reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
//===-- SIInsertSkips.cpp - Use predicates for control flow ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass inserts branches on the 0 exec mask over divergent branches
/// branches when it's expected that jumping over the untaken control flow will
/// be cheaper than having every workitem no-op through it.
//
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetMachine.h"
#include <cassert>
#include <cstdint>
#include <iterator>

using namespace llvm;

#define DEBUG_TYPE "si-insert-skips"

static cl::opt<unsigned> SkipThresholdFlag(
  "amdgpu-skip-threshold",
  cl::desc("Number of instructions before jumping over divergent control flow"),
  cl::init(12), cl::Hidden);

namespace {

class SIInsertSkips : public MachineFunctionPass {
private:
  const SIRegisterInfo *TRI = nullptr;
  const SIInstrInfo *TII = nullptr;
  unsigned SkipThreshold = 0;

  bool shouldSkip(const MachineBasicBlock &From,
                  const MachineBasicBlock &To) const;

  bool skipIfDead(MachineInstr &MI, MachineBasicBlock &NextBB);

  void kill(MachineInstr &MI);

  MachineBasicBlock *insertSkipBlock(MachineBasicBlock &MBB,
                                     MachineBasicBlock::iterator I) const;

  bool skipMaskBranch(MachineInstr &MI, MachineBasicBlock &MBB);

  bool optimizeVccBranch(MachineInstr &MI) const;

public:
  static char ID;

  SIInsertSkips() : MachineFunctionPass(ID) {}

  bool runOnMachineFunction(MachineFunction &MF) override;

  StringRef getPassName() const override {
    return "SI insert s_cbranch_execz instructions";
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    MachineFunctionPass::getAnalysisUsage(AU);
  }
};

} // end anonymous namespace

char SIInsertSkips::ID = 0;

INITIALIZE_PASS(SIInsertSkips, DEBUG_TYPE,
                "SI insert s_cbranch_execz instructions", false, false)

char &llvm::SIInsertSkipsPassID = SIInsertSkips::ID;

static bool opcodeEmitsNoInsts(const MachineInstr &MI) {
  if (MI.isMetaInstruction())
    return true;

  // Handle target specific opcodes.
  switch (MI.getOpcode()) {
  case AMDGPU::SI_MASK_BRANCH:
    return true;
  default:
    return false;
  }
}

bool SIInsertSkips::shouldSkip(const MachineBasicBlock &From,
                               const MachineBasicBlock &To) const {
  unsigned NumInstr = 0;
  const MachineFunction *MF = From.getParent();

  for (MachineFunction::const_iterator MBBI(&From), ToI(&To), End = MF->end();
       MBBI != End && MBBI != ToI; ++MBBI) {
    const MachineBasicBlock &MBB = *MBBI;

    for (MachineBasicBlock::const_iterator I = MBB.begin(), E = MBB.end();
         NumInstr < SkipThreshold && I != E; ++I) {
      if (opcodeEmitsNoInsts(*I))
        continue;

      // FIXME: Since this is required for correctness, this should be inserted
      // during SILowerControlFlow.

      // When a uniform loop is inside non-uniform control flow, the branch
      // leaving the loop might be an S_CBRANCH_VCCNZ, which is never taken
      // when EXEC = 0. We should skip the loop lest it becomes infinite.
      if (I->getOpcode() == AMDGPU::S_CBRANCH_VCCNZ ||
          I->getOpcode() == AMDGPU::S_CBRANCH_VCCZ)
        return true;

      if (TII->hasUnwantedEffectsWhenEXECEmpty(*I))
        return true;

      // These instructions are potentially expensive even if EXEC = 0.
      if (TII->isSMRD(*I) || TII->isVMEM(*I) || TII->isFLAT(*I) ||
          I->getOpcode() == AMDGPU::S_WAITCNT)
        return true;

      ++NumInstr;
      if (NumInstr >= SkipThreshold)
        return true;
    }
  }

  return false;
}

bool SIInsertSkips::skipIfDead(MachineInstr &MI, MachineBasicBlock &NextBB) {
  MachineBasicBlock &MBB = *MI.getParent();
  MachineFunction *MF = MBB.getParent();

  if (MF->getFunction().getCallingConv() != CallingConv::AMDGPU_PS ||
      !shouldSkip(MBB, MBB.getParent()->back()))
    return false;

  MachineBasicBlock *SkipBB = insertSkipBlock(MBB, MI.getIterator());

  const DebugLoc &DL = MI.getDebugLoc();

  // If the exec mask is non-zero, skip the next two instructions
  BuildMI(&MBB, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
    .addMBB(&NextBB);

  MachineBasicBlock::iterator Insert = SkipBB->begin();

  // Exec mask is zero: Export to NULL target...
  BuildMI(*SkipBB, Insert, DL, TII->get(AMDGPU::EXP_DONE))
    .addImm(0x09) // V_008DFC_SQ_EXP_NULL
    .addReg(AMDGPU::VGPR0, RegState::Undef)
    .addReg(AMDGPU::VGPR0, RegState::Undef)
    .addReg(AMDGPU::VGPR0, RegState::Undef)
    .addReg(AMDGPU::VGPR0, RegState::Undef)
    .addImm(1)  // vm
    .addImm(0)  // compr
    .addImm(0); // en

  // ... and terminate wavefront.
  BuildMI(*SkipBB, Insert, DL, TII->get(AMDGPU::S_ENDPGM)).addImm(0);

  return true;
}

void SIInsertSkips::kill(MachineInstr &MI) {
  MachineBasicBlock &MBB = *MI.getParent();
  DebugLoc DL = MI.getDebugLoc();

  switch (MI.getOpcode()) {
  case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR: {
    unsigned Opcode = 0;

    // The opcodes are inverted because the inline immediate has to be
    // the first operand, e.g. from "x < imm" to "imm > x"
    switch (MI.getOperand(2).getImm()) {
    case ISD::SETOEQ:
    case ISD::SETEQ:
      Opcode = AMDGPU::V_CMPX_EQ_F32_e64;
      break;
    case ISD::SETOGT:
    case ISD::SETGT:
      Opcode = AMDGPU::V_CMPX_LT_F32_e64;
      break;
    case ISD::SETOGE:
    case ISD::SETGE:
      Opcode = AMDGPU::V_CMPX_LE_F32_e64;
      break;
    case ISD::SETOLT:
    case ISD::SETLT:
      Opcode = AMDGPU::V_CMPX_GT_F32_e64;
      break;
    case ISD::SETOLE:
    case ISD::SETLE:
      Opcode = AMDGPU::V_CMPX_GE_F32_e64;
      break;
    case ISD::SETONE:
    case ISD::SETNE:
      Opcode = AMDGPU::V_CMPX_LG_F32_e64;
      break;
    case ISD::SETO:
      Opcode = AMDGPU::V_CMPX_O_F32_e64;
      break;
    case ISD::SETUO:
      Opcode = AMDGPU::V_CMPX_U_F32_e64;
      break;
    case ISD::SETUEQ:
      Opcode = AMDGPU::V_CMPX_NLG_F32_e64;
      break;
    case ISD::SETUGT:
      Opcode = AMDGPU::V_CMPX_NGE_F32_e64;
      break;
    case ISD::SETUGE:
      Opcode = AMDGPU::V_CMPX_NGT_F32_e64;
      break;
    case ISD::SETULT:
      Opcode = AMDGPU::V_CMPX_NLE_F32_e64;
      break;
    case ISD::SETULE:
      Opcode = AMDGPU::V_CMPX_NLT_F32_e64;
      break;
    case ISD::SETUNE:
      Opcode = AMDGPU::V_CMPX_NEQ_F32_e64;
      break;
    default:
      llvm_unreachable("invalid ISD:SET cond code");
    }

    const GCNSubtarget &ST = MBB.getParent()->getSubtarget<GCNSubtarget>();
    if (ST.hasNoSdstCMPX())
      Opcode = AMDGPU::getVCMPXNoSDstOp(Opcode);

    assert(MI.getOperand(0).isReg());

    if (TRI->isVGPR(MBB.getParent()->getRegInfo(),
                    MI.getOperand(0).getReg())) {
      Opcode = AMDGPU::getVOPe32(Opcode);
      BuildMI(MBB, &MI, DL, TII->get(Opcode))
          .add(MI.getOperand(1))
          .add(MI.getOperand(0));
    } else {
      auto I = BuildMI(MBB, &MI, DL, TII->get(Opcode));
      if (!ST.hasNoSdstCMPX())
        I.addReg(AMDGPU::VCC, RegState::Define);

      I.addImm(0)  // src0 modifiers
        .add(MI.getOperand(1))
        .addImm(0)  // src1 modifiers
        .add(MI.getOperand(0));

      I.addImm(0);  // omod
    }
    break;
  }
  case AMDGPU::SI_KILL_I1_TERMINATOR: {
    const MachineFunction *MF = MI.getParent()->getParent();
    const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
    unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
    const MachineOperand &Op = MI.getOperand(0);
    int64_t KillVal = MI.getOperand(1).getImm();
    assert(KillVal == 0 || KillVal == -1);

    // Kill all threads if Op0 is an immediate and equal to the Kill value.
    if (Op.isImm()) {
      int64_t Imm = Op.getImm();
      assert(Imm == 0 || Imm == -1);

      if (Imm == KillVal)
        BuildMI(MBB, &MI, DL, TII->get(ST.isWave32() ? AMDGPU::S_MOV_B32
                                                     : AMDGPU::S_MOV_B64), Exec)
          .addImm(0);
      break;
    }

    unsigned Opcode = KillVal ? AMDGPU::S_ANDN2_B64 : AMDGPU::S_AND_B64;
    if (ST.isWave32())
      Opcode = KillVal ? AMDGPU::S_ANDN2_B32 : AMDGPU::S_AND_B32;
    BuildMI(MBB, &MI, DL, TII->get(Opcode), Exec)
        .addReg(Exec)
        .add(Op);
    break;
  }
  default:
    llvm_unreachable("invalid opcode, expected SI_KILL_*_TERMINATOR");
  }
}

MachineBasicBlock *SIInsertSkips::insertSkipBlock(
  MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const {
  MachineFunction *MF = MBB.getParent();

  MachineBasicBlock *SkipBB = MF->CreateMachineBasicBlock();
  MachineFunction::iterator MBBI(MBB);
  ++MBBI;

  MF->insert(MBBI, SkipBB);
  MBB.addSuccessor(SkipBB);

  return SkipBB;
}

// Returns true if a branch over the block was inserted.
bool SIInsertSkips::skipMaskBranch(MachineInstr &MI,
                                   MachineBasicBlock &SrcMBB) {
  MachineBasicBlock *DestBB = MI.getOperand(0).getMBB();

  if (!shouldSkip(**SrcMBB.succ_begin(), *DestBB))
    return false;

  const DebugLoc &DL = MI.getDebugLoc();
  MachineBasicBlock::iterator InsPt = std::next(MI.getIterator());

  BuildMI(SrcMBB, InsPt, DL, TII->get(AMDGPU::S_CBRANCH_EXECZ))
    .addMBB(DestBB);

  return true;
}

bool SIInsertSkips::optimizeVccBranch(MachineInstr &MI) const {
  // Match:
  // sreg = -1
  // vcc = S_AND_B64 exec, sreg
  // S_CBRANCH_VCC[N]Z
  // =>
  // S_CBRANCH_EXEC[N]Z
  bool Changed = false;
  MachineBasicBlock &MBB = *MI.getParent();
  const GCNSubtarget &ST = MBB.getParent()->getSubtarget<GCNSubtarget>();
  const bool IsWave32 = ST.isWave32();
  const unsigned CondReg = TRI->getVCC();
  const unsigned ExecReg = IsWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
  const unsigned And = IsWave32 ? AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64;

  MachineBasicBlock::reverse_iterator A = MI.getReverseIterator(),
                                      E = MBB.rend();
  bool ReadsCond = false;
  unsigned Threshold = 5;
  for (++A ; A != E ; ++A) {
    if (!--Threshold)
      return false;
    if (A->modifiesRegister(ExecReg, TRI))
      return false;
    if (A->modifiesRegister(CondReg, TRI)) {
      if (!A->definesRegister(CondReg, TRI) || A->getOpcode() != And)
        return false;
      break;
    }
    ReadsCond |= A->readsRegister(CondReg, TRI);
  }
  if (A == E)
    return false;

  MachineOperand &Op1 = A->getOperand(1);
  MachineOperand &Op2 = A->getOperand(2);
  if (Op1.getReg() != ExecReg && Op2.isReg() && Op2.getReg() == ExecReg) {
    TII->commuteInstruction(*A);
    Changed = true;
  }
  if (Op1.getReg() != ExecReg)
    return Changed;
  if (Op2.isImm() && Op2.getImm() != -1)
    return Changed;

  unsigned SReg = AMDGPU::NoRegister;
  if (Op2.isReg()) {
    SReg = Op2.getReg();
    auto M = std::next(A);
    bool ReadsSreg = false;
    for ( ; M != E ; ++M) {
      if (M->definesRegister(SReg, TRI))
        break;
      if (M->modifiesRegister(SReg, TRI))
        return Changed;
      ReadsSreg |= M->readsRegister(SReg, TRI);
    }
    if (M == E ||
        !M->isMoveImmediate() ||
        !M->getOperand(1).isImm() ||
        M->getOperand(1).getImm() != -1)
      return Changed;
    // First if sreg is only used in and instruction fold the immediate
    // into that and.
    if (!ReadsSreg && Op2.isKill()) {
      A->getOperand(2).ChangeToImmediate(-1);
      M->eraseFromParent();
    }
  }

  if (!ReadsCond && A->registerDefIsDead(AMDGPU::SCC) &&
      MI.killsRegister(CondReg, TRI))
    A->eraseFromParent();

  bool IsVCCZ = MI.getOpcode() == AMDGPU::S_CBRANCH_VCCZ;
  if (SReg == ExecReg) {
    if (IsVCCZ) {
      MI.eraseFromParent();
      return true;
    }
    MI.setDesc(TII->get(AMDGPU::S_BRANCH));
  } else {
    MI.setDesc(TII->get(IsVCCZ ? AMDGPU::S_CBRANCH_EXECZ
                               : AMDGPU::S_CBRANCH_EXECNZ));
  }

  MI.RemoveOperand(MI.findRegisterUseOperandIdx(CondReg, false /*Kill*/, TRI));
  MI.addImplicitDefUseOperands(*MBB.getParent());

  return true;
}

bool SIInsertSkips::runOnMachineFunction(MachineFunction &MF) {
  const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
  TII = ST.getInstrInfo();
  TRI = &TII->getRegisterInfo();
  SkipThreshold = SkipThresholdFlag;

  bool HaveKill = false;
  bool MadeChange = false;

  // Track depth of exec mask, divergent branches.
  SmallVector<MachineBasicBlock *, 16> ExecBranchStack;

  MachineFunction::iterator NextBB;

  MachineBasicBlock *EmptyMBBAtEnd = nullptr;

  for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
       BI != BE; BI = NextBB) {
    NextBB = std::next(BI);
    MachineBasicBlock &MBB = *BI;
    bool HaveSkipBlock = false;

    if (!ExecBranchStack.empty() && ExecBranchStack.back() == &MBB) {
      // Reached convergence point for last divergent branch.
      ExecBranchStack.pop_back();
    }

    if (HaveKill && ExecBranchStack.empty()) {
      HaveKill = false;

      // TODO: Insert skip if exec is 0?
    }

    MachineBasicBlock::iterator I, Next;
    for (I = MBB.begin(); I != MBB.end(); I = Next) {
      Next = std::next(I);

      MachineInstr &MI = *I;

      switch (MI.getOpcode()) {
      case AMDGPU::SI_MASK_BRANCH:
        ExecBranchStack.push_back(MI.getOperand(0).getMBB());
        MadeChange |= skipMaskBranch(MI, MBB);
        break;

      case AMDGPU::S_BRANCH:
        // Optimize out branches to the next block.
        // FIXME: Shouldn't this be handled by BranchFolding?
        if (MBB.isLayoutSuccessor(MI.getOperand(0).getMBB())) {
          MI.eraseFromParent();
        } else if (HaveSkipBlock) {
          // Remove the given unconditional branch when a skip block has been
          // inserted after the current one and let skip the two instructions
          // performing the kill if the exec mask is non-zero.
          MI.eraseFromParent();
        }
        break;

      case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR:
      case AMDGPU::SI_KILL_I1_TERMINATOR:
        MadeChange = true;
        kill(MI);

        if (ExecBranchStack.empty()) {
          if (NextBB != BE && skipIfDead(MI, *NextBB)) {
            HaveSkipBlock = true;
            NextBB = std::next(BI);
            BE = MF.end();
          }
        } else {
          HaveKill = true;
        }

        MI.eraseFromParent();
        break;

      case AMDGPU::SI_RETURN_TO_EPILOG:
        // FIXME: Should move somewhere else
        assert(!MF.getInfo<SIMachineFunctionInfo>()->returnsVoid());

        // Graphics shaders returning non-void shouldn't contain S_ENDPGM,
        // because external bytecode will be appended at the end.
        if (BI != --MF.end() || I != MBB.getFirstTerminator()) {
          // SI_RETURN_TO_EPILOG is not the last instruction. Add an empty block at
          // the end and jump there.
          if (!EmptyMBBAtEnd) {
            EmptyMBBAtEnd = MF.CreateMachineBasicBlock();
            MF.insert(MF.end(), EmptyMBBAtEnd);
          }

          MBB.addSuccessor(EmptyMBBAtEnd);
          BuildMI(*BI, I, MI.getDebugLoc(), TII->get(AMDGPU::S_BRANCH))
            .addMBB(EmptyMBBAtEnd);
          I->eraseFromParent();
        }
        break;

      case AMDGPU::S_CBRANCH_VCCZ:
      case AMDGPU::S_CBRANCH_VCCNZ:
        MadeChange |= optimizeVccBranch(MI);
        break;

      default:
        break;
      }
    }
  }

  return MadeChange;
}