reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
//===-- WebAssemblyFixFunctionBitcasts.cpp - Fix function bitcasts --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Fix bitcasted functions.
///
/// WebAssembly requires caller and callee signatures to match, however in LLVM,
/// some amount of slop is vaguely permitted. Detect mismatch by looking for
/// bitcasts of functions and rewrite them to use wrapper functions instead.
///
/// This doesn't catch all cases, such as when a function's address is taken in
/// one place and casted in another, but it works for many common cases.
///
/// Note that LLVM already optimizes away function bitcasts in common cases by
/// dropping arguments as needed, so this pass only ends up getting used in less
/// common cases.
///
//===----------------------------------------------------------------------===//

#include "WebAssembly.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

#define DEBUG_TYPE "wasm-fix-function-bitcasts"

namespace {
class FixFunctionBitcasts final : public ModulePass {
  StringRef getPassName() const override {
    return "WebAssembly Fix Function Bitcasts";
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    ModulePass::getAnalysisUsage(AU);
  }

  bool runOnModule(Module &M) override;

public:
  static char ID;
  FixFunctionBitcasts() : ModulePass(ID) {}
};
} // End anonymous namespace

char FixFunctionBitcasts::ID = 0;
INITIALIZE_PASS(FixFunctionBitcasts, DEBUG_TYPE,
                "Fix mismatching bitcasts for WebAssembly", false, false)

ModulePass *llvm::createWebAssemblyFixFunctionBitcasts() {
  return new FixFunctionBitcasts();
}

// Recursively descend the def-use lists from V to find non-bitcast users of
// bitcasts of V.
static void findUses(Value *V, Function &F,
                     SmallVectorImpl<std::pair<Use *, Function *>> &Uses,
                     SmallPtrSetImpl<Constant *> &ConstantBCs) {
  for (Use &U : V->uses()) {
    if (auto *BC = dyn_cast<BitCastOperator>(U.getUser()))
      findUses(BC, F, Uses, ConstantBCs);
    else if (auto *A = dyn_cast<GlobalAlias>(U.getUser()))
      findUses(A, F, Uses, ConstantBCs);
    else if (U.get()->getType() != F.getType()) {
      CallSite CS(U.getUser());
      if (!CS)
        // Skip uses that aren't immediately called
        continue;
      Value *Callee = CS.getCalledValue();
      if (Callee != V)
        // Skip calls where the function isn't the callee
        continue;
      if (isa<Constant>(U.get())) {
        // Only add constant bitcasts to the list once; they get RAUW'd
        auto C = ConstantBCs.insert(cast<Constant>(U.get()));
        if (!C.second)
          continue;
      }
      Uses.push_back(std::make_pair(&U, &F));
    }
  }
}

// Create a wrapper function with type Ty that calls F (which may have a
// different type). Attempt to support common bitcasted function idioms:
//  - Call with more arguments than needed: arguments are dropped
//  - Call with fewer arguments than needed: arguments are filled in with undef
//  - Return value is not needed: drop it
//  - Return value needed but not present: supply an undef
//
// If the all the argument types of trivially castable to one another (i.e.
// I32 vs pointer type) then we don't create a wrapper at all (return nullptr
// instead).
//
// If there is a type mismatch that we know would result in an invalid wasm
// module then generate wrapper that contains unreachable (i.e. abort at
// runtime).  Such programs are deep into undefined behaviour territory,
// but we choose to fail at runtime rather than generate and invalid module
// or fail at compiler time.  The reason we delay the error is that we want
// to support the CMake which expects to be able to compile and link programs
// that refer to functions with entirely incorrect signatures (this is how
// CMake detects the existence of a function in a toolchain).
//
// For bitcasts that involve struct types we don't know at this stage if they
// would be equivalent at the wasm level and so we can't know if we need to
// generate a wrapper.
static Function *createWrapper(Function *F, FunctionType *Ty) {
  Module *M = F->getParent();

  Function *Wrapper = Function::Create(Ty, Function::PrivateLinkage,
                                       F->getName() + "_bitcast", M);
  BasicBlock *BB = BasicBlock::Create(M->getContext(), "body", Wrapper);
  const DataLayout &DL = BB->getModule()->getDataLayout();

  // Determine what arguments to pass.
  SmallVector<Value *, 4> Args;
  Function::arg_iterator AI = Wrapper->arg_begin();
  Function::arg_iterator AE = Wrapper->arg_end();
  FunctionType::param_iterator PI = F->getFunctionType()->param_begin();
  FunctionType::param_iterator PE = F->getFunctionType()->param_end();
  bool TypeMismatch = false;
  bool WrapperNeeded = false;

  Type *ExpectedRtnType = F->getFunctionType()->getReturnType();
  Type *RtnType = Ty->getReturnType();

  if ((F->getFunctionType()->getNumParams() != Ty->getNumParams()) ||
      (F->getFunctionType()->isVarArg() != Ty->isVarArg()) ||
      (ExpectedRtnType != RtnType))
    WrapperNeeded = true;

  for (; AI != AE && PI != PE; ++AI, ++PI) {
    Type *ArgType = AI->getType();
    Type *ParamType = *PI;

    if (ArgType == ParamType) {
      Args.push_back(&*AI);
    } else {
      if (CastInst::isBitOrNoopPointerCastable(ArgType, ParamType, DL)) {
        Instruction *PtrCast =
            CastInst::CreateBitOrPointerCast(AI, ParamType, "cast");
        BB->getInstList().push_back(PtrCast);
        Args.push_back(PtrCast);
      } else if (ArgType->isStructTy() || ParamType->isStructTy()) {
        LLVM_DEBUG(dbgs() << "createWrapper: struct param type in bitcast: "
                          << F->getName() << "\n");
        WrapperNeeded = false;
      } else {
        LLVM_DEBUG(dbgs() << "createWrapper: arg type mismatch calling: "
                          << F->getName() << "\n");
        LLVM_DEBUG(dbgs() << "Arg[" << Args.size() << "] Expected: "
                          << *ParamType << " Got: " << *ArgType << "\n");
        TypeMismatch = true;
        break;
      }
    }
  }

  if (WrapperNeeded && !TypeMismatch) {
    for (; PI != PE; ++PI)
      Args.push_back(UndefValue::get(*PI));
    if (F->isVarArg())
      for (; AI != AE; ++AI)
        Args.push_back(&*AI);

    CallInst *Call = CallInst::Create(F, Args, "", BB);

    Type *ExpectedRtnType = F->getFunctionType()->getReturnType();
    Type *RtnType = Ty->getReturnType();
    // Determine what value to return.
    if (RtnType->isVoidTy()) {
      ReturnInst::Create(M->getContext(), BB);
    } else if (ExpectedRtnType->isVoidTy()) {
      LLVM_DEBUG(dbgs() << "Creating dummy return: " << *RtnType << "\n");
      ReturnInst::Create(M->getContext(), UndefValue::get(RtnType), BB);
    } else if (RtnType == ExpectedRtnType) {
      ReturnInst::Create(M->getContext(), Call, BB);
    } else if (CastInst::isBitOrNoopPointerCastable(ExpectedRtnType, RtnType,
                                                    DL)) {
      Instruction *Cast =
          CastInst::CreateBitOrPointerCast(Call, RtnType, "cast");
      BB->getInstList().push_back(Cast);
      ReturnInst::Create(M->getContext(), Cast, BB);
    } else if (RtnType->isStructTy() || ExpectedRtnType->isStructTy()) {
      LLVM_DEBUG(dbgs() << "createWrapper: struct return type in bitcast: "
                        << F->getName() << "\n");
      WrapperNeeded = false;
    } else {
      LLVM_DEBUG(dbgs() << "createWrapper: return type mismatch calling: "
                        << F->getName() << "\n");
      LLVM_DEBUG(dbgs() << "Expected: " << *ExpectedRtnType
                        << " Got: " << *RtnType << "\n");
      TypeMismatch = true;
    }
  }

  if (TypeMismatch) {
    // Create a new wrapper that simply contains `unreachable`.
    Wrapper->eraseFromParent();
    Wrapper = Function::Create(Ty, Function::PrivateLinkage,
                               F->getName() + "_bitcast_invalid", M);
    BasicBlock *BB = BasicBlock::Create(M->getContext(), "body", Wrapper);
    new UnreachableInst(M->getContext(), BB);
    Wrapper->setName(F->getName() + "_bitcast_invalid");
  } else if (!WrapperNeeded) {
    LLVM_DEBUG(dbgs() << "createWrapper: no wrapper needed: " << F->getName()
                      << "\n");
    Wrapper->eraseFromParent();
    return nullptr;
  }
  LLVM_DEBUG(dbgs() << "createWrapper: " << F->getName() << "\n");
  return Wrapper;
}

// Test whether a main function with type FuncTy should be rewritten to have
// type MainTy.
static bool shouldFixMainFunction(FunctionType *FuncTy, FunctionType *MainTy) {
  // Only fix the main function if it's the standard zero-arg form. That way,
  // the standard cases will work as expected, and users will see signature
  // mismatches from the linker for non-standard cases.
  return FuncTy->getReturnType() == MainTy->getReturnType() &&
         FuncTy->getNumParams() == 0 &&
         !FuncTy->isVarArg();
}

bool FixFunctionBitcasts::runOnModule(Module &M) {
  LLVM_DEBUG(dbgs() << "********** Fix Function Bitcasts **********\n");

  Function *Main = nullptr;
  CallInst *CallMain = nullptr;
  SmallVector<std::pair<Use *, Function *>, 0> Uses;
  SmallPtrSet<Constant *, 2> ConstantBCs;

  // Collect all the places that need wrappers.
  for (Function &F : M) {
    findUses(&F, F, Uses, ConstantBCs);

    // If we have a "main" function, and its type isn't
    // "int main(int argc, char *argv[])", create an artificial call with it
    // bitcasted to that type so that we generate a wrapper for it, so that
    // the C runtime can call it.
    if (F.getName() == "main") {
      Main = &F;
      LLVMContext &C = M.getContext();
      Type *MainArgTys[] = {Type::getInt32Ty(C),
                            PointerType::get(Type::getInt8PtrTy(C), 0)};
      FunctionType *MainTy = FunctionType::get(Type::getInt32Ty(C), MainArgTys,
                                               /*isVarArg=*/false);
      if (shouldFixMainFunction(F.getFunctionType(), MainTy)) {
        LLVM_DEBUG(dbgs() << "Found `main` function with incorrect type: "
                          << *F.getFunctionType() << "\n");
        Value *Args[] = {UndefValue::get(MainArgTys[0]),
                         UndefValue::get(MainArgTys[1])};
        Value *Casted =
            ConstantExpr::getBitCast(Main, PointerType::get(MainTy, 0));
        CallMain = CallInst::Create(MainTy, Casted, Args, "call_main");
        Use *UseMain = &CallMain->getOperandUse(2);
        Uses.push_back(std::make_pair(UseMain, &F));
      }
    }
  }

  DenseMap<std::pair<Function *, FunctionType *>, Function *> Wrappers;

  for (auto &UseFunc : Uses) {
    Use *U = UseFunc.first;
    Function *F = UseFunc.second;
    auto *PTy = cast<PointerType>(U->get()->getType());
    auto *Ty = dyn_cast<FunctionType>(PTy->getElementType());

    // If the function is casted to something like i8* as a "generic pointer"
    // to be later casted to something else, we can't generate a wrapper for it.
    // Just ignore such casts for now.
    if (!Ty)
      continue;

    auto Pair = Wrappers.insert(std::make_pair(std::make_pair(F, Ty), nullptr));
    if (Pair.second)
      Pair.first->second = createWrapper(F, Ty);

    Function *Wrapper = Pair.first->second;
    if (!Wrapper)
      continue;

    if (isa<Constant>(U->get()))
      U->get()->replaceAllUsesWith(Wrapper);
    else
      U->set(Wrapper);
  }

  // If we created a wrapper for main, rename the wrapper so that it's the
  // one that gets called from startup.
  if (CallMain) {
    Main->setName("__original_main");
    auto *MainWrapper =
        cast<Function>(CallMain->getCalledValue()->stripPointerCasts());
    delete CallMain;
    if (Main->isDeclaration()) {
      // The wrapper is not needed in this case as we don't need to export
      // it to anyone else.
      MainWrapper->eraseFromParent();
    } else {
      // Otherwise give the wrapper the same linkage as the original main
      // function, so that it can be called from the same places.
      MainWrapper->setName("main");
      MainWrapper->setLinkage(Main->getLinkage());
      MainWrapper->setVisibility(Main->getVisibility());
    }
  }

  return true;
}