reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
//===- ADCE.cpp - Code to perform dead code elimination -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Aggressive Dead Code Elimination pass.  This pass
// optimistically assumes that all instructions are dead until proven otherwise,
// allowing it to eliminate dead computations that other DCE passes do not
// catch, particularly involving loop computations.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/ADCE.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/IteratedDominanceFrontier.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include <cassert>
#include <cstddef>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "adce"

STATISTIC(NumRemoved, "Number of instructions removed");
STATISTIC(NumBranchesRemoved, "Number of branch instructions removed");

// This is a temporary option until we change the interface to this pass based
// on optimization level.
static cl::opt<bool> RemoveControlFlowFlag("adce-remove-control-flow",
                                           cl::init(true), cl::Hidden);

// This option enables removing of may-be-infinite loops which have no other
// effect.
static cl::opt<bool> RemoveLoops("adce-remove-loops", cl::init(false),
                                 cl::Hidden);

namespace {

/// Information about Instructions
struct InstInfoType {
  /// True if the associated instruction is live.
  bool Live = false;

  /// Quick access to information for block containing associated Instruction.
  struct BlockInfoType *Block = nullptr;
};

/// Information about basic blocks relevant to dead code elimination.
struct BlockInfoType {
  /// True when this block contains a live instructions.
  bool Live = false;

  /// True when this block ends in an unconditional branch.
  bool UnconditionalBranch = false;

  /// True when this block is known to have live PHI nodes.
  bool HasLivePhiNodes = false;

  /// Control dependence sources need to be live for this block.
  bool CFLive = false;

  /// Quick access to the LiveInfo for the terminator,
  /// holds the value &InstInfo[Terminator]
  InstInfoType *TerminatorLiveInfo = nullptr;

  /// Corresponding BasicBlock.
  BasicBlock *BB = nullptr;

  /// Cache of BB->getTerminator().
  Instruction *Terminator = nullptr;

  /// Post-order numbering of reverse control flow graph.
  unsigned PostOrder;

  bool terminatorIsLive() const { return TerminatorLiveInfo->Live; }
};

class AggressiveDeadCodeElimination {
  Function &F;

  // ADCE does not use DominatorTree per se, but it updates it to preserve the
  // analysis.
  DominatorTree *DT;
  PostDominatorTree &PDT;

  /// Mapping of blocks to associated information, an element in BlockInfoVec.
  /// Use MapVector to get deterministic iteration order.
  MapVector<BasicBlock *, BlockInfoType> BlockInfo;
  bool isLive(BasicBlock *BB) { return BlockInfo[BB].Live; }

  /// Mapping of instructions to associated information.
  DenseMap<Instruction *, InstInfoType> InstInfo;
  bool isLive(Instruction *I) { return InstInfo[I].Live; }

  /// Instructions known to be live where we need to mark
  /// reaching definitions as live.
  SmallVector<Instruction *, 128> Worklist;

  /// Debug info scopes around a live instruction.
  SmallPtrSet<const Metadata *, 32> AliveScopes;

  /// Set of blocks with not known to have live terminators.
  SmallSetVector<BasicBlock *, 16> BlocksWithDeadTerminators;

  /// The set of blocks which we have determined whose control
  /// dependence sources must be live and which have not had
  /// those dependences analyzed.
  SmallPtrSet<BasicBlock *, 16> NewLiveBlocks;

  /// Set up auxiliary data structures for Instructions and BasicBlocks and
  /// initialize the Worklist to the set of must-be-live Instruscions.
  void initialize();

  /// Return true for operations which are always treated as live.
  bool isAlwaysLive(Instruction &I);

  /// Return true for instrumentation instructions for value profiling.
  bool isInstrumentsConstant(Instruction &I);

  /// Propagate liveness to reaching definitions.
  void markLiveInstructions();

  /// Mark an instruction as live.
  void markLive(Instruction *I);

  /// Mark a block as live.
  void markLive(BlockInfoType &BB);
  void markLive(BasicBlock *BB) { markLive(BlockInfo[BB]); }

  /// Mark terminators of control predecessors of a PHI node live.
  void markPhiLive(PHINode *PN);

  /// Record the Debug Scopes which surround live debug information.
  void collectLiveScopes(const DILocalScope &LS);
  void collectLiveScopes(const DILocation &DL);

  /// Analyze dead branches to find those whose branches are the sources
  /// of control dependences impacting a live block. Those branches are
  /// marked live.
  void markLiveBranchesFromControlDependences();

  /// Remove instructions not marked live, return if any instruction was
  /// removed.
  bool removeDeadInstructions();

  /// Identify connected sections of the control flow graph which have
  /// dead terminators and rewrite the control flow graph to remove them.
  void updateDeadRegions();

  /// Set the BlockInfo::PostOrder field based on a post-order
  /// numbering of the reverse control flow graph.
  void computeReversePostOrder();

  /// Make the terminator of this block an unconditional branch to \p Target.
  void makeUnconditional(BasicBlock *BB, BasicBlock *Target);

public:
  AggressiveDeadCodeElimination(Function &F, DominatorTree *DT,
                                PostDominatorTree &PDT)
      : F(F), DT(DT), PDT(PDT) {}

  bool performDeadCodeElimination();
};

} // end anonymous namespace

bool AggressiveDeadCodeElimination::performDeadCodeElimination() {
  initialize();
  markLiveInstructions();
  return removeDeadInstructions();
}

static bool isUnconditionalBranch(Instruction *Term) {
  auto *BR = dyn_cast<BranchInst>(Term);
  return BR && BR->isUnconditional();
}

void AggressiveDeadCodeElimination::initialize() {
  auto NumBlocks = F.size();

  // We will have an entry in the map for each block so we grow the
  // structure to twice that size to keep the load factor low in the hash table.
  BlockInfo.reserve(NumBlocks);
  size_t NumInsts = 0;

  // Iterate over blocks and initialize BlockInfoVec entries, count
  // instructions to size the InstInfo hash table.
  for (auto &BB : F) {
    NumInsts += BB.size();
    auto &Info = BlockInfo[&BB];
    Info.BB = &BB;
    Info.Terminator = BB.getTerminator();
    Info.UnconditionalBranch = isUnconditionalBranch(Info.Terminator);
  }

  // Initialize instruction map and set pointers to block info.
  InstInfo.reserve(NumInsts);
  for (auto &BBInfo : BlockInfo)
    for (Instruction &I : *BBInfo.second.BB)
      InstInfo[&I].Block = &BBInfo.second;

  // Since BlockInfoVec holds pointers into InstInfo and vice-versa, we may not
  // add any more elements to either after this point.
  for (auto &BBInfo : BlockInfo)
    BBInfo.second.TerminatorLiveInfo = &InstInfo[BBInfo.second.Terminator];

  // Collect the set of "root" instructions that are known live.
  for (Instruction &I : instructions(F))
    if (isAlwaysLive(I))
      markLive(&I);

  if (!RemoveControlFlowFlag)
    return;

  if (!RemoveLoops) {
    // This stores state for the depth-first iterator. In addition
    // to recording which nodes have been visited we also record whether
    // a node is currently on the "stack" of active ancestors of the current
    // node.
    using StatusMap = DenseMap<BasicBlock *, bool>;

    class DFState : public StatusMap {
    public:
      std::pair<StatusMap::iterator, bool> insert(BasicBlock *BB) {
        return StatusMap::insert(std::make_pair(BB, true));
      }

      // Invoked after we have visited all children of a node.
      void completed(BasicBlock *BB) { (*this)[BB] = false; }

      // Return true if \p BB is currently on the active stack
      // of ancestors.
      bool onStack(BasicBlock *BB) {
        auto Iter = find(BB);
        return Iter != end() && Iter->second;
      }
    } State;

    State.reserve(F.size());
    // Iterate over blocks in depth-first pre-order and
    // treat all edges to a block already seen as loop back edges
    // and mark the branch live it if there is a back edge.
    for (auto *BB: depth_first_ext(&F.getEntryBlock(), State)) {
      Instruction *Term = BB->getTerminator();
      if (isLive(Term))
        continue;

      for (auto *Succ : successors(BB))
        if (State.onStack(Succ)) {
          // back edge....
          markLive(Term);
          break;
        }
    }
  }

  // Mark blocks live if there is no path from the block to a
  // return of the function.
  // We do this by seeing which of the postdomtree root children exit the
  // program, and for all others, mark the subtree live.
  for (auto &PDTChild : children<DomTreeNode *>(PDT.getRootNode())) {
    auto *BB = PDTChild->getBlock();
    auto &Info = BlockInfo[BB];
    // Real function return
    if (isa<ReturnInst>(Info.Terminator)) {
      LLVM_DEBUG(dbgs() << "post-dom root child is a return: " << BB->getName()
                        << '\n';);
      continue;
    }

    // This child is something else, like an infinite loop.
    for (auto DFNode : depth_first(PDTChild))
      markLive(BlockInfo[DFNode->getBlock()].Terminator);
  }

  // Treat the entry block as always live
  auto *BB = &F.getEntryBlock();
  auto &EntryInfo = BlockInfo[BB];
  EntryInfo.Live = true;
  if (EntryInfo.UnconditionalBranch)
    markLive(EntryInfo.Terminator);

  // Build initial collection of blocks with dead terminators
  for (auto &BBInfo : BlockInfo)
    if (!BBInfo.second.terminatorIsLive())
      BlocksWithDeadTerminators.insert(BBInfo.second.BB);
}

bool AggressiveDeadCodeElimination::isAlwaysLive(Instruction &I) {
  // TODO -- use llvm::isInstructionTriviallyDead
  if (I.isEHPad() || I.mayHaveSideEffects()) {
    // Skip any value profile instrumentation calls if they are
    // instrumenting constants.
    if (isInstrumentsConstant(I))
      return false;
    return true;
  }
  if (!I.isTerminator())
    return false;
  if (RemoveControlFlowFlag && (isa<BranchInst>(I) || isa<SwitchInst>(I)))
    return false;
  return true;
}

// Check if this instruction is a runtime call for value profiling and
// if it's instrumenting a constant.
bool AggressiveDeadCodeElimination::isInstrumentsConstant(Instruction &I) {
  // TODO -- move this test into llvm::isInstructionTriviallyDead
  if (CallInst *CI = dyn_cast<CallInst>(&I))
    if (Function *Callee = CI->getCalledFunction())
      if (Callee->getName().equals(getInstrProfValueProfFuncName()))
        if (isa<Constant>(CI->getArgOperand(0)))
          return true;
  return false;
}

void AggressiveDeadCodeElimination::markLiveInstructions() {
  // Propagate liveness backwards to operands.
  do {
    // Worklist holds newly discovered live instructions
    // where we need to mark the inputs as live.
    while (!Worklist.empty()) {
      Instruction *LiveInst = Worklist.pop_back_val();
      LLVM_DEBUG(dbgs() << "work live: "; LiveInst->dump(););

      for (Use &OI : LiveInst->operands())
        if (Instruction *Inst = dyn_cast<Instruction>(OI))
          markLive(Inst);

      if (auto *PN = dyn_cast<PHINode>(LiveInst))
        markPhiLive(PN);
    }

    // After data flow liveness has been identified, examine which branch
    // decisions are required to determine live instructions are executed.
    markLiveBranchesFromControlDependences();

  } while (!Worklist.empty());
}

void AggressiveDeadCodeElimination::markLive(Instruction *I) {
  auto &Info = InstInfo[I];
  if (Info.Live)
    return;

  LLVM_DEBUG(dbgs() << "mark live: "; I->dump());
  Info.Live = true;
  Worklist.push_back(I);

  // Collect the live debug info scopes attached to this instruction.
  if (const DILocation *DL = I->getDebugLoc())
    collectLiveScopes(*DL);

  // Mark the containing block live
  auto &BBInfo = *Info.Block;
  if (BBInfo.Terminator == I) {
    BlocksWithDeadTerminators.remove(BBInfo.BB);
    // For live terminators, mark destination blocks
    // live to preserve this control flow edges.
    if (!BBInfo.UnconditionalBranch)
      for (auto *BB : successors(I->getParent()))
        markLive(BB);
  }
  markLive(BBInfo);
}

void AggressiveDeadCodeElimination::markLive(BlockInfoType &BBInfo) {
  if (BBInfo.Live)
    return;
  LLVM_DEBUG(dbgs() << "mark block live: " << BBInfo.BB->getName() << '\n');
  BBInfo.Live = true;
  if (!BBInfo.CFLive) {
    BBInfo.CFLive = true;
    NewLiveBlocks.insert(BBInfo.BB);
  }

  // Mark unconditional branches at the end of live
  // blocks as live since there is no work to do for them later
  if (BBInfo.UnconditionalBranch)
    markLive(BBInfo.Terminator);
}

void AggressiveDeadCodeElimination::collectLiveScopes(const DILocalScope &LS) {
  if (!AliveScopes.insert(&LS).second)
    return;

  if (isa<DISubprogram>(LS))
    return;

  // Tail-recurse through the scope chain.
  collectLiveScopes(cast<DILocalScope>(*LS.getScope()));
}

void AggressiveDeadCodeElimination::collectLiveScopes(const DILocation &DL) {
  // Even though DILocations are not scopes, shove them into AliveScopes so we
  // don't revisit them.
  if (!AliveScopes.insert(&DL).second)
    return;

  // Collect live scopes from the scope chain.
  collectLiveScopes(*DL.getScope());

  // Tail-recurse through the inlined-at chain.
  if (const DILocation *IA = DL.getInlinedAt())
    collectLiveScopes(*IA);
}

void AggressiveDeadCodeElimination::markPhiLive(PHINode *PN) {
  auto &Info = BlockInfo[PN->getParent()];
  // Only need to check this once per block.
  if (Info.HasLivePhiNodes)
    return;
  Info.HasLivePhiNodes = true;

  // If a predecessor block is not live, mark it as control-flow live
  // which will trigger marking live branches upon which
  // that block is control dependent.
  for (auto *PredBB : predecessors(Info.BB)) {
    auto &Info = BlockInfo[PredBB];
    if (!Info.CFLive) {
      Info.CFLive = true;
      NewLiveBlocks.insert(PredBB);
    }
  }
}

void AggressiveDeadCodeElimination::markLiveBranchesFromControlDependences() {
  if (BlocksWithDeadTerminators.empty())
    return;

  LLVM_DEBUG({
    dbgs() << "new live blocks:\n";
    for (auto *BB : NewLiveBlocks)
      dbgs() << "\t" << BB->getName() << '\n';
    dbgs() << "dead terminator blocks:\n";
    for (auto *BB : BlocksWithDeadTerminators)
      dbgs() << "\t" << BB->getName() << '\n';
  });

  // The dominance frontier of a live block X in the reverse
  // control graph is the set of blocks upon which X is control
  // dependent. The following sequence computes the set of blocks
  // which currently have dead terminators that are control
  // dependence sources of a block which is in NewLiveBlocks.

  const SmallPtrSet<BasicBlock *, 16> BWDT{
      BlocksWithDeadTerminators.begin(),
      BlocksWithDeadTerminators.end()
  };
  SmallVector<BasicBlock *, 32> IDFBlocks;
  ReverseIDFCalculator IDFs(PDT);
  IDFs.setDefiningBlocks(NewLiveBlocks);
  IDFs.setLiveInBlocks(BWDT);
  IDFs.calculate(IDFBlocks);
  NewLiveBlocks.clear();

  // Dead terminators which control live blocks are now marked live.
  for (auto *BB : IDFBlocks) {
    LLVM_DEBUG(dbgs() << "live control in: " << BB->getName() << '\n');
    markLive(BB->getTerminator());
  }
}

//===----------------------------------------------------------------------===//
//
//  Routines to update the CFG and SSA information before removing dead code.
//
//===----------------------------------------------------------------------===//
bool AggressiveDeadCodeElimination::removeDeadInstructions() {
  // Updates control and dataflow around dead blocks
  updateDeadRegions();

  LLVM_DEBUG({
    for (Instruction &I : instructions(F)) {
      // Check if the instruction is alive.
      if (isLive(&I))
        continue;

      if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
        // Check if the scope of this variable location is alive.
        if (AliveScopes.count(DII->getDebugLoc()->getScope()))
          continue;

        // If intrinsic is pointing at a live SSA value, there may be an
        // earlier optimization bug: if we know the location of the variable,
        // why isn't the scope of the location alive?
        if (Value *V = DII->getVariableLocation())
          if (Instruction *II = dyn_cast<Instruction>(V))
            if (isLive(II))
              dbgs() << "Dropping debug info for " << *DII << "\n";
      }
    }
  });

  // The inverse of the live set is the dead set.  These are those instructions
  // that have no side effects and do not influence the control flow or return
  // value of the function, and may therefore be deleted safely.
  // NOTE: We reuse the Worklist vector here for memory efficiency.
  for (Instruction &I : instructions(F)) {
    // Check if the instruction is alive.
    if (isLive(&I))
      continue;

    if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) {
      // Check if the scope of this variable location is alive.
      if (AliveScopes.count(DII->getDebugLoc()->getScope()))
        continue;

      // Fallthrough and drop the intrinsic.
    }

    // Prepare to delete.
    Worklist.push_back(&I);
    I.dropAllReferences();
  }

  for (Instruction *&I : Worklist) {
    ++NumRemoved;
    I->eraseFromParent();
  }

  return !Worklist.empty();
}

// A dead region is the set of dead blocks with a common live post-dominator.
void AggressiveDeadCodeElimination::updateDeadRegions() {
  LLVM_DEBUG({
    dbgs() << "final dead terminator blocks: " << '\n';
    for (auto *BB : BlocksWithDeadTerminators)
      dbgs() << '\t' << BB->getName()
             << (BlockInfo[BB].Live ? " LIVE\n" : "\n");
  });

  // Don't compute the post ordering unless we needed it.
  bool HavePostOrder = false;

  for (auto *BB : BlocksWithDeadTerminators) {
    auto &Info = BlockInfo[BB];
    if (Info.UnconditionalBranch) {
      InstInfo[Info.Terminator].Live = true;
      continue;
    }

    if (!HavePostOrder) {
      computeReversePostOrder();
      HavePostOrder = true;
    }

    // Add an unconditional branch to the successor closest to the
    // end of the function which insures a path to the exit for each
    // live edge.
    BlockInfoType *PreferredSucc = nullptr;
    for (auto *Succ : successors(BB)) {
      auto *Info = &BlockInfo[Succ];
      if (!PreferredSucc || PreferredSucc->PostOrder < Info->PostOrder)
        PreferredSucc = Info;
    }
    assert((PreferredSucc && PreferredSucc->PostOrder > 0) &&
           "Failed to find safe successor for dead branch");

    // Collect removed successors to update the (Post)DominatorTrees.
    SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
    bool First = true;
    for (auto *Succ : successors(BB)) {
      if (!First || Succ != PreferredSucc->BB) {
        Succ->removePredecessor(BB);
        RemovedSuccessors.insert(Succ);
      } else
        First = false;
    }
    makeUnconditional(BB, PreferredSucc->BB);

    // Inform the dominators about the deleted CFG edges.
    SmallVector<DominatorTree::UpdateType, 4> DeletedEdges;
    for (auto *Succ : RemovedSuccessors) {
      // It might have happened that the same successor appeared multiple times
      // and the CFG edge wasn't really removed.
      if (Succ != PreferredSucc->BB) {
        LLVM_DEBUG(dbgs() << "ADCE: (Post)DomTree edge enqueued for deletion"
                          << BB->getName() << " -> " << Succ->getName()
                          << "\n");
        DeletedEdges.push_back({DominatorTree::Delete, BB, Succ});
      }
    }

    DomTreeUpdater(DT, &PDT, DomTreeUpdater::UpdateStrategy::Eager)
        .applyUpdates(DeletedEdges);

    NumBranchesRemoved += 1;
  }
}

// reverse top-sort order
void AggressiveDeadCodeElimination::computeReversePostOrder() {
  // This provides a post-order numbering of the reverse control flow graph
  // Note that it is incomplete in the presence of infinite loops but we don't
  // need numbers blocks which don't reach the end of the functions since
  // all branches in those blocks are forced live.

  // For each block without successors, extend the DFS from the block
  // backward through the graph
  SmallPtrSet<BasicBlock*, 16> Visited;
  unsigned PostOrder = 0;
  for (auto &BB : F) {
    if (succ_begin(&BB) != succ_end(&BB))
      continue;
    for (BasicBlock *Block : inverse_post_order_ext(&BB,Visited))
      BlockInfo[Block].PostOrder = PostOrder++;
  }
}

void AggressiveDeadCodeElimination::makeUnconditional(BasicBlock *BB,
                                                      BasicBlock *Target) {
  Instruction *PredTerm = BB->getTerminator();
  // Collect the live debug info scopes attached to this instruction.
  if (const DILocation *DL = PredTerm->getDebugLoc())
    collectLiveScopes(*DL);

  // Just mark live an existing unconditional branch
  if (isUnconditionalBranch(PredTerm)) {
    PredTerm->setSuccessor(0, Target);
    InstInfo[PredTerm].Live = true;
    return;
  }
  LLVM_DEBUG(dbgs() << "making unconditional " << BB->getName() << '\n');
  NumBranchesRemoved += 1;
  IRBuilder<> Builder(PredTerm);
  auto *NewTerm = Builder.CreateBr(Target);
  InstInfo[NewTerm].Live = true;
  if (const DILocation *DL = PredTerm->getDebugLoc())
    NewTerm->setDebugLoc(DL);

  InstInfo.erase(PredTerm);
  PredTerm->eraseFromParent();
}

//===----------------------------------------------------------------------===//
//
// Pass Manager integration code
//
//===----------------------------------------------------------------------===//
PreservedAnalyses ADCEPass::run(Function &F, FunctionAnalysisManager &FAM) {
  // ADCE does not need DominatorTree, but require DominatorTree here
  // to update analysis if it is already available.
  auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
  auto &PDT = FAM.getResult<PostDominatorTreeAnalysis>(F);
  if (!AggressiveDeadCodeElimination(F, DT, PDT).performDeadCodeElimination())
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  PA.preserve<GlobalsAA>();
  PA.preserve<DominatorTreeAnalysis>();
  PA.preserve<PostDominatorTreeAnalysis>();
  return PA;
}

namespace {

struct ADCELegacyPass : public FunctionPass {
  static char ID; // Pass identification, replacement for typeid

  ADCELegacyPass() : FunctionPass(ID) {
    initializeADCELegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;

    // ADCE does not need DominatorTree, but require DominatorTree here
    // to update analysis if it is already available.
    auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
    auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
    auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
    return AggressiveDeadCodeElimination(F, DT, PDT)
        .performDeadCodeElimination();
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<PostDominatorTreeWrapperPass>();
    if (!RemoveControlFlowFlag)
      AU.setPreservesCFG();
    else {
      AU.addPreserved<DominatorTreeWrapperPass>();
      AU.addPreserved<PostDominatorTreeWrapperPass>();
    }
    AU.addPreserved<GlobalsAAWrapperPass>();
  }
};

} // end anonymous namespace

char ADCELegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(ADCELegacyPass, "adce",
                      "Aggressive Dead Code Elimination", false, false)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
INITIALIZE_PASS_END(ADCELegacyPass, "adce", "Aggressive Dead Code Elimination",
                    false, false)

FunctionPass *llvm::createAggressiveDCEPass() { return new ADCELegacyPass(); }