reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
//===- X86RegisterBankInfo.cpp -----------------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the RegisterBankInfo class for X86.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//

#include "X86RegisterBankInfo.h"
#include "X86InstrInfo.h"
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"

#define GET_TARGET_REGBANK_IMPL
#include "X86GenRegisterBank.inc"

using namespace llvm;
// This file will be TableGen'ed at some point.
#define GET_TARGET_REGBANK_INFO_IMPL
#include "X86GenRegisterBankInfo.def"

X86RegisterBankInfo::X86RegisterBankInfo(const TargetRegisterInfo &TRI)
    : X86GenRegisterBankInfo() {

  // validate RegBank initialization.
  const RegisterBank &RBGPR = getRegBank(X86::GPRRegBankID);
  (void)RBGPR;
  assert(&X86::GPRRegBank == &RBGPR && "Incorrect RegBanks inizalization.");

  // The GPR register bank is fully defined by all the registers in
  // GR64 + its subclasses.
  assert(RBGPR.covers(*TRI.getRegClass(X86::GR64RegClassID)) &&
         "Subclass not added?");
  assert(RBGPR.getSize() == 64 && "GPRs should hold up to 64-bit");
}

const RegisterBank &X86RegisterBankInfo::getRegBankFromRegClass(
    const TargetRegisterClass &RC) const {

  if (X86::GR8RegClass.hasSubClassEq(&RC) ||
      X86::GR16RegClass.hasSubClassEq(&RC) ||
      X86::GR32RegClass.hasSubClassEq(&RC) ||
      X86::GR64RegClass.hasSubClassEq(&RC) ||
      X86::LOW32_ADDR_ACCESSRegClass.hasSubClassEq(&RC) ||
      X86::LOW32_ADDR_ACCESS_RBPRegClass.hasSubClassEq(&RC))
    return getRegBank(X86::GPRRegBankID);

  if (X86::FR32XRegClass.hasSubClassEq(&RC) ||
      X86::FR64XRegClass.hasSubClassEq(&RC) ||
      X86::VR128XRegClass.hasSubClassEq(&RC) ||
      X86::VR256XRegClass.hasSubClassEq(&RC) ||
      X86::VR512RegClass.hasSubClassEq(&RC))
    return getRegBank(X86::VECRRegBankID);

  llvm_unreachable("Unsupported register kind yet.");
}

X86GenRegisterBankInfo::PartialMappingIdx
X86GenRegisterBankInfo::getPartialMappingIdx(const LLT &Ty, bool isFP) {
  if ((Ty.isScalar() && !isFP) || Ty.isPointer()) {
    switch (Ty.getSizeInBits()) {
    case 1:
    case 8:
      return PMI_GPR8;
    case 16:
      return PMI_GPR16;
    case 32:
      return PMI_GPR32;
    case 64:
      return PMI_GPR64;
    case 128:
      return PMI_VEC128;
      break;
    default:
      llvm_unreachable("Unsupported register size.");
    }
  } else if (Ty.isScalar()) {
    switch (Ty.getSizeInBits()) {
    case 32:
      return PMI_FP32;
    case 64:
      return PMI_FP64;
    case 128:
      return PMI_VEC128;
    default:
      llvm_unreachable("Unsupported register size.");
    }
  } else {
    switch (Ty.getSizeInBits()) {
    case 128:
      return PMI_VEC128;
    case 256:
      return PMI_VEC256;
    case 512:
      return PMI_VEC512;
    default:
      llvm_unreachable("Unsupported register size.");
    }
  }

  return PMI_None;
}

void X86RegisterBankInfo::getInstrPartialMappingIdxs(
    const MachineInstr &MI, const MachineRegisterInfo &MRI, const bool isFP,
    SmallVectorImpl<PartialMappingIdx> &OpRegBankIdx) {

  unsigned NumOperands = MI.getNumOperands();
  for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
    auto &MO = MI.getOperand(Idx);
    if (!MO.isReg())
      OpRegBankIdx[Idx] = PMI_None;
    else
      OpRegBankIdx[Idx] = getPartialMappingIdx(MRI.getType(MO.getReg()), isFP);
  }
}

bool X86RegisterBankInfo::getInstrValueMapping(
    const MachineInstr &MI,
    const SmallVectorImpl<PartialMappingIdx> &OpRegBankIdx,
    SmallVectorImpl<const ValueMapping *> &OpdsMapping) {

  unsigned NumOperands = MI.getNumOperands();
  for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
    if (!MI.getOperand(Idx).isReg())
      continue;

    auto Mapping = getValueMapping(OpRegBankIdx[Idx], 1);
    if (!Mapping->isValid())
      return false;

    OpdsMapping[Idx] = Mapping;
  }
  return true;
}

const RegisterBankInfo::InstructionMapping &
X86RegisterBankInfo::getSameOperandsMapping(const MachineInstr &MI,
                                            bool isFP) const {
  const MachineFunction &MF = *MI.getParent()->getParent();
  const MachineRegisterInfo &MRI = MF.getRegInfo();

  unsigned NumOperands = MI.getNumOperands();
  LLT Ty = MRI.getType(MI.getOperand(0).getReg());

  if (NumOperands != 3 || (Ty != MRI.getType(MI.getOperand(1).getReg())) ||
      (Ty != MRI.getType(MI.getOperand(2).getReg())))
    llvm_unreachable("Unsupported operand mapping yet.");

  auto Mapping = getValueMapping(getPartialMappingIdx(Ty, isFP), 3);
  return getInstructionMapping(DefaultMappingID, 1, Mapping, NumOperands);
}

const RegisterBankInfo::InstructionMapping &
X86RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const {
  const MachineFunction &MF = *MI.getParent()->getParent();
  const MachineRegisterInfo &MRI = MF.getRegInfo();
  unsigned Opc = MI.getOpcode();

  // Try the default logic for non-generic instructions that are either copies
  // or already have some operands assigned to banks.
  if (!isPreISelGenericOpcode(Opc) || Opc == TargetOpcode::G_PHI) {
    const InstructionMapping &Mapping = getInstrMappingImpl(MI);
    if (Mapping.isValid())
      return Mapping;
  }

  switch (Opc) {
  case TargetOpcode::G_ADD:
  case TargetOpcode::G_SUB:
  case TargetOpcode::G_MUL:
    return getSameOperandsMapping(MI, false);
  case TargetOpcode::G_FADD:
  case TargetOpcode::G_FSUB:
  case TargetOpcode::G_FMUL:
  case TargetOpcode::G_FDIV:
    return getSameOperandsMapping(MI, true);
  case TargetOpcode::G_SHL:
  case TargetOpcode::G_LSHR:
  case TargetOpcode::G_ASHR: {
    unsigned NumOperands = MI.getNumOperands();
    LLT Ty = MRI.getType(MI.getOperand(0).getReg());

    auto Mapping = getValueMapping(getPartialMappingIdx(Ty, false), 3);
    return getInstructionMapping(DefaultMappingID, 1, Mapping, NumOperands);

  }
  default:
    break;
  }

  unsigned NumOperands = MI.getNumOperands();
  SmallVector<PartialMappingIdx, 4> OpRegBankIdx(NumOperands);

  switch (Opc) {
  case TargetOpcode::G_FPEXT:
  case TargetOpcode::G_FPTRUNC:
  case TargetOpcode::G_FCONSTANT:
    // Instruction having only floating-point operands (all scalars in VECRReg)
    getInstrPartialMappingIdxs(MI, MRI, /* isFP */ true, OpRegBankIdx);
    break;
  case TargetOpcode::G_SITOFP:
  case TargetOpcode::G_FPTOSI: {
    // Some of the floating-point instructions have mixed GPR and FP operands:
    // fine-tune the computed mapping.
    auto &Op0 = MI.getOperand(0);
    auto &Op1 = MI.getOperand(1);
    const LLT Ty0 = MRI.getType(Op0.getReg());
    const LLT Ty1 = MRI.getType(Op1.getReg());

    bool FirstArgIsFP = Opc == TargetOpcode::G_SITOFP;
    bool SecondArgIsFP = Opc == TargetOpcode::G_FPTOSI;
    OpRegBankIdx[0] = getPartialMappingIdx(Ty0, /* isFP */ FirstArgIsFP);
    OpRegBankIdx[1] = getPartialMappingIdx(Ty1, /* isFP */ SecondArgIsFP);
    break;
  }
  case TargetOpcode::G_FCMP: {
    LLT Ty1 = MRI.getType(MI.getOperand(2).getReg());
    LLT Ty2 = MRI.getType(MI.getOperand(3).getReg());
    (void)Ty2;
    assert(Ty1.getSizeInBits() == Ty2.getSizeInBits() &&
           "Mismatched operand sizes for G_FCMP");

    unsigned Size = Ty1.getSizeInBits();
    (void)Size;
    assert((Size == 32 || Size == 64) && "Unsupported size for G_FCMP");

    auto FpRegBank = getPartialMappingIdx(Ty1, /* isFP */ true);
    OpRegBankIdx = {PMI_GPR8,
                    /* Predicate */ PMI_None, FpRegBank, FpRegBank};
    break;
  }
  case TargetOpcode::G_TRUNC:
  case TargetOpcode::G_ANYEXT: {
    auto &Op0 = MI.getOperand(0);
    auto &Op1 = MI.getOperand(1);
    const LLT Ty0 = MRI.getType(Op0.getReg());
    const LLT Ty1 = MRI.getType(Op1.getReg());

    bool isFPTrunc = (Ty0.getSizeInBits() == 32 || Ty0.getSizeInBits() == 64) &&
                     Ty1.getSizeInBits() == 128 && Opc == TargetOpcode::G_TRUNC;
    bool isFPAnyExt =
        Ty0.getSizeInBits() == 128 &&
        (Ty1.getSizeInBits() == 32 || Ty1.getSizeInBits() == 64) &&
        Opc == TargetOpcode::G_ANYEXT;

    getInstrPartialMappingIdxs(MI, MRI, /* isFP */ isFPTrunc || isFPAnyExt,
                               OpRegBankIdx);
  } break;
  default:
    // Track the bank of each register, use NotFP mapping (all scalars in GPRs)
    getInstrPartialMappingIdxs(MI, MRI, /* isFP */ false, OpRegBankIdx);
    break;
  }

  // Finally construct the computed mapping.
  SmallVector<const ValueMapping *, 8> OpdsMapping(NumOperands);
  if (!getInstrValueMapping(MI, OpRegBankIdx, OpdsMapping))
    return getInvalidInstructionMapping();

  return getInstructionMapping(DefaultMappingID, /* Cost */ 1,
                               getOperandsMapping(OpdsMapping), NumOperands);
}

void X86RegisterBankInfo::applyMappingImpl(
    const OperandsMapper &OpdMapper) const {
  return applyDefaultMapping(OpdMapper);
}

RegisterBankInfo::InstructionMappings
X86RegisterBankInfo::getInstrAlternativeMappings(const MachineInstr &MI) const {

  const MachineFunction &MF = *MI.getParent()->getParent();
  const TargetSubtargetInfo &STI = MF.getSubtarget();
  const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
  const MachineRegisterInfo &MRI = MF.getRegInfo();

  switch (MI.getOpcode()) {
  case TargetOpcode::G_LOAD:
  case TargetOpcode::G_STORE:
  case TargetOpcode::G_IMPLICIT_DEF: {
    // we going to try to map 32/64 bit to PMI_FP32/PMI_FP64
    unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
    if (Size != 32 && Size != 64)
      break;

    unsigned NumOperands = MI.getNumOperands();

    // Track the bank of each register, use FP mapping (all scalars in VEC)
    SmallVector<PartialMappingIdx, 4> OpRegBankIdx(NumOperands);
    getInstrPartialMappingIdxs(MI, MRI, /* isFP */ true, OpRegBankIdx);

    // Finally construct the computed mapping.
    SmallVector<const ValueMapping *, 8> OpdsMapping(NumOperands);
    if (!getInstrValueMapping(MI, OpRegBankIdx, OpdsMapping))
      break;

    const RegisterBankInfo::InstructionMapping &Mapping = getInstructionMapping(
        /*ID*/ 1, /*Cost*/ 1, getOperandsMapping(OpdsMapping), NumOperands);
    InstructionMappings AltMappings;
    AltMappings.push_back(&Mapping);
    return AltMappings;
  }
  default:
    break;
  }
  return RegisterBankInfo::getInstrAlternativeMappings(MI);
}