reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
//===-- AVRMCCodeEmitter.cpp - Convert AVR Code to Machine Code -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the AVRMCCodeEmitter class.
//
//===----------------------------------------------------------------------===//

#include "AVRMCCodeEmitter.h"

#include "MCTargetDesc/AVRMCExpr.h"
#include "MCTargetDesc/AVRMCTargetDesc.h"

#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"

#define DEBUG_TYPE "mccodeemitter"

#define GET_INSTRMAP_INFO
#include "AVRGenInstrInfo.inc"
#undef GET_INSTRMAP_INFO

namespace llvm {

/// Performs a post-encoding step on a `LD` or `ST` instruction.
///
/// The encoding of the LD/ST family of instructions is inconsistent w.r.t
/// the pointer register and the addressing mode.
///
/// The permutations of the format are as followed:
/// ld Rd, X    `1001 000d dddd 1100`
/// ld Rd, X+   `1001 000d dddd 1101`
/// ld Rd, -X   `1001 000d dddd 1110`
///
/// ld Rd, Y    `1000 000d dddd 1000`
/// ld Rd, Y+   `1001 000d dddd 1001`
/// ld Rd, -Y   `1001 000d dddd 1010`
///
/// ld Rd, Z    `1000 000d dddd 0000`
/// ld Rd, Z+   `1001 000d dddd 0001`
/// ld Rd, -Z   `1001 000d dddd 0010`
///                 ^
///                 |
/// Note this one inconsistent bit - it is 1 sometimes and 0 at other times.
/// There is no logical pattern. Looking at a truth table, the following
/// formula can be derived to fit the pattern:
//
/// ```
/// inconsistent_bit = is_predec OR is_postinc OR is_reg_x
/// ```
//
/// We manually set this bit in this post encoder method.
unsigned
AVRMCCodeEmitter::loadStorePostEncoder(const MCInst &MI, unsigned EncodedValue,
                                       const MCSubtargetInfo &STI) const {

  assert(MI.getOperand(0).isReg() && MI.getOperand(1).isReg() &&
         "the load/store operands must be registers");

  unsigned Opcode = MI.getOpcode();

  // check whether either of the registers are the X pointer register.
  bool IsRegX = MI.getOperand(0).getReg() == AVR::R27R26 ||
                  MI.getOperand(1).getReg() == AVR::R27R26;

  bool IsPredec = Opcode == AVR::LDRdPtrPd || Opcode == AVR::STPtrPdRr;
  bool IsPostinc = Opcode == AVR::LDRdPtrPi || Opcode == AVR::STPtrPiRr;

  // Check if we need to set the inconsistent bit
  if (IsRegX || IsPredec || IsPostinc) {
    EncodedValue |= (1 << 12);
  }

  return EncodedValue;
}

template <AVR::Fixups Fixup>
unsigned
AVRMCCodeEmitter::encodeRelCondBrTarget(const MCInst &MI, unsigned OpNo,
                                        SmallVectorImpl<MCFixup> &Fixups,
                                        const MCSubtargetInfo &STI) const {
  const MCOperand &MO = MI.getOperand(OpNo);

  if (MO.isExpr()) {
    Fixups.push_back(MCFixup::create(0, MO.getExpr(),
                     MCFixupKind(Fixup), MI.getLoc()));
    return 0;
  }

  assert(MO.isImm());

  // Take the size of the current instruction away.
  // With labels, this is implicitly done.
  auto target = MO.getImm();
  AVR::fixups::adjustBranchTarget(target);
  return target;
}

unsigned AVRMCCodeEmitter::encodeLDSTPtrReg(const MCInst &MI, unsigned OpNo,
                                            SmallVectorImpl<MCFixup> &Fixups,
                                            const MCSubtargetInfo &STI) const {
  auto MO = MI.getOperand(OpNo);

  // The operand should be a pointer register.
  assert(MO.isReg());

  switch (MO.getReg()) {
  case AVR::R27R26: return 0x03; // X: 0b11
  case AVR::R29R28: return 0x02; // Y: 0b10
  case AVR::R31R30: return 0x00; // Z: 0b00
  default:
    llvm_unreachable("invalid pointer register");
  }
}

/// Encodes a `memri` operand.
/// The operand is 7-bits.
/// * The lower 6 bits is the immediate
/// * The upper bit is the pointer register bit (Z=0,Y=1)
unsigned AVRMCCodeEmitter::encodeMemri(const MCInst &MI, unsigned OpNo,
                                       SmallVectorImpl<MCFixup> &Fixups,
                                       const MCSubtargetInfo &STI) const {
  auto RegOp = MI.getOperand(OpNo);
  auto OffsetOp = MI.getOperand(OpNo + 1);

  assert(RegOp.isReg() && "Expected register operand");

  uint8_t RegBit = 0;

  switch (RegOp.getReg()) {
  default:
    llvm_unreachable("Expected either Y or Z register");
  case AVR::R31R30:
    RegBit = 0;
    break; // Z register
  case AVR::R29R28:
    RegBit = 1;
    break; // Y register
  }

  int8_t OffsetBits;

  if (OffsetOp.isImm()) {
    OffsetBits = OffsetOp.getImm();
  } else if (OffsetOp.isExpr()) {
    OffsetBits = 0;
    Fixups.push_back(MCFixup::create(0, OffsetOp.getExpr(),
                     MCFixupKind(AVR::fixup_6), MI.getLoc()));
  } else {
    llvm_unreachable("invalid value for offset");
  }

  return (RegBit << 6) | OffsetBits;
}

unsigned AVRMCCodeEmitter::encodeComplement(const MCInst &MI, unsigned OpNo,
                                            SmallVectorImpl<MCFixup> &Fixups,
                                            const MCSubtargetInfo &STI) const {
  // The operand should be an immediate.
  assert(MI.getOperand(OpNo).isImm());

  auto Imm = MI.getOperand(OpNo).getImm();
  return (~0) - Imm;
}

template <AVR::Fixups Fixup, unsigned Offset>
unsigned AVRMCCodeEmitter::encodeImm(const MCInst &MI, unsigned OpNo,
                                     SmallVectorImpl<MCFixup> &Fixups,
                                     const MCSubtargetInfo &STI) const {
  auto MO = MI.getOperand(OpNo);

  if (MO.isExpr()) {
    if (isa<AVRMCExpr>(MO.getExpr())) {
      // If the expression is already an AVRMCExpr (i.e. a lo8(symbol),
      // we shouldn't perform any more fixups. Without this check, we would
      // instead create a fixup to the symbol named 'lo8(symbol)' which
      // is not correct.
      return getExprOpValue(MO.getExpr(), Fixups, STI);
    }

    MCFixupKind FixupKind = static_cast<MCFixupKind>(Fixup);
    Fixups.push_back(MCFixup::create(Offset, MO.getExpr(), FixupKind, MI.getLoc()));

    return 0;
  }

  assert(MO.isImm());
  return MO.getImm();
}

unsigned AVRMCCodeEmitter::encodeCallTarget(const MCInst &MI, unsigned OpNo,
                                            SmallVectorImpl<MCFixup> &Fixups,
                                            const MCSubtargetInfo &STI) const {
  auto MO = MI.getOperand(OpNo);

  if (MO.isExpr()) {
    MCFixupKind FixupKind = static_cast<MCFixupKind>(AVR::fixup_call);
    Fixups.push_back(MCFixup::create(0, MO.getExpr(), FixupKind, MI.getLoc()));
    return 0;
  }

  assert(MO.isImm());

  auto Target = MO.getImm();
  AVR::fixups::adjustBranchTarget(Target);
  return Target;
}

unsigned AVRMCCodeEmitter::getExprOpValue(const MCExpr *Expr,
                                          SmallVectorImpl<MCFixup> &Fixups,
                                          const MCSubtargetInfo &STI) const {

  MCExpr::ExprKind Kind = Expr->getKind();

  if (Kind == MCExpr::Binary) {
    Expr = static_cast<const MCBinaryExpr *>(Expr)->getLHS();
    Kind = Expr->getKind();
  }

  if (Kind == MCExpr::Target) {
    AVRMCExpr const *AVRExpr = cast<AVRMCExpr>(Expr);
    int64_t Result;
    if (AVRExpr->evaluateAsConstant(Result)) {
      return Result;
    }

    MCFixupKind FixupKind = static_cast<MCFixupKind>(AVRExpr->getFixupKind());
    Fixups.push_back(MCFixup::create(0, AVRExpr, FixupKind));
    return 0;
  }

  assert(Kind == MCExpr::SymbolRef);
  return 0;
}

unsigned AVRMCCodeEmitter::getMachineOpValue(const MCInst &MI,
                                             const MCOperand &MO,
                                             SmallVectorImpl<MCFixup> &Fixups,
                                             const MCSubtargetInfo &STI) const {
  if (MO.isReg()) return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg());
  if (MO.isImm()) return static_cast<unsigned>(MO.getImm());

  if (MO.isFPImm())
    return static_cast<unsigned>(APFloat(MO.getFPImm())
                                     .bitcastToAPInt()
                                     .getHiBits(32)
                                     .getLimitedValue());

  // MO must be an Expr.
  assert(MO.isExpr());

  return getExprOpValue(MO.getExpr(), Fixups, STI);
}

void AVRMCCodeEmitter::emitInstruction(uint64_t Val, unsigned Size,
                                       const MCSubtargetInfo &STI,
                                       raw_ostream &OS) const {
  const uint16_t *Words = reinterpret_cast<uint16_t const *>(&Val);
  size_t WordCount = Size / 2;

  for (int64_t i = WordCount - 1; i >= 0; --i) {
    uint16_t Word = Words[i];

    OS << (uint8_t) ((Word & 0x00ff) >> 0);
    OS << (uint8_t) ((Word & 0xff00) >> 8);
  }
}

void AVRMCCodeEmitter::encodeInstruction(const MCInst &MI, raw_ostream &OS,
                                         SmallVectorImpl<MCFixup> &Fixups,
                                         const MCSubtargetInfo &STI) const {
  const MCInstrDesc &Desc = MCII.get(MI.getOpcode());

  // Get byte count of instruction
  unsigned Size = Desc.getSize();

  assert(Size > 0 && "Instruction size cannot be zero");

  uint64_t BinaryOpCode = getBinaryCodeForInstr(MI, Fixups, STI);
  emitInstruction(BinaryOpCode, Size, STI, OS);
}

MCCodeEmitter *createAVRMCCodeEmitter(const MCInstrInfo &MCII,
                                      const MCRegisterInfo &MRI,
                                      MCContext &Ctx) {
  return new AVRMCCodeEmitter(MCII, Ctx);
}

#include "AVRGenMCCodeEmitter.inc"

} // end of namespace llvm