1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
| //===-- AVRMCCodeEmitter.cpp - Convert AVR Code to Machine Code -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the AVRMCCodeEmitter class.
//
//===----------------------------------------------------------------------===//
#include "AVRMCCodeEmitter.h"
#include "MCTargetDesc/AVRMCExpr.h"
#include "MCTargetDesc/AVRMCTargetDesc.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "mccodeemitter"
#define GET_INSTRMAP_INFO
#include "AVRGenInstrInfo.inc"
#undef GET_INSTRMAP_INFO
namespace llvm {
/// Performs a post-encoding step on a `LD` or `ST` instruction.
///
/// The encoding of the LD/ST family of instructions is inconsistent w.r.t
/// the pointer register and the addressing mode.
///
/// The permutations of the format are as followed:
/// ld Rd, X `1001 000d dddd 1100`
/// ld Rd, X+ `1001 000d dddd 1101`
/// ld Rd, -X `1001 000d dddd 1110`
///
/// ld Rd, Y `1000 000d dddd 1000`
/// ld Rd, Y+ `1001 000d dddd 1001`
/// ld Rd, -Y `1001 000d dddd 1010`
///
/// ld Rd, Z `1000 000d dddd 0000`
/// ld Rd, Z+ `1001 000d dddd 0001`
/// ld Rd, -Z `1001 000d dddd 0010`
/// ^
/// |
/// Note this one inconsistent bit - it is 1 sometimes and 0 at other times.
/// There is no logical pattern. Looking at a truth table, the following
/// formula can be derived to fit the pattern:
//
/// ```
/// inconsistent_bit = is_predec OR is_postinc OR is_reg_x
/// ```
//
/// We manually set this bit in this post encoder method.
unsigned
AVRMCCodeEmitter::loadStorePostEncoder(const MCInst &MI, unsigned EncodedValue,
const MCSubtargetInfo &STI) const {
assert(MI.getOperand(0).isReg() && MI.getOperand(1).isReg() &&
"the load/store operands must be registers");
unsigned Opcode = MI.getOpcode();
// check whether either of the registers are the X pointer register.
bool IsRegX = MI.getOperand(0).getReg() == AVR::R27R26 ||
MI.getOperand(1).getReg() == AVR::R27R26;
bool IsPredec = Opcode == AVR::LDRdPtrPd || Opcode == AVR::STPtrPdRr;
bool IsPostinc = Opcode == AVR::LDRdPtrPi || Opcode == AVR::STPtrPiRr;
// Check if we need to set the inconsistent bit
if (IsRegX || IsPredec || IsPostinc) {
EncodedValue |= (1 << 12);
}
return EncodedValue;
}
template <AVR::Fixups Fixup>
unsigned
AVRMCCodeEmitter::encodeRelCondBrTarget(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
if (MO.isExpr()) {
Fixups.push_back(MCFixup::create(0, MO.getExpr(),
MCFixupKind(Fixup), MI.getLoc()));
return 0;
}
assert(MO.isImm());
// Take the size of the current instruction away.
// With labels, this is implicitly done.
auto target = MO.getImm();
AVR::fixups::adjustBranchTarget(target);
return target;
}
unsigned AVRMCCodeEmitter::encodeLDSTPtrReg(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
auto MO = MI.getOperand(OpNo);
// The operand should be a pointer register.
assert(MO.isReg());
switch (MO.getReg()) {
case AVR::R27R26: return 0x03; // X: 0b11
case AVR::R29R28: return 0x02; // Y: 0b10
case AVR::R31R30: return 0x00; // Z: 0b00
default:
llvm_unreachable("invalid pointer register");
}
}
/// Encodes a `memri` operand.
/// The operand is 7-bits.
/// * The lower 6 bits is the immediate
/// * The upper bit is the pointer register bit (Z=0,Y=1)
unsigned AVRMCCodeEmitter::encodeMemri(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
auto RegOp = MI.getOperand(OpNo);
auto OffsetOp = MI.getOperand(OpNo + 1);
assert(RegOp.isReg() && "Expected register operand");
uint8_t RegBit = 0;
switch (RegOp.getReg()) {
default:
llvm_unreachable("Expected either Y or Z register");
case AVR::R31R30:
RegBit = 0;
break; // Z register
case AVR::R29R28:
RegBit = 1;
break; // Y register
}
int8_t OffsetBits;
if (OffsetOp.isImm()) {
OffsetBits = OffsetOp.getImm();
} else if (OffsetOp.isExpr()) {
OffsetBits = 0;
Fixups.push_back(MCFixup::create(0, OffsetOp.getExpr(),
MCFixupKind(AVR::fixup_6), MI.getLoc()));
} else {
llvm_unreachable("invalid value for offset");
}
return (RegBit << 6) | OffsetBits;
}
unsigned AVRMCCodeEmitter::encodeComplement(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// The operand should be an immediate.
assert(MI.getOperand(OpNo).isImm());
auto Imm = MI.getOperand(OpNo).getImm();
return (~0) - Imm;
}
template <AVR::Fixups Fixup, unsigned Offset>
unsigned AVRMCCodeEmitter::encodeImm(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
auto MO = MI.getOperand(OpNo);
if (MO.isExpr()) {
if (isa<AVRMCExpr>(MO.getExpr())) {
// If the expression is already an AVRMCExpr (i.e. a lo8(symbol),
// we shouldn't perform any more fixups. Without this check, we would
// instead create a fixup to the symbol named 'lo8(symbol)' which
// is not correct.
return getExprOpValue(MO.getExpr(), Fixups, STI);
}
MCFixupKind FixupKind = static_cast<MCFixupKind>(Fixup);
Fixups.push_back(MCFixup::create(Offset, MO.getExpr(), FixupKind, MI.getLoc()));
return 0;
}
assert(MO.isImm());
return MO.getImm();
}
unsigned AVRMCCodeEmitter::encodeCallTarget(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
auto MO = MI.getOperand(OpNo);
if (MO.isExpr()) {
MCFixupKind FixupKind = static_cast<MCFixupKind>(AVR::fixup_call);
Fixups.push_back(MCFixup::create(0, MO.getExpr(), FixupKind, MI.getLoc()));
return 0;
}
assert(MO.isImm());
auto Target = MO.getImm();
AVR::fixups::adjustBranchTarget(Target);
return Target;
}
unsigned AVRMCCodeEmitter::getExprOpValue(const MCExpr *Expr,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
MCExpr::ExprKind Kind = Expr->getKind();
if (Kind == MCExpr::Binary) {
Expr = static_cast<const MCBinaryExpr *>(Expr)->getLHS();
Kind = Expr->getKind();
}
if (Kind == MCExpr::Target) {
AVRMCExpr const *AVRExpr = cast<AVRMCExpr>(Expr);
int64_t Result;
if (AVRExpr->evaluateAsConstant(Result)) {
return Result;
}
MCFixupKind FixupKind = static_cast<MCFixupKind>(AVRExpr->getFixupKind());
Fixups.push_back(MCFixup::create(0, AVRExpr, FixupKind));
return 0;
}
assert(Kind == MCExpr::SymbolRef);
return 0;
}
unsigned AVRMCCodeEmitter::getMachineOpValue(const MCInst &MI,
const MCOperand &MO,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
if (MO.isReg()) return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg());
if (MO.isImm()) return static_cast<unsigned>(MO.getImm());
if (MO.isFPImm())
return static_cast<unsigned>(APFloat(MO.getFPImm())
.bitcastToAPInt()
.getHiBits(32)
.getLimitedValue());
// MO must be an Expr.
assert(MO.isExpr());
return getExprOpValue(MO.getExpr(), Fixups, STI);
}
void AVRMCCodeEmitter::emitInstruction(uint64_t Val, unsigned Size,
const MCSubtargetInfo &STI,
raw_ostream &OS) const {
const uint16_t *Words = reinterpret_cast<uint16_t const *>(&Val);
size_t WordCount = Size / 2;
for (int64_t i = WordCount - 1; i >= 0; --i) {
uint16_t Word = Words[i];
OS << (uint8_t) ((Word & 0x00ff) >> 0);
OS << (uint8_t) ((Word & 0xff00) >> 8);
}
}
void AVRMCCodeEmitter::encodeInstruction(const MCInst &MI, raw_ostream &OS,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
// Get byte count of instruction
unsigned Size = Desc.getSize();
assert(Size > 0 && "Instruction size cannot be zero");
uint64_t BinaryOpCode = getBinaryCodeForInstr(MI, Fixups, STI);
emitInstruction(BinaryOpCode, Size, STI, OS);
}
MCCodeEmitter *createAVRMCCodeEmitter(const MCInstrInfo &MCII,
const MCRegisterInfo &MRI,
MCContext &Ctx) {
return new AVRMCCodeEmitter(MCII, Ctx);
}
#include "AVRGenMCCodeEmitter.inc"
} // end of namespace llvm
|