reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
//===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass optimizes atomic operations by using a single lane of a wavefront
/// to perform the atomic operation, thus reducing contention on that memory
/// location.
//
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "SIDefines.h"
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"

#define DEBUG_TYPE "amdgpu-atomic-optimizer"

using namespace llvm;
using namespace llvm::AMDGPU;

namespace {

struct ReplacementInfo {
  Instruction *I;
  AtomicRMWInst::BinOp Op;
  unsigned ValIdx;
  bool ValDivergent;
};

class AMDGPUAtomicOptimizer : public FunctionPass,
                              public InstVisitor<AMDGPUAtomicOptimizer> {
private:
  SmallVector<ReplacementInfo, 8> ToReplace;
  const LegacyDivergenceAnalysis *DA;
  const DataLayout *DL;
  DominatorTree *DT;
  const GCNSubtarget *ST;
  bool IsPixelShader;

  Value *buildScan(IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *V,
                   Value *const Identity) const;
  Value *buildShiftRight(IRBuilder<> &B, Value *V, Value *const Identity) const;
  void optimizeAtomic(Instruction &I, AtomicRMWInst::BinOp Op, unsigned ValIdx,
                      bool ValDivergent) const;

public:
  static char ID;

  AMDGPUAtomicOptimizer() : FunctionPass(ID) {}

  bool runOnFunction(Function &F) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addRequired<LegacyDivergenceAnalysis>();
    AU.addRequired<TargetPassConfig>();
  }

  void visitAtomicRMWInst(AtomicRMWInst &I);
  void visitIntrinsicInst(IntrinsicInst &I);
};

} // namespace

char AMDGPUAtomicOptimizer::ID = 0;

char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID;

bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) {
  if (skipFunction(F)) {
    return false;
  }

  DA = &getAnalysis<LegacyDivergenceAnalysis>();
  DL = &F.getParent()->getDataLayout();
  DominatorTreeWrapperPass *const DTW =
      getAnalysisIfAvailable<DominatorTreeWrapperPass>();
  DT = DTW ? &DTW->getDomTree() : nullptr;
  const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
  const TargetMachine &TM = TPC.getTM<TargetMachine>();
  ST = &TM.getSubtarget<GCNSubtarget>(F);
  IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS;

  visit(F);

  const bool Changed = !ToReplace.empty();

  for (ReplacementInfo &Info : ToReplace) {
    optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent);
  }

  ToReplace.clear();

  return Changed;
}

void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) {
  // Early exit for unhandled address space atomic instructions.
  switch (I.getPointerAddressSpace()) {
  default:
    return;
  case AMDGPUAS::GLOBAL_ADDRESS:
  case AMDGPUAS::LOCAL_ADDRESS:
    break;
  }

  AtomicRMWInst::BinOp Op = I.getOperation();

  switch (Op) {
  default:
    return;
  case AtomicRMWInst::Add:
  case AtomicRMWInst::Sub:
  case AtomicRMWInst::And:
  case AtomicRMWInst::Or:
  case AtomicRMWInst::Xor:
  case AtomicRMWInst::Max:
  case AtomicRMWInst::Min:
  case AtomicRMWInst::UMax:
  case AtomicRMWInst::UMin:
    break;
  }

  const unsigned PtrIdx = 0;
  const unsigned ValIdx = 1;

  // If the pointer operand is divergent, then each lane is doing an atomic
  // operation on a different address, and we cannot optimize that.
  if (DA->isDivergentUse(&I.getOperandUse(PtrIdx))) {
    return;
  }

  const bool ValDivergent = DA->isDivergentUse(&I.getOperandUse(ValIdx));

  // If the value operand is divergent, each lane is contributing a different
  // value to the atomic calculation. We can only optimize divergent values if
  // we have DPP available on our subtarget, and the atomic operation is 32
  // bits.
  if (ValDivergent &&
      (!ST->hasDPP() || DL->getTypeSizeInBits(I.getType()) != 32)) {
    return;
  }

  // If we get here, we can optimize the atomic using a single wavefront-wide
  // atomic operation to do the calculation for the entire wavefront, so
  // remember the instruction so we can come back to it.
  const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};

  ToReplace.push_back(Info);
}

void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) {
  AtomicRMWInst::BinOp Op;

  switch (I.getIntrinsicID()) {
  default:
    return;
  case Intrinsic::amdgcn_buffer_atomic_add:
  case Intrinsic::amdgcn_struct_buffer_atomic_add:
  case Intrinsic::amdgcn_raw_buffer_atomic_add:
    Op = AtomicRMWInst::Add;
    break;
  case Intrinsic::amdgcn_buffer_atomic_sub:
  case Intrinsic::amdgcn_struct_buffer_atomic_sub:
  case Intrinsic::amdgcn_raw_buffer_atomic_sub:
    Op = AtomicRMWInst::Sub;
    break;
  case Intrinsic::amdgcn_buffer_atomic_and:
  case Intrinsic::amdgcn_struct_buffer_atomic_and:
  case Intrinsic::amdgcn_raw_buffer_atomic_and:
    Op = AtomicRMWInst::And;
    break;
  case Intrinsic::amdgcn_buffer_atomic_or:
  case Intrinsic::amdgcn_struct_buffer_atomic_or:
  case Intrinsic::amdgcn_raw_buffer_atomic_or:
    Op = AtomicRMWInst::Or;
    break;
  case Intrinsic::amdgcn_buffer_atomic_xor:
  case Intrinsic::amdgcn_struct_buffer_atomic_xor:
  case Intrinsic::amdgcn_raw_buffer_atomic_xor:
    Op = AtomicRMWInst::Xor;
    break;
  case Intrinsic::amdgcn_buffer_atomic_smin:
  case Intrinsic::amdgcn_struct_buffer_atomic_smin:
  case Intrinsic::amdgcn_raw_buffer_atomic_smin:
    Op = AtomicRMWInst::Min;
    break;
  case Intrinsic::amdgcn_buffer_atomic_umin:
  case Intrinsic::amdgcn_struct_buffer_atomic_umin:
  case Intrinsic::amdgcn_raw_buffer_atomic_umin:
    Op = AtomicRMWInst::UMin;
    break;
  case Intrinsic::amdgcn_buffer_atomic_smax:
  case Intrinsic::amdgcn_struct_buffer_atomic_smax:
  case Intrinsic::amdgcn_raw_buffer_atomic_smax:
    Op = AtomicRMWInst::Max;
    break;
  case Intrinsic::amdgcn_buffer_atomic_umax:
  case Intrinsic::amdgcn_struct_buffer_atomic_umax:
  case Intrinsic::amdgcn_raw_buffer_atomic_umax:
    Op = AtomicRMWInst::UMax;
    break;
  }

  const unsigned ValIdx = 0;

  const bool ValDivergent = DA->isDivergentUse(&I.getOperandUse(ValIdx));

  // If the value operand is divergent, each lane is contributing a different
  // value to the atomic calculation. We can only optimize divergent values if
  // we have DPP available on our subtarget, and the atomic operation is 32
  // bits.
  if (ValDivergent &&
      (!ST->hasDPP() || DL->getTypeSizeInBits(I.getType()) != 32)) {
    return;
  }

  // If any of the other arguments to the intrinsic are divergent, we can't
  // optimize the operation.
  for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) {
    if (DA->isDivergentUse(&I.getOperandUse(Idx))) {
      return;
    }
  }

  // If we get here, we can optimize the atomic using a single wavefront-wide
  // atomic operation to do the calculation for the entire wavefront, so
  // remember the instruction so we can come back to it.
  const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};

  ToReplace.push_back(Info);
}

// Use the builder to create the non-atomic counterpart of the specified
// atomicrmw binary op.
static Value *buildNonAtomicBinOp(IRBuilder<> &B, AtomicRMWInst::BinOp Op,
                                  Value *LHS, Value *RHS) {
  CmpInst::Predicate Pred;

  switch (Op) {
  default:
    llvm_unreachable("Unhandled atomic op");
  case AtomicRMWInst::Add:
    return B.CreateBinOp(Instruction::Add, LHS, RHS);
  case AtomicRMWInst::Sub:
    return B.CreateBinOp(Instruction::Sub, LHS, RHS);
  case AtomicRMWInst::And:
    return B.CreateBinOp(Instruction::And, LHS, RHS);
  case AtomicRMWInst::Or:
    return B.CreateBinOp(Instruction::Or, LHS, RHS);
  case AtomicRMWInst::Xor:
    return B.CreateBinOp(Instruction::Xor, LHS, RHS);

  case AtomicRMWInst::Max:
    Pred = CmpInst::ICMP_SGT;
    break;
  case AtomicRMWInst::Min:
    Pred = CmpInst::ICMP_SLT;
    break;
  case AtomicRMWInst::UMax:
    Pred = CmpInst::ICMP_UGT;
    break;
  case AtomicRMWInst::UMin:
    Pred = CmpInst::ICMP_ULT;
    break;
  }
  Value *Cond = B.CreateICmp(Pred, LHS, RHS);
  return B.CreateSelect(Cond, LHS, RHS);
}

// Use the builder to create an inclusive scan of V across the wavefront, with
// all lanes active.
Value *AMDGPUAtomicOptimizer::buildScan(IRBuilder<> &B, AtomicRMWInst::BinOp Op,
                                        Value *V, Value *const Identity) const {
  Type *const Ty = V->getType();
  Module *M = B.GetInsertBlock()->getModule();
  Function *UpdateDPP =
      Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, Ty);
  Function *PermLaneX16 =
      Intrinsic::getDeclaration(M, Intrinsic::amdgcn_permlanex16, {});
  Function *ReadLane =
      Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, {});

  for (unsigned Idx = 0; Idx < 4; Idx++) {
    V = buildNonAtomicBinOp(
        B, Op, V,
        B.CreateCall(UpdateDPP,
                     {Identity, V, B.getInt32(DPP::ROW_SHR0 | 1 << Idx),
                      B.getInt32(0xf), B.getInt32(0xf), B.getFalse()}));
  }
  if (ST->hasDPPBroadcasts()) {
    // GFX9 has DPP row broadcast operations.
    V = buildNonAtomicBinOp(
        B, Op, V,
        B.CreateCall(UpdateDPP,
                     {Identity, V, B.getInt32(DPP::BCAST15), B.getInt32(0xa),
                      B.getInt32(0xf), B.getFalse()}));
    V = buildNonAtomicBinOp(
        B, Op, V,
        B.CreateCall(UpdateDPP,
                     {Identity, V, B.getInt32(DPP::BCAST31), B.getInt32(0xc),
                      B.getInt32(0xf), B.getFalse()}));
  } else {
    // On GFX10 all DPP operations are confined to a single row. To get cross-
    // row operations we have to use permlane or readlane.

    // Combine lane 15 into lanes 16..31 (and, for wave 64, lane 47 into lanes
    // 48..63).
    Value *const PermX =
        B.CreateCall(PermLaneX16, {V, V, B.getInt32(-1), B.getInt32(-1),
                                   B.getFalse(), B.getFalse()});
    V = buildNonAtomicBinOp(
        B, Op, V,
        B.CreateCall(UpdateDPP,
                     {Identity, PermX, B.getInt32(DPP::QUAD_PERM_ID),
                      B.getInt32(0xa), B.getInt32(0xf), B.getFalse()}));
    if (!ST->isWave32()) {
      // Combine lane 31 into lanes 32..63.
      Value *const Lane31 = B.CreateCall(ReadLane, {V, B.getInt32(31)});
      V = buildNonAtomicBinOp(
          B, Op, V,
          B.CreateCall(UpdateDPP,
                       {Identity, Lane31, B.getInt32(DPP::QUAD_PERM_ID),
                        B.getInt32(0xc), B.getInt32(0xf), B.getFalse()}));
    }
  }
  return V;
}

// Use the builder to create a shift right of V across the wavefront, with all
// lanes active, to turn an inclusive scan into an exclusive scan.
Value *AMDGPUAtomicOptimizer::buildShiftRight(IRBuilder<> &B, Value *V,
                                              Value *const Identity) const {
  Type *const Ty = V->getType();
  Module *M = B.GetInsertBlock()->getModule();
  Function *UpdateDPP =
      Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, Ty);
  Function *ReadLane =
      Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, {});
  Function *WriteLane =
      Intrinsic::getDeclaration(M, Intrinsic::amdgcn_writelane, {});

  if (ST->hasDPPWavefrontShifts()) {
    // GFX9 has DPP wavefront shift operations.
    V = B.CreateCall(UpdateDPP,
                     {Identity, V, B.getInt32(DPP::WAVE_SHR1), B.getInt32(0xf),
                      B.getInt32(0xf), B.getFalse()});
  } else {
    // On GFX10 all DPP operations are confined to a single row. To get cross-
    // row operations we have to use permlane or readlane.
    Value *Old = V;
    V = B.CreateCall(UpdateDPP,
                     {Identity, V, B.getInt32(DPP::ROW_SHR0 + 1),
                      B.getInt32(0xf), B.getInt32(0xf), B.getFalse()});

    // Copy the old lane 15 to the new lane 16.
    V = B.CreateCall(WriteLane, {B.CreateCall(ReadLane, {Old, B.getInt32(15)}),
                                 B.getInt32(16), V});

    if (!ST->isWave32()) {
      // Copy the old lane 31 to the new lane 32.
      V = B.CreateCall(
          WriteLane,
          {B.CreateCall(ReadLane, {Old, B.getInt32(31)}), B.getInt32(32), V});

      // Copy the old lane 47 to the new lane 48.
      V = B.CreateCall(
          WriteLane,
          {B.CreateCall(ReadLane, {Old, B.getInt32(47)}), B.getInt32(48), V});
    }
  }

  return V;
}

static APInt getIdentityValueForAtomicOp(AtomicRMWInst::BinOp Op,
                                         unsigned BitWidth) {
  switch (Op) {
  default:
    llvm_unreachable("Unhandled atomic op");
  case AtomicRMWInst::Add:
  case AtomicRMWInst::Sub:
  case AtomicRMWInst::Or:
  case AtomicRMWInst::Xor:
  case AtomicRMWInst::UMax:
    return APInt::getMinValue(BitWidth);
  case AtomicRMWInst::And:
  case AtomicRMWInst::UMin:
    return APInt::getMaxValue(BitWidth);
  case AtomicRMWInst::Max:
    return APInt::getSignedMinValue(BitWidth);
  case AtomicRMWInst::Min:
    return APInt::getSignedMaxValue(BitWidth);
  }
}

void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I,
                                           AtomicRMWInst::BinOp Op,
                                           unsigned ValIdx,
                                           bool ValDivergent) const {
  // Start building just before the instruction.
  IRBuilder<> B(&I);

  // If we are in a pixel shader, because of how we have to mask out helper
  // lane invocations, we need to record the entry and exit BB's.
  BasicBlock *PixelEntryBB = nullptr;
  BasicBlock *PixelExitBB = nullptr;

  // If we're optimizing an atomic within a pixel shader, we need to wrap the
  // entire atomic operation in a helper-lane check. We do not want any helper
  // lanes that are around only for the purposes of derivatives to take part
  // in any cross-lane communication, and we use a branch on whether the lane is
  // live to do this.
  if (IsPixelShader) {
    // Record I's original position as the entry block.
    PixelEntryBB = I.getParent();

    Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {});
    Instruction *const NonHelperTerminator =
        SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);

    // Record I's new position as the exit block.
    PixelExitBB = I.getParent();

    I.moveBefore(NonHelperTerminator);
    B.SetInsertPoint(&I);
  }

  Type *const Ty = I.getType();
  const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty);
  Type *const VecTy = VectorType::get(B.getInt32Ty(), 2);

  // This is the value in the atomic operation we need to combine in order to
  // reduce the number of atomic operations.
  Value *const V = I.getOperand(ValIdx);

  // We need to know how many lanes are active within the wavefront, and we do
  // this by doing a ballot of active lanes.
  Type *const WaveTy = B.getIntNTy(ST->getWavefrontSize());
  CallInst *const Ballot = B.CreateIntrinsic(
      Intrinsic::amdgcn_icmp, {WaveTy, B.getInt32Ty()},
      {B.getInt32(1), B.getInt32(0), B.getInt32(CmpInst::ICMP_NE)});

  // We need to know how many lanes are active within the wavefront that are
  // below us. If we counted each lane linearly starting from 0, a lane is
  // below us only if its associated index was less than ours. We do this by
  // using the mbcnt intrinsic.
  Value *Mbcnt;
  if (ST->isWave32()) {
    Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {},
                              {Ballot, B.getInt32(0)});
  } else {
    Value *const BitCast = B.CreateBitCast(Ballot, VecTy);
    Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0));
    Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1));
    Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {},
                              {ExtractLo, B.getInt32(0)});
    Mbcnt =
        B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {}, {ExtractHi, Mbcnt});
  }
  Mbcnt = B.CreateIntCast(Mbcnt, Ty, false);

  Value *const Identity = B.getInt(getIdentityValueForAtomicOp(Op, TyBitWidth));

  Value *ExclScan = nullptr;
  Value *NewV = nullptr;

  // If we have a divergent value in each lane, we need to combine the value
  // using DPP.
  if (ValDivergent) {
    // First we need to set all inactive invocations to the identity value, so
    // that they can correctly contribute to the final result.
    NewV = B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, Ty, {V, Identity});

    const AtomicRMWInst::BinOp ScanOp =
        Op == AtomicRMWInst::Sub ? AtomicRMWInst::Add : Op;
    NewV = buildScan(B, ScanOp, NewV, Identity);
    ExclScan = buildShiftRight(B, NewV, Identity);

    // Read the value from the last lane, which has accumlated the values of
    // each active lane in the wavefront. This will be our new value which we
    // will provide to the atomic operation.
    Value *const LastLaneIdx = B.getInt32(ST->getWavefrontSize() - 1);
    if (TyBitWidth == 64) {
      Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty());
      Value *const ExtractHi =
          B.CreateTrunc(B.CreateLShr(NewV, 32), B.getInt32Ty());
      CallInst *const ReadLaneLo = B.CreateIntrinsic(
          Intrinsic::amdgcn_readlane, {}, {ExtractLo, LastLaneIdx});
      CallInst *const ReadLaneHi = B.CreateIntrinsic(
          Intrinsic::amdgcn_readlane, {}, {ExtractHi, LastLaneIdx});
      Value *const PartialInsert = B.CreateInsertElement(
          UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0));
      Value *const Insert =
          B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1));
      NewV = B.CreateBitCast(Insert, Ty);
    } else if (TyBitWidth == 32) {
      NewV = B.CreateIntrinsic(Intrinsic::amdgcn_readlane, {},
                               {NewV, LastLaneIdx});
    } else {
      llvm_unreachable("Unhandled atomic bit width");
    }

    // Finally mark the readlanes in the WWM section.
    NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV);
  } else {
    switch (Op) {
    default:
      llvm_unreachable("Unhandled atomic op");

    case AtomicRMWInst::Add:
    case AtomicRMWInst::Sub: {
      // The new value we will be contributing to the atomic operation is the
      // old value times the number of active lanes.
      Value *const Ctpop = B.CreateIntCast(
          B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false);
      NewV = B.CreateMul(V, Ctpop);
      break;
    }

    case AtomicRMWInst::And:
    case AtomicRMWInst::Or:
    case AtomicRMWInst::Max:
    case AtomicRMWInst::Min:
    case AtomicRMWInst::UMax:
    case AtomicRMWInst::UMin:
      // These operations with a uniform value are idempotent: doing the atomic
      // operation multiple times has the same effect as doing it once.
      NewV = V;
      break;

    case AtomicRMWInst::Xor:
      // The new value we will be contributing to the atomic operation is the
      // old value times the parity of the number of active lanes.
      Value *const Ctpop = B.CreateIntCast(
          B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false);
      NewV = B.CreateMul(V, B.CreateAnd(Ctpop, 1));
      break;
    }
  }

  // We only want a single lane to enter our new control flow, and we do this
  // by checking if there are any active lanes below us. Only one lane will
  // have 0 active lanes below us, so that will be the only one to progress.
  Value *const Cond = B.CreateICmpEQ(Mbcnt, B.getIntN(TyBitWidth, 0));

  // Store I's original basic block before we split the block.
  BasicBlock *const EntryBB = I.getParent();

  // We need to introduce some new control flow to force a single lane to be
  // active. We do this by splitting I's basic block at I, and introducing the
  // new block such that:
  // entry --> single_lane -\
  //       \------------------> exit
  Instruction *const SingleLaneTerminator =
      SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);

  // Move the IR builder into single_lane next.
  B.SetInsertPoint(SingleLaneTerminator);

  // Clone the original atomic operation into single lane, replacing the
  // original value with our newly created one.
  Instruction *const NewI = I.clone();
  B.Insert(NewI);
  NewI->setOperand(ValIdx, NewV);

  // Move the IR builder into exit next, and start inserting just before the
  // original instruction.
  B.SetInsertPoint(&I);

  const bool NeedResult = !I.use_empty();
  if (NeedResult) {
    // Create a PHI node to get our new atomic result into the exit block.
    PHINode *const PHI = B.CreatePHI(Ty, 2);
    PHI->addIncoming(UndefValue::get(Ty), EntryBB);
    PHI->addIncoming(NewI, SingleLaneTerminator->getParent());

    // We need to broadcast the value who was the lowest active lane (the first
    // lane) to all other lanes in the wavefront. We use an intrinsic for this,
    // but have to handle 64-bit broadcasts with two calls to this intrinsic.
    Value *BroadcastI = nullptr;

    if (TyBitWidth == 64) {
      Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty());
      Value *const ExtractHi =
          B.CreateTrunc(B.CreateLShr(PHI, 32), B.getInt32Ty());
      CallInst *const ReadFirstLaneLo =
          B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo);
      CallInst *const ReadFirstLaneHi =
          B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi);
      Value *const PartialInsert = B.CreateInsertElement(
          UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0));
      Value *const Insert =
          B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1));
      BroadcastI = B.CreateBitCast(Insert, Ty);
    } else if (TyBitWidth == 32) {

      BroadcastI = B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI);
    } else {
      llvm_unreachable("Unhandled atomic bit width");
    }

    // Now that we have the result of our single atomic operation, we need to
    // get our individual lane's slice into the result. We use the lane offset
    // we previously calculated combined with the atomic result value we got
    // from the first lane, to get our lane's index into the atomic result.
    Value *LaneOffset = nullptr;
    if (ValDivergent) {
      LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, ExclScan);
    } else {
      switch (Op) {
      default:
        llvm_unreachable("Unhandled atomic op");
      case AtomicRMWInst::Add:
      case AtomicRMWInst::Sub:
        LaneOffset = B.CreateMul(V, Mbcnt);
        break;
      case AtomicRMWInst::And:
      case AtomicRMWInst::Or:
      case AtomicRMWInst::Max:
      case AtomicRMWInst::Min:
      case AtomicRMWInst::UMax:
      case AtomicRMWInst::UMin:
        LaneOffset = B.CreateSelect(Cond, Identity, V);
        break;
      case AtomicRMWInst::Xor:
        LaneOffset = B.CreateMul(V, B.CreateAnd(Mbcnt, 1));
        break;
      }
    }
    Value *const Result = buildNonAtomicBinOp(B, Op, BroadcastI, LaneOffset);

    if (IsPixelShader) {
      // Need a final PHI to reconverge to above the helper lane branch mask.
      B.SetInsertPoint(PixelExitBB->getFirstNonPHI());

      PHINode *const PHI = B.CreatePHI(Ty, 2);
      PHI->addIncoming(UndefValue::get(Ty), PixelEntryBB);
      PHI->addIncoming(Result, I.getParent());
      I.replaceAllUsesWith(PHI);
    } else {
      // Replace the original atomic instruction with the new one.
      I.replaceAllUsesWith(Result);
    }
  }

  // And delete the original.
  I.eraseFromParent();
}

INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE,
                      "AMDGPU atomic optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE,
                    "AMDGPU atomic optimizations", false, false)

FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() {
  return new AMDGPUAtomicOptimizer();
}