CmpOperands);
      // Now add our copy infos for our operands
      for (auto *Op : CmpOperands)
        InsertHelper(Op, isAnd, isOr, Cmp);
    } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) {
      // This must be an AND or an OR.
      assert((BinOp->getOpcode() == Instruction::And ||
              BinOp->getOpcode() == Instruction::Or) &&
             "Should have been an AND or an OR");
      // The actual value of the binop is not subject to the same restrictions
      // as the comparison. It's either true or false on the true/false branch.
      InsertHelper(BinOp, false, false, BinOp);
    } else {
      llvm_unreachable("Unknown type of condition");
    }
    CmpOperands.clear();
  }
}
// Process a block terminating switch, and place relevant operations to be
// renamed into OpsToRename.
void PredicateInfo::processSwitch(SwitchInst *SI, BasicBlock *BranchBB,
                                  SmallVectorImpl<Value *> &OpsToRename) {
  Value *Op = SI->getCondition();
  if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse())
    return;

  // Remember how many outgoing edges there are to every successor.
  SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
  for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
    BasicBlock *TargetBlock = SI->getSuccessor(i);
    ++SwitchEdges[TargetBlock];
  }

  // Now propagate info for each case value
  for (auto C : SI->cases()) {
    BasicBlock *TargetBlock = C.getCaseSuccessor();
    if (SwitchEdges.lookup(TargetBlock) == 1) {
      PredicateSwitch *PS = new PredicateSwitch(
          Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI);
      addInfoFor(OpsToRename, Op, PS);
      if (!TargetBlock->getSinglePredecessor())
        EdgeUsesOnly.insert({BranchBB, TargetBlock});
    }
  }
}

// Build predicate info for our function
void PredicateInfo::buildPredicateInfo() {
  DT.updateDFSNumbers();
  // Collect operands to rename from all conditional branch terminators, as well
  // as assume statements.
  SmallVector<Value *, 8> OpsToRename;
  for (auto DTN : depth_first(DT.getRootNode())) {
    BasicBlock *BranchBB = DTN->getBlock();
    if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) {
      if (!BI->isConditional())
        continue;
      // Can't insert conditional information if they all go to the same place.
      if (BI->getSuccessor(0) == BI->getSuccessor(1))
        continue;
      processBranch(BI, BranchBB, OpsToRename);
    } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) {
      processSwitch(SI, BranchBB, OpsToRename);
    }
  }
  for (auto &Assume : AC.assumptions()) {
    if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume))
      if (DT.isReachableFromEntry(II->getParent()))
        processAssume(II, II->getParent(), OpsToRename);
  }
  // Now rename all our operations.
  renameUses(OpsToRename);
}

// Create a ssa_copy declaration with custom mangling, because
// Intrinsic::getDeclaration does not handle overloaded unnamed types properly:
// all unnamed types get mangled to the same string. We use the pointer
// to the type as name here, as it guarantees unique names for different
// types and we remove the declarations when destroying PredicateInfo.
// It is a workaround for PR38117, because solving it in a fully general way is
// tricky (FIXME).
static Function *getCopyDeclaration(Module *M, Type *Ty) {
  std::string Name = "llvm.ssa.copy." + utostr((uintptr_t) Ty);
  return cast<Function>(
      M->getOrInsertFunction(Name,
                             getType(M->getContext(), Intrinsic::ssa_copy, Ty))
          .getCallee());
}

// Given the renaming stack, make all the operands currently on the stack real
// by inserting them into the IR.  Return the last operation's value.
Value *PredicateInfo::materializeStack(unsigned int &Counter,
                                       ValueDFSStack &RenameStack,
                                       Value *OrigOp) {
  // Find the first thing we have to materialize
  auto RevIter = RenameStack.rbegin();
  for (; RevIter != RenameStack.rend(); ++RevIter)
    if (RevIter->Def)
      break;

  size_t Start = RevIter - RenameStack.rbegin();
  // The maximum number of things we should be trying to materialize at once
  // right now is 4, depending on if we had an assume, a branch, and both used
  // and of conditions.
  for (auto RenameIter = RenameStack.end() - Start;
       RenameIter != RenameStack.end(); ++RenameIter) {
    auto *Op =
        RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def;
    ValueDFS &Result = *RenameIter;
    auto *ValInfo = Result.PInfo;
    // For edge predicates, we can just place the operand in the block before
    // the terminator.  For assume, we have to place it right before the assume
    // to ensure we dominate all of our uses.  Always insert right before the
    // relevant instruction (terminator, assume), so that we insert in proper
    // order in the case of multiple predicateinfo in the same block.
    if (isa<PredicateWithEdge>(ValInfo)) {
      IRBuilder<> B(getBranchTerminator(ValInfo));
      Function *IF = getCopyDeclaration(F.getParent(), Op->getType());
      if (IF->users().empty())
        CreatedDeclarations.insert(IF);
      CallInst *PIC =
          B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++));
      PredicateMap.insert({PIC, ValInfo});
      Result.Def = PIC;
    } else {
      auto *PAssume = dyn_cast<PredicateAssume>(ValInfo);
      assert(PAssume &&
             "Should not have gotten here without it being an assume");
      IRBuilder<> B(PAssume->AssumeInst);
      Function *IF = getCopyDeclaration(F.getParent(), Op->getType());
      if (IF->users().empty())
        CreatedDeclarations.insert(IF);
      CallInst *PIC = B.CreateCall(IF, Op);
      PredicateMap.insert({PIC, ValInfo});
      Result.Def = PIC;
    }
  }
  return RenameStack.back().Def;
}

// Instead of the standard SSA renaming algorithm, which is O(Number of
// instructions), and walks the entire dominator tree, we walk only the defs +
// uses.  The standard SSA renaming algorithm does not really rely on the
// dominator tree except to order the stack push/pops of the renaming stacks, so
// that defs end up getting pushed before hitting the correct uses.  This does
// not require the dominator tree, only the *order* of the dominator tree. The
// complete and correct ordering of the defs and uses, in dominator tree is
// contained in the DFS numbering of the dominator tree. So we sort the defs and
// uses into the DFS ordering, and then just use the renaming stack as per
// normal, pushing when we hit a def (which is a predicateinfo instruction),
// popping when we are out of the dfs scope for that def, and replacing any uses
// with top of stack if it exists.  In order to handle liveness without
// propagating liveness info, we don't actually insert the predicateinfo
// instruction def until we see a use that it would dominate.  Once we see such
// a use, we materialize the predicateinfo instruction in the right place and
// use it.
//
// TODO: Use this algorithm to perform fast single-variable renaming in
// promotememtoreg and memoryssa.
void PredicateInfo::renameUses(SmallVectorImpl<Value *> &OpsToRename) {
  ValueDFS_Compare Compare(DT, OI);
  // Compute liveness, and rename in O(uses) per Op.
  for (auto *Op : OpsToRename) {
    LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n");
    unsigned Counter = 0;
    SmallVector<ValueDFS, 16> OrderedUses;
    const auto &ValueInfo = getValueInfo(Op);
    // Insert the possible copies into the def/use list.
    // They will become real copies if we find a real use for them, and never
    // created otherwise.
    for (auto &PossibleCopy : ValueInfo.Infos) {
      ValueDFS VD;
      // Determine where we are going to place the copy by the copy type.
      // The predicate info for branches always come first, they will get
      // materialized in the split block at the top of the block.
      // The predicate info for assumes will be somewhere in the middle,
      // it will get materialized in front of the assume.
      if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) {
        VD.LocalNum = LN_Middle;
        DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent());
        if (!DomNode)
          continue;
        VD.DFSIn = DomNode->getDFSNumIn();
        VD.DFSOut = DomNode->getDFSNumOut();
        VD.PInfo = PossibleCopy;
        OrderedUses.push_back(VD);
      } else if (isa<PredicateWithEdge>(PossibleCopy)) {
        // If we can only do phi uses, we treat it like it's in the branch
        // block, and handle it specially. We know that it goes last, and only
        // dominate phi uses.
        auto BlockEdge = getBlockEdge(PossibleCopy);
        if (EdgeUsesOnly.count(BlockEdge)) {
          VD.LocalNum = LN_Last;
          auto *DomNode = DT.getNode(BlockEdge.first);
          if (DomNode) {
            VD.DFSIn = DomNode->getDFSNumIn();
            VD.DFSOut = DomNode->getDFSNumOut();
            VD.PInfo = PossibleCopy;
            VD.EdgeOnly = true;
            OrderedUses.push_back(VD);
          }
        } else {
          // Otherwise, we are in the split block (even though we perform
          // insertion in the branch block).
          // Insert a possible copy at the split block and before the branch.
          VD.LocalNum = LN_First;
          auto *DomNode = DT.getNode(BlockEdge.second);
          if (DomNode) {
            VD.DFSIn = DomNode->getDFSNumIn();
            VD.DFSOut = DomNode->getDFSNumOut();
            VD.PInfo = PossibleCopy;
            OrderedUses.push_back(VD);
          }
        }
      }
    }

    convertUsesToDFSOrdered(Op, OrderedUses);
    // Here we require a stable sort because we do not bother to try to
    // assign an order to the operands the uses represent. Thus, two
    // uses in the same instruction do not have a strict sort order
    // currently and will be considered equal. We could get rid of the
    // stable sort by creating one if we wanted.
    llvm::stable_sort(OrderedUses, Compare);
    SmallVector<ValueDFS, 8> RenameStack;
    // For each use, sorted into dfs order, push values and replaces uses with
    // top of stack, which will represent the reaching def.
    for (auto &VD : OrderedUses) {
      // We currently do not materialize copy over copy, but we should decide if
      // we want to.
      bool PossibleCopy = VD.PInfo != nullptr;
      if (RenameStack.empty()) {
        LLVM_DEBUG(dbgs() << "Rename Stack is empty\n");
      } else {
        LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are ("
                          << RenameStack.back().DFSIn << ","
                          << RenameStack.back().DFSOut << ")\n");
      }

      LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << ","
                        << VD.DFSOut << ")\n");

      bool ShouldPush = (VD.Def || PossibleCopy);
      bool OutOfScope = !stackIsInScope(RenameStack, VD);
      if (OutOfScope || ShouldPush) {
        // Sync to our current scope.
        popStackUntilDFSScope(RenameStack, VD);
        if (ShouldPush) {
          RenameStack.push_back(VD);
        }
      }
      // If we get to this point, and the stack is empty we must have a use
      // with no renaming needed, just skip it.
      if (RenameStack.empty())
        continue;
      // Skip values, only want to rename the uses
      if (VD.Def || PossibleCopy)
        continue;
      if (!DebugCounter::shouldExecute(RenameCounter)) {
        LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n");
        continue;
      }
      ValueDFS &Result = RenameStack.back();

      // If the possible copy dominates something, materialize our stack up to
      // this point. This ensures every comparison that affects our operation
      // ends up with predicateinfo.
      if (!Result.Def)
        Result.Def = materializeStack(Counter, RenameStack, Op);

      LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for "
                        << *VD.U->get() << " in " << *(VD.U->getUser())
                        << "\n");
      assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) &&
             "Predicateinfo def should have dominated this use");
      VD.U->set(Result.Def);
    }
  }
}

PredicateInfo::ValueInfo &PredicateInfo::getOrCreateValueInfo(Value *Operand) {
  auto OIN = ValueInfoNums.find(Operand);
  if (OIN == ValueInfoNums.end()) {
    // This will grow it
    ValueInfos.resize(ValueInfos.size() + 1);
    // This will use the new size and give us a 0 based number of the info
    auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1});
    assert(InsertResult.second && "Value info number already existed?");
    return ValueInfos[InsertResult.first->second];
  }
  return ValueInfos[OIN->second];
}

const PredicateInfo::ValueInfo &
PredicateInfo::getValueInfo(Value *Operand) const {
  auto OINI = ValueInfoNums.lookup(Operand);
  assert(OINI != 0 && "Operand was not really in the Value Info Numbers");
  assert(OINI < ValueInfos.size() &&
         "Value Info Number greater than size of Value Info Table");
  return ValueInfos[OINI];
}

PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT,
                             AssumptionCache &AC)
    : F(F), DT(DT), AC(AC), OI(&DT) {
  // Push an empty operand info so that we can detect 0 as not finding one
  ValueInfos.resize(1);
  buildPredicateInfo();
}

// Remove all declarations we created . The PredicateInfo consumers are
// responsible for remove the ssa_copy calls created.
PredicateInfo::~PredicateInfo() {
  // Collect function pointers in set first, as SmallSet uses a SmallVector
  // internally and we have to remove the asserting value handles first.
  SmallPtrSet<Function *, 20> FunctionPtrs;
  for (auto &F : CreatedDeclarations)
    FunctionPtrs.insert(&*F);
  CreatedDeclarations.clear();

  for (Function *F : FunctionPtrs) {
    assert(F->user_begin() == F->user_end() &&
           "PredicateInfo consumer did not remove all SSA copies.");
    F->eraseFromParent();
  }
}

void PredicateInfo::verifyPredicateInfo() const {}

char PredicateInfoPrinterLegacyPass::ID = 0;

PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass()
    : FunctionPass(ID) {
  initializePredicateInfoPrinterLegacyPassPass(
      *PassRegistry::getPassRegistry());
}

void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequiredTransitive<DominatorTreeWrapperPass>();
  AU.addRequired<AssumptionCacheTracker>();
}

// Replace ssa_copy calls created by PredicateInfo with their operand.
static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F) {
  for (auto I = inst_begin(F), E = inst_end(F); I != E;) {
    Instruction *Inst = &*I++;
    const auto *PI = PredInfo.getPredicateInfoFor(Inst);
    auto *II = dyn_cast<IntrinsicInst>(Inst);
    if (!PI || !II || II->getIntrinsicID() != Intrinsic::ssa_copy)
      continue;

    Inst->replaceAllUsesWith(II->getOperand(0));
    Inst->eraseFromParent();
  }
}

bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) {
  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
  auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC);
  PredInfo->print(dbgs());
  if (VerifyPredicateInfo)
    PredInfo->verifyPredicateInfo();

  replaceCreatedSSACopys(*PredInfo, F);
  return false;
}

PreservedAnalyses PredicateInfoPrinterPass::run(Function &F,
                                                FunctionAnalysisManager &AM) {
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &AC = AM.getResult<AssumptionAnalysis>(F);
  OS << "PredicateInfo for function: " << F.getName() << "\n";
  auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC);
  PredInfo->print(OS);

  replaceCreatedSSACopys(*PredInfo, F);
  return PreservedAnalyses::all();
}

/// An assembly annotator class to print PredicateInfo information in
/// comments.
class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter {
  friend class PredicateInfo;
  const PredicateInfo *PredInfo;

public:
  PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {}

  virtual void emitBasicBlockStartAnnot(const BasicBlock *BB,
                                        formatted_raw_ostream &OS) {}

  virtual void emitInstructionAnnot(const Instruction *I,
                                    formatted_raw_ostream &OS) {
    if (const auto *PI = PredInfo->getPredicateInfoFor(I)) {
      OS << "; Has predicate info\n";
      if (const auto *PB = dyn_cast<PredicateBranch>(PI)) {
        OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge
           << " Comparison:" << *PB->Condition << " Edge: [";
        PB->From->printAsOperand(OS);
        OS << ",";
        PB->To->printAsOperand(OS);
        OS << "] }\n";
      } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) {
        OS << "; switch predicate info { CaseValue: " << *PS->CaseValue
           << " Switch:" << *PS->Switch << " Edge: [";
        PS->From->printAsOperand(OS);
        OS << ",";
        PS->To->printAsOperand(OS);
        OS << "] }\n";
      } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) {
        OS << "; assume predicate info {"
           << " Comparison:" << *PA->Condition << " }\n";
      }
    }
  }
};

void PredicateInfo::print(raw_ostream &OS) const {
  PredicateInfoAnnotatedWriter Writer(this);
  F.print(OS, &Writer);
}

void PredicateInfo::dump() const {
  PredicateInfoAnnotatedWriter Writer(this);
  F.print(dbgs(), &Writer);
}

PreservedAnalyses PredicateInfoVerifierPass::run(Function &F,
                                                 FunctionAnalysisManager &AM) {
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &AC = AM.getResult<AssumptionAnalysis>(F);
  std::make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo();

  return PreservedAnalyses::all();
}
}