reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 4670
 4671
 4672
 4673
 4674
 4675
 4676
 4677
 4678
 4679
 4680
 4681
 4682
 4683
 4684
 4685
 4686
 4687
 4688
//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the CodeGenDAGPatterns class, which is used to read and
// represent the patterns present in a .td file for instructions.
//
//===----------------------------------------------------------------------===//

#include "CodeGenDAGPatterns.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include <algorithm>
#include <cstdio>
#include <iterator>
#include <set>
using namespace llvm;

#define DEBUG_TYPE "dag-patterns"

static inline bool isIntegerOrPtr(MVT VT) {
  return VT.isInteger() || VT == MVT::iPTR;
}
static inline bool isFloatingPoint(MVT VT) {
  return VT.isFloatingPoint();
}
static inline bool isVector(MVT VT) {
  return VT.isVector();
}
static inline bool isScalar(MVT VT) {
  return !VT.isVector();
}

template <typename Predicate>
static bool berase_if(MachineValueTypeSet &S, Predicate P) {
  bool Erased = false;
  // It is ok to iterate over MachineValueTypeSet and remove elements from it
  // at the same time.
  for (MVT T : S) {
    if (!P(T))
      continue;
    Erased = true;
    S.erase(T);
  }
  return Erased;
}

// --- TypeSetByHwMode

// This is a parameterized type-set class. For each mode there is a list
// of types that are currently possible for a given tree node. Type
// inference will apply to each mode separately.

TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
  for (const ValueTypeByHwMode &VVT : VTList) {
    insert(VVT);
    AddrSpaces.push_back(VVT.PtrAddrSpace);
  }
}

bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
  for (const auto &I : *this) {
    if (I.second.size() > 1)
      return false;
    if (!AllowEmpty && I.second.empty())
      return false;
  }
  return true;
}

ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
  assert(isValueTypeByHwMode(true) &&
         "The type set has multiple types for at least one HW mode");
  ValueTypeByHwMode VVT;
  auto ASI = AddrSpaces.begin();

  for (const auto &I : *this) {
    MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
    VVT.getOrCreateTypeForMode(I.first, T);
    if (ASI != AddrSpaces.end())
      VVT.PtrAddrSpace = *ASI++;
  }
  return VVT;
}

bool TypeSetByHwMode::isPossible() const {
  for (const auto &I : *this)
    if (!I.second.empty())
      return true;
  return false;
}

bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
  bool Changed = false;
  bool ContainsDefault = false;
  MVT DT = MVT::Other;

  SmallDenseSet<unsigned, 4> Modes;
  for (const auto &P : VVT) {
    unsigned M = P.first;
    Modes.insert(M);
    // Make sure there exists a set for each specific mode from VVT.
    Changed |= getOrCreate(M).insert(P.second).second;
    // Cache VVT's default mode.
    if (DefaultMode == M) {
      ContainsDefault = true;
      DT = P.second;
    }
  }

  // If VVT has a default mode, add the corresponding type to all
  // modes in "this" that do not exist in VVT.
  if (ContainsDefault)
    for (auto &I : *this)
      if (!Modes.count(I.first))
        Changed |= I.second.insert(DT).second;

  return Changed;
}

// Constrain the type set to be the intersection with VTS.
bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
  bool Changed = false;
  if (hasDefault()) {
    for (const auto &I : VTS) {
      unsigned M = I.first;
      if (M == DefaultMode || hasMode(M))
        continue;
      Map.insert({M, Map.at(DefaultMode)});
      Changed = true;
    }
  }

  for (auto &I : *this) {
    unsigned M = I.first;
    SetType &S = I.second;
    if (VTS.hasMode(M) || VTS.hasDefault()) {
      Changed |= intersect(I.second, VTS.get(M));
    } else if (!S.empty()) {
      S.clear();
      Changed = true;
    }
  }
  return Changed;
}

template <typename Predicate>
bool TypeSetByHwMode::constrain(Predicate P) {
  bool Changed = false;
  for (auto &I : *this)
    Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
  return Changed;
}

template <typename Predicate>
bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
  assert(empty());
  for (const auto &I : VTS) {
    SetType &S = getOrCreate(I.first);
    for (auto J : I.second)
      if (P(J))
        S.insert(J);
  }
  return !empty();
}

void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
  SmallVector<unsigned, 4> Modes;
  Modes.reserve(Map.size());

  for (const auto &I : *this)
    Modes.push_back(I.first);
  if (Modes.empty()) {
    OS << "{}";
    return;
  }
  array_pod_sort(Modes.begin(), Modes.end());

  OS << '{';
  for (unsigned M : Modes) {
    OS << ' ' << getModeName(M) << ':';
    writeToStream(get(M), OS);
  }
  OS << " }";
}

void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
  SmallVector<MVT, 4> Types(S.begin(), S.end());
  array_pod_sort(Types.begin(), Types.end());

  OS << '[';
  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
    OS << ValueTypeByHwMode::getMVTName(Types[i]);
    if (i != e-1)
      OS << ' ';
  }
  OS << ']';
}

bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
  // The isSimple call is much quicker than hasDefault - check this first.
  bool IsSimple = isSimple();
  bool VTSIsSimple = VTS.isSimple();
  if (IsSimple && VTSIsSimple)
    return *begin() == *VTS.begin();

  // Speedup: We have a default if the set is simple.
  bool HaveDefault = IsSimple || hasDefault();
  bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
  if (HaveDefault != VTSHaveDefault)
    return false;

  SmallDenseSet<unsigned, 4> Modes;
  for (auto &I : *this)
    Modes.insert(I.first);
  for (const auto &I : VTS)
    Modes.insert(I.first);

  if (HaveDefault) {
    // Both sets have default mode.
    for (unsigned M : Modes) {
      if (get(M) != VTS.get(M))
        return false;
    }
  } else {
    // Neither set has default mode.
    for (unsigned M : Modes) {
      // If there is no default mode, an empty set is equivalent to not having
      // the corresponding mode.
      bool NoModeThis = !hasMode(M) || get(M).empty();
      bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
      if (NoModeThis != NoModeVTS)
        return false;
      if (!NoModeThis)
        if (get(M) != VTS.get(M))
          return false;
    }
  }

  return true;
}

namespace llvm {
  raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
    T.writeToStream(OS);
    return OS;
  }
}

LLVM_DUMP_METHOD
void TypeSetByHwMode::dump() const {
  dbgs() << *this << '\n';
}

bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
  bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
  auto Int = [&In](MVT T) -> bool { return !In.count(T); };

  if (OutP == InP)
    return berase_if(Out, Int);

  // Compute the intersection of scalars separately to account for only
  // one set containing iPTR.
  // The itersection of iPTR with a set of integer scalar types that does not
  // include iPTR will result in the most specific scalar type:
  // - iPTR is more specific than any set with two elements or more
  // - iPTR is less specific than any single integer scalar type.
  // For example
  // { iPTR } * { i32 }     -> { i32 }
  // { iPTR } * { i32 i64 } -> { iPTR }
  // and
  // { iPTR i32 } * { i32 }          -> { i32 }
  // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
  // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }

  // Compute the difference between the two sets in such a way that the
  // iPTR is in the set that is being subtracted. This is to see if there
  // are any extra scalars in the set without iPTR that are not in the
  // set containing iPTR. Then the iPTR could be considered a "wildcard"
  // matching these scalars. If there is only one such scalar, it would
  // replace the iPTR, if there are more, the iPTR would be retained.
  SetType Diff;
  if (InP) {
    Diff = Out;
    berase_if(Diff, [&In](MVT T) { return In.count(T); });
    // Pre-remove these elements and rely only on InP/OutP to determine
    // whether a change has been made.
    berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
  } else {
    Diff = In;
    berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
    Out.erase(MVT::iPTR);
  }

  // The actual intersection.
  bool Changed = berase_if(Out, Int);
  unsigned NumD = Diff.size();
  if (NumD == 0)
    return Changed;

  if (NumD == 1) {
    Out.insert(*Diff.begin());
    // This is a change only if Out was the one with iPTR (which is now
    // being replaced).
    Changed |= OutP;
  } else {
    // Multiple elements from Out are now replaced with iPTR.
    Out.insert(MVT::iPTR);
    Changed |= !OutP;
  }
  return Changed;
}

bool TypeSetByHwMode::validate() const {
#ifndef NDEBUG
  if (empty())
    return true;
  bool AllEmpty = true;
  for (const auto &I : *this)
    AllEmpty &= I.second.empty();
  return !AllEmpty;
#endif
  return true;
}

// --- TypeInfer

bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
                                const TypeSetByHwMode &In) {
  ValidateOnExit _1(Out, *this);
  In.validate();
  if (In.empty() || Out == In || TP.hasError())
    return false;
  if (Out.empty()) {
    Out = In;
    return true;
  }

  bool Changed = Out.constrain(In);
  if (Changed && Out.empty())
    TP.error("Type contradiction");

  return Changed;
}

bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
  ValidateOnExit _1(Out, *this);
  if (TP.hasError())
    return false;
  assert(!Out.empty() && "cannot pick from an empty set");

  bool Changed = false;
  for (auto &I : Out) {
    TypeSetByHwMode::SetType &S = I.second;
    if (S.size() <= 1)
      continue;
    MVT T = *S.begin(); // Pick the first element.
    S.clear();
    S.insert(T);
    Changed = true;
  }
  return Changed;
}

bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
  ValidateOnExit _1(Out, *this);
  if (TP.hasError())
    return false;
  if (!Out.empty())
    return Out.constrain(isIntegerOrPtr);

  return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
}

bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
  ValidateOnExit _1(Out, *this);
  if (TP.hasError())
    return false;
  if (!Out.empty())
    return Out.constrain(isFloatingPoint);

  return Out.assign_if(getLegalTypes(), isFloatingPoint);
}

bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
  ValidateOnExit _1(Out, *this);
  if (TP.hasError())
    return false;
  if (!Out.empty())
    return Out.constrain(isScalar);

  return Out.assign_if(getLegalTypes(), isScalar);
}

bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
  ValidateOnExit _1(Out, *this);
  if (TP.hasError())
    return false;
  if (!Out.empty())
    return Out.constrain(isVector);

  return Out.assign_if(getLegalTypes(), isVector);
}

bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
  ValidateOnExit _1(Out, *this);
  if (TP.hasError() || !Out.empty())
    return false;

  Out = getLegalTypes();
  return true;
}

template <typename Iter, typename Pred, typename Less>
static Iter min_if(Iter B, Iter E, Pred P, Less L) {
  if (B == E)
    return E;
  Iter Min = E;
  for (Iter I = B; I != E; ++I) {
    if (!P(*I))
      continue;
    if (Min == E || L(*I, *Min))
      Min = I;
  }
  return Min;
}

template <typename Iter, typename Pred, typename Less>
static Iter max_if(Iter B, Iter E, Pred P, Less L) {
  if (B == E)
    return E;
  Iter Max = E;
  for (Iter I = B; I != E; ++I) {
    if (!P(*I))
      continue;
    if (Max == E || L(*Max, *I))
      Max = I;
  }
  return Max;
}

/// Make sure that for each type in Small, there exists a larger type in Big.
bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
                                   TypeSetByHwMode &Big) {
  ValidateOnExit _1(Small, *this), _2(Big, *this);
  if (TP.hasError())
    return false;
  bool Changed = false;

  if (Small.empty())
    Changed |= EnforceAny(Small);
  if (Big.empty())
    Changed |= EnforceAny(Big);

  assert(Small.hasDefault() && Big.hasDefault());

  std::vector<unsigned> Modes = union_modes(Small, Big);

  // 1. Only allow integer or floating point types and make sure that
  //    both sides are both integer or both floating point.
  // 2. Make sure that either both sides have vector types, or neither
  //    of them does.
  for (unsigned M : Modes) {
    TypeSetByHwMode::SetType &S = Small.get(M);
    TypeSetByHwMode::SetType &B = Big.get(M);

    if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
      auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
      Changed |= berase_if(S, NotInt) |
                 berase_if(B, NotInt);
    } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
      auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
      Changed |= berase_if(S, NotFP) |
                 berase_if(B, NotFP);
    } else if (S.empty() || B.empty()) {
      Changed = !S.empty() || !B.empty();
      S.clear();
      B.clear();
    } else {
      TP.error("Incompatible types");
      return Changed;
    }

    if (none_of(S, isVector) || none_of(B, isVector)) {
      Changed |= berase_if(S, isVector) |
                 berase_if(B, isVector);
    }
  }

  auto LT = [](MVT A, MVT B) -> bool {
    return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
           (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
            A.getSizeInBits() < B.getSizeInBits());
  };
  auto LE = [&LT](MVT A, MVT B) -> bool {
    // This function is used when removing elements: when a vector is compared
    // to a non-vector, it should return false (to avoid removal).
    if (A.isVector() != B.isVector())
      return false;

    return LT(A, B) || (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
                        A.getSizeInBits() == B.getSizeInBits());
  };

  for (unsigned M : Modes) {
    TypeSetByHwMode::SetType &S = Small.get(M);
    TypeSetByHwMode::SetType &B = Big.get(M);
    // MinS = min scalar in Small, remove all scalars from Big that are
    // smaller-or-equal than MinS.
    auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
    if (MinS != S.end())
      Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS));

    // MaxS = max scalar in Big, remove all scalars from Small that are
    // larger than MaxS.
    auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
    if (MaxS != B.end())
      Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1));

    // MinV = min vector in Small, remove all vectors from Big that are
    // smaller-or-equal than MinV.
    auto MinV = min_if(S.begin(), S.end(), isVector, LT);
    if (MinV != S.end())
      Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV));

    // MaxV = max vector in Big, remove all vectors from Small that are
    // larger than MaxV.
    auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
    if (MaxV != B.end())
      Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1));
  }

  return Changed;
}

/// 1. Ensure that for each type T in Vec, T is a vector type, and that
///    for each type U in Elem, U is a scalar type.
/// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
///    type T in Vec, such that U is the element type of T.
bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
                                       TypeSetByHwMode &Elem) {
  ValidateOnExit _1(Vec, *this), _2(Elem, *this);
  if (TP.hasError())
    return false;
  bool Changed = false;

  if (Vec.empty())
    Changed |= EnforceVector(Vec);
  if (Elem.empty())
    Changed |= EnforceScalar(Elem);

  for (unsigned M : union_modes(Vec, Elem)) {
    TypeSetByHwMode::SetType &V = Vec.get(M);
    TypeSetByHwMode::SetType &E = Elem.get(M);

    Changed |= berase_if(V, isScalar);  // Scalar = !vector
    Changed |= berase_if(E, isVector);  // Vector = !scalar
    assert(!V.empty() && !E.empty());

    SmallSet<MVT,4> VT, ST;
    // Collect element types from the "vector" set.
    for (MVT T : V)
      VT.insert(T.getVectorElementType());
    // Collect scalar types from the "element" set.
    for (MVT T : E)
      ST.insert(T);

    // Remove from V all (vector) types whose element type is not in S.
    Changed |= berase_if(V, [&ST](MVT T) -> bool {
                              return !ST.count(T.getVectorElementType());
                            });
    // Remove from E all (scalar) types, for which there is no corresponding
    // type in V.
    Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
  }

  return Changed;
}

bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
                                       const ValueTypeByHwMode &VVT) {
  TypeSetByHwMode Tmp(VVT);
  ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
  return EnforceVectorEltTypeIs(Vec, Tmp);
}

/// Ensure that for each type T in Sub, T is a vector type, and there
/// exists a type U in Vec such that U is a vector type with the same
/// element type as T and at least as many elements as T.
bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
                                             TypeSetByHwMode &Sub) {
  ValidateOnExit _1(Vec, *this), _2(Sub, *this);
  if (TP.hasError())
    return false;

  /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
  auto IsSubVec = [](MVT B, MVT P) -> bool {
    if (!B.isVector() || !P.isVector())
      return false;
    // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
    // but until there are obvious use-cases for this, keep the
    // types separate.
    if (B.isScalableVector() != P.isScalableVector())
      return false;
    if (B.getVectorElementType() != P.getVectorElementType())
      return false;
    return B.getVectorNumElements() < P.getVectorNumElements();
  };

  /// Return true if S has no element (vector type) that T is a sub-vector of,
  /// i.e. has the same element type as T and more elements.
  auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
    for (const auto &I : S)
      if (IsSubVec(T, I))
        return false;
    return true;
  };

  /// Return true if S has no element (vector type) that T is a super-vector
  /// of, i.e. has the same element type as T and fewer elements.
  auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
    for (const auto &I : S)
      if (IsSubVec(I, T))
        return false;
    return true;
  };

  bool Changed = false;

  if (Vec.empty())
    Changed |= EnforceVector(Vec);
  if (Sub.empty())
    Changed |= EnforceVector(Sub);

  for (unsigned M : union_modes(Vec, Sub)) {
    TypeSetByHwMode::SetType &S = Sub.get(M);
    TypeSetByHwMode::SetType &V = Vec.get(M);

    Changed |= berase_if(S, isScalar);

    // Erase all types from S that are not sub-vectors of a type in V.
    Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));

    // Erase all types from V that are not super-vectors of a type in S.
    Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
  }

  return Changed;
}

/// 1. Ensure that V has a scalar type iff W has a scalar type.
/// 2. Ensure that for each vector type T in V, there exists a vector
///    type U in W, such that T and U have the same number of elements.
/// 3. Ensure that for each vector type U in W, there exists a vector
///    type T in V, such that T and U have the same number of elements
///    (reverse of 2).
bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
  ValidateOnExit _1(V, *this), _2(W, *this);
  if (TP.hasError())
    return false;

  bool Changed = false;
  if (V.empty())
    Changed |= EnforceAny(V);
  if (W.empty())
    Changed |= EnforceAny(W);

  // An actual vector type cannot have 0 elements, so we can treat scalars
  // as zero-length vectors. This way both vectors and scalars can be
  // processed identically.
  auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
    return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
  };

  for (unsigned M : union_modes(V, W)) {
    TypeSetByHwMode::SetType &VS = V.get(M);
    TypeSetByHwMode::SetType &WS = W.get(M);

    SmallSet<unsigned,2> VN, WN;
    for (MVT T : VS)
      VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
    for (MVT T : WS)
      WN.insert(T.isVector() ? T.getVectorNumElements() : 0);

    Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
    Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
  }
  return Changed;
}

/// 1. Ensure that for each type T in A, there exists a type U in B,
///    such that T and U have equal size in bits.
/// 2. Ensure that for each type U in B, there exists a type T in A
///    such that T and U have equal size in bits (reverse of 1).
bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
  ValidateOnExit _1(A, *this), _2(B, *this);
  if (TP.hasError())
    return false;
  bool Changed = false;
  if (A.empty())
    Changed |= EnforceAny(A);
  if (B.empty())
    Changed |= EnforceAny(B);

  auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
    return !Sizes.count(T.getSizeInBits());
  };

  for (unsigned M : union_modes(A, B)) {
    TypeSetByHwMode::SetType &AS = A.get(M);
    TypeSetByHwMode::SetType &BS = B.get(M);
    SmallSet<unsigned,2> AN, BN;

    for (MVT T : AS)
      AN.insert(T.getSizeInBits());
    for (MVT T : BS)
      BN.insert(T.getSizeInBits());

    Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
    Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
  }

  return Changed;
}

void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
  ValidateOnExit _1(VTS, *this);
  const TypeSetByHwMode &Legal = getLegalTypes();
  assert(Legal.isDefaultOnly() && "Default-mode only expected");
  const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode);

  for (auto &I : VTS)
    expandOverloads(I.second, LegalTypes);
}

void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
                                const TypeSetByHwMode::SetType &Legal) {
  std::set<MVT> Ovs;
  for (MVT T : Out) {
    if (!T.isOverloaded())
      continue;

    Ovs.insert(T);
    // MachineValueTypeSet allows iteration and erasing.
    Out.erase(T);
  }

  for (MVT Ov : Ovs) {
    switch (Ov.SimpleTy) {
      case MVT::iPTRAny:
        Out.insert(MVT::iPTR);
        return;
      case MVT::iAny:
        for (MVT T : MVT::integer_valuetypes())
          if (Legal.count(T))
            Out.insert(T);
        for (MVT T : MVT::integer_fixedlen_vector_valuetypes())
          if (Legal.count(T))
            Out.insert(T);
        for (MVT T : MVT::integer_scalable_vector_valuetypes())
          if (Legal.count(T))
            Out.insert(T);
        return;
      case MVT::fAny:
        for (MVT T : MVT::fp_valuetypes())
          if (Legal.count(T))
            Out.insert(T);
        for (MVT T : MVT::fp_fixedlen_vector_valuetypes())
          if (Legal.count(T))
            Out.insert(T);
        for (MVT T : MVT::fp_scalable_vector_valuetypes())
          if (Legal.count(T))
            Out.insert(T);
        return;
      case MVT::vAny:
        for (MVT T : MVT::vector_valuetypes())
          if (Legal.count(T))
            Out.insert(T);
        return;
      case MVT::Any:
        for (MVT T : MVT::all_valuetypes())
          if (Legal.count(T))
            Out.insert(T);
        return;
      default:
        break;
    }
  }
}

const TypeSetByHwMode &TypeInfer::getLegalTypes() {
  if (!LegalTypesCached) {
    TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
    // Stuff all types from all modes into the default mode.
    const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
    for (const auto &I : LTS)
      LegalTypes.insert(I.second);
    LegalTypesCached = true;
  }
  assert(LegalCache.isDefaultOnly() && "Default-mode only expected");
  return LegalCache;
}

#ifndef NDEBUG
TypeInfer::ValidateOnExit::~ValidateOnExit() {
  if (Infer.Validate && !VTS.validate()) {
    dbgs() << "Type set is empty for each HW mode:\n"
              "possible type contradiction in the pattern below "
              "(use -print-records with llvm-tblgen to see all "
              "expanded records).\n";
    Infer.TP.dump();
    llvm_unreachable(nullptr);
  }
}
#endif


//===----------------------------------------------------------------------===//
// ScopedName Implementation
//===----------------------------------------------------------------------===//

bool ScopedName::operator==(const ScopedName &o) const {
  return Scope == o.Scope && Identifier == o.Identifier;
}

bool ScopedName::operator!=(const ScopedName &o) const {
  return !(*this == o);
}


//===----------------------------------------------------------------------===//
// TreePredicateFn Implementation
//===----------------------------------------------------------------------===//

/// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
  assert(
      (!hasPredCode() || !hasImmCode()) &&
      ".td file corrupt: can't have a node predicate *and* an imm predicate");
}

bool TreePredicateFn::hasPredCode() const {
  return isLoad() || isStore() || isAtomic() ||
         !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
}

std::string TreePredicateFn::getPredCode() const {
  std::string Code = "";

  if (!isLoad() && !isStore() && !isAtomic()) {
    Record *MemoryVT = getMemoryVT();

    if (MemoryVT)
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "MemoryVT requires IsLoad or IsStore");
  }

  if (!isLoad() && !isStore()) {
    if (isUnindexed())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsUnindexed requires IsLoad or IsStore");

    Record *ScalarMemoryVT = getScalarMemoryVT();

    if (ScalarMemoryVT)
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "ScalarMemoryVT requires IsLoad or IsStore");
  }

  if (isLoad() + isStore() + isAtomic() > 1)
    PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                    "IsLoad, IsStore, and IsAtomic are mutually exclusive");

  if (isLoad()) {
    if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
        !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
        getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
        getMinAlignment() < 1)
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsLoad cannot be used by itself");
  } else {
    if (isNonExtLoad())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsNonExtLoad requires IsLoad");
    if (isAnyExtLoad())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsAnyExtLoad requires IsLoad");
    if (isSignExtLoad())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsSignExtLoad requires IsLoad");
    if (isZeroExtLoad())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsZeroExtLoad requires IsLoad");
  }

  if (isStore()) {
    if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
        getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
        getAddressSpaces() == nullptr && getMinAlignment() < 1)
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsStore cannot be used by itself");
  } else {
    if (isNonTruncStore())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsNonTruncStore requires IsStore");
    if (isTruncStore())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsTruncStore requires IsStore");
  }

  if (isAtomic()) {
    if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
        getAddressSpaces() == nullptr &&
        !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
        !isAtomicOrderingAcquireRelease() &&
        !isAtomicOrderingSequentiallyConsistent() &&
        !isAtomicOrderingAcquireOrStronger() &&
        !isAtomicOrderingReleaseOrStronger() &&
        !isAtomicOrderingWeakerThanAcquire() &&
        !isAtomicOrderingWeakerThanRelease())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsAtomic cannot be used by itself");
  } else {
    if (isAtomicOrderingMonotonic())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsAtomicOrderingMonotonic requires IsAtomic");
    if (isAtomicOrderingAcquire())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsAtomicOrderingAcquire requires IsAtomic");
    if (isAtomicOrderingRelease())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsAtomicOrderingRelease requires IsAtomic");
    if (isAtomicOrderingAcquireRelease())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsAtomicOrderingAcquireRelease requires IsAtomic");
    if (isAtomicOrderingSequentiallyConsistent())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
    if (isAtomicOrderingAcquireOrStronger())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
    if (isAtomicOrderingReleaseOrStronger())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
    if (isAtomicOrderingWeakerThanAcquire())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
  }

  if (isLoad() || isStore() || isAtomic()) {
    if (ListInit *AddressSpaces = getAddressSpaces()) {
      Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
        " if (";

      bool First = true;
      for (Init *Val : AddressSpaces->getValues()) {
        if (First)
          First = false;
        else
          Code += " && ";

        IntInit *IntVal = dyn_cast<IntInit>(Val);
        if (!IntVal) {
          PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                          "AddressSpaces element must be integer");
        }

        Code += "AddrSpace != " + utostr(IntVal->getValue());
      }

      Code += ")\nreturn false;\n";
    }

    int64_t MinAlign = getMinAlignment();
    if (MinAlign > 0) {
      Code += "if (cast<MemSDNode>(N)->getAlignment() < ";
      Code += utostr(MinAlign);
      Code += ")\nreturn false;\n";
    }

    Record *MemoryVT = getMemoryVT();

    if (MemoryVT)
      Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
               MemoryVT->getName() + ") return false;\n")
                  .str();
  }

  if (isAtomic() && isAtomicOrderingMonotonic())
    Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
            "AtomicOrdering::Monotonic) return false;\n";
  if (isAtomic() && isAtomicOrderingAcquire())
    Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
            "AtomicOrdering::Acquire) return false;\n";
  if (isAtomic() && isAtomicOrderingRelease())
    Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
            "AtomicOrdering::Release) return false;\n";
  if (isAtomic() && isAtomicOrderingAcquireRelease())
    Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
            "AtomicOrdering::AcquireRelease) return false;\n";
  if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
    Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
            "AtomicOrdering::SequentiallyConsistent) return false;\n";

  if (isAtomic() && isAtomicOrderingAcquireOrStronger())
    Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
            "return false;\n";
  if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
    Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
            "return false;\n";

  if (isAtomic() && isAtomicOrderingReleaseOrStronger())
    Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
            "return false;\n";
  if (isAtomic() && isAtomicOrderingWeakerThanRelease())
    Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
            "return false;\n";

  if (isLoad() || isStore()) {
    StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";

    if (isUnindexed())
      Code += ("if (cast<" + SDNodeName +
               ">(N)->getAddressingMode() != ISD::UNINDEXED) "
               "return false;\n")
                  .str();

    if (isLoad()) {
      if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
           isZeroExtLoad()) > 1)
        PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                        "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
                        "IsZeroExtLoad are mutually exclusive");
      if (isNonExtLoad())
        Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
                "ISD::NON_EXTLOAD) return false;\n";
      if (isAnyExtLoad())
        Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
                "return false;\n";
      if (isSignExtLoad())
        Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
                "return false;\n";
      if (isZeroExtLoad())
        Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
                "return false;\n";
    } else {
      if ((isNonTruncStore() + isTruncStore()) > 1)
        PrintFatalError(
            getOrigPatFragRecord()->getRecord()->getLoc(),
            "IsNonTruncStore, and IsTruncStore are mutually exclusive");
      if (isNonTruncStore())
        Code +=
            " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
      if (isTruncStore())
        Code +=
            " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
    }

    Record *ScalarMemoryVT = getScalarMemoryVT();

    if (ScalarMemoryVT)
      Code += ("if (cast<" + SDNodeName +
               ">(N)->getMemoryVT().getScalarType() != MVT::" +
               ScalarMemoryVT->getName() + ") return false;\n")
                  .str();
  }

  std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode");

  Code += PredicateCode;

  if (PredicateCode.empty() && !Code.empty())
    Code += "return true;\n";

  return Code;
}

bool TreePredicateFn::hasImmCode() const {
  return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
}

std::string TreePredicateFn::getImmCode() const {
  return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
}

bool TreePredicateFn::immCodeUsesAPInt() const {
  return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
}

bool TreePredicateFn::immCodeUsesAPFloat() const {
  bool Unset;
  // The return value will be false when IsAPFloat is unset.
  return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
                                                                   Unset);
}

bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
                                                   bool Value) const {
  bool Unset;
  bool Result =
      getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
  if (Unset)
    return false;
  return Result == Value;
}
bool TreePredicateFn::usesOperands() const {
  return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
}
bool TreePredicateFn::isLoad() const {
  return isPredefinedPredicateEqualTo("IsLoad", true);
}
bool TreePredicateFn::isStore() const {
  return isPredefinedPredicateEqualTo("IsStore", true);
}
bool TreePredicateFn::isAtomic() const {
  return isPredefinedPredicateEqualTo("IsAtomic", true);
}
bool TreePredicateFn::isUnindexed() const {
  return isPredefinedPredicateEqualTo("IsUnindexed", true);
}
bool TreePredicateFn::isNonExtLoad() const {
  return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
}
bool TreePredicateFn::isAnyExtLoad() const {
  return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
}
bool TreePredicateFn::isSignExtLoad() const {
  return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
}
bool TreePredicateFn::isZeroExtLoad() const {
  return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
}
bool TreePredicateFn::isNonTruncStore() const {
  return isPredefinedPredicateEqualTo("IsTruncStore", false);
}
bool TreePredicateFn::isTruncStore() const {
  return isPredefinedPredicateEqualTo("IsTruncStore", true);
}
bool TreePredicateFn::isAtomicOrderingMonotonic() const {
  return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
}
bool TreePredicateFn::isAtomicOrderingAcquire() const {
  return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
}
bool TreePredicateFn::isAtomicOrderingRelease() const {
  return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
}
bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
  return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
}
bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
  return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
                                      true);
}
bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
  return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
}
bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
  return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
}
bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
  return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
}
bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
  return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
}
Record *TreePredicateFn::getMemoryVT() const {
  Record *R = getOrigPatFragRecord()->getRecord();
  if (R->isValueUnset("MemoryVT"))
    return nullptr;
  return R->getValueAsDef("MemoryVT");
}

ListInit *TreePredicateFn::getAddressSpaces() const {
  Record *R = getOrigPatFragRecord()->getRecord();
  if (R->isValueUnset("AddressSpaces"))
    return nullptr;
  return R->getValueAsListInit("AddressSpaces");
}

int64_t TreePredicateFn::getMinAlignment() const {
  Record *R = getOrigPatFragRecord()->getRecord();
  if (R->isValueUnset("MinAlignment"))
    return 0;
  return R->getValueAsInt("MinAlignment");
}

Record *TreePredicateFn::getScalarMemoryVT() const {
  Record *R = getOrigPatFragRecord()->getRecord();
  if (R->isValueUnset("ScalarMemoryVT"))
    return nullptr;
  return R->getValueAsDef("ScalarMemoryVT");
}
bool TreePredicateFn::hasGISelPredicateCode() const {
  return !PatFragRec->getRecord()
              ->getValueAsString("GISelPredicateCode")
              .empty();
}
std::string TreePredicateFn::getGISelPredicateCode() const {
  return PatFragRec->getRecord()->getValueAsString("GISelPredicateCode");
}

StringRef TreePredicateFn::getImmType() const {
  if (immCodeUsesAPInt())
    return "const APInt &";
  if (immCodeUsesAPFloat())
    return "const APFloat &";
  return "int64_t";
}

StringRef TreePredicateFn::getImmTypeIdentifier() const {
  if (immCodeUsesAPInt())
    return "APInt";
  else if (immCodeUsesAPFloat())
    return "APFloat";
  return "I64";
}

/// isAlwaysTrue - Return true if this is a noop predicate.
bool TreePredicateFn::isAlwaysTrue() const {
  return !hasPredCode() && !hasImmCode();
}

/// Return the name to use in the generated code to reference this, this is
/// "Predicate_foo" if from a pattern fragment "foo".
std::string TreePredicateFn::getFnName() const {
  return "Predicate_" + PatFragRec->getRecord()->getName().str();
}

/// getCodeToRunOnSDNode - Return the code for the function body that
/// evaluates this predicate.  The argument is expected to be in "Node",
/// not N.  This handles casting and conversion to a concrete node type as
/// appropriate.
std::string TreePredicateFn::getCodeToRunOnSDNode() const {
  // Handle immediate predicates first.
  std::string ImmCode = getImmCode();
  if (!ImmCode.empty()) {
    if (isLoad())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsLoad cannot be used with ImmLeaf or its subclasses");
    if (isStore())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "IsStore cannot be used with ImmLeaf or its subclasses");
    if (isUnindexed())
      PrintFatalError(
          getOrigPatFragRecord()->getRecord()->getLoc(),
          "IsUnindexed cannot be used with ImmLeaf or its subclasses");
    if (isNonExtLoad())
      PrintFatalError(
          getOrigPatFragRecord()->getRecord()->getLoc(),
          "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
    if (isAnyExtLoad())
      PrintFatalError(
          getOrigPatFragRecord()->getRecord()->getLoc(),
          "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
    if (isSignExtLoad())
      PrintFatalError(
          getOrigPatFragRecord()->getRecord()->getLoc(),
          "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
    if (isZeroExtLoad())
      PrintFatalError(
          getOrigPatFragRecord()->getRecord()->getLoc(),
          "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
    if (isNonTruncStore())
      PrintFatalError(
          getOrigPatFragRecord()->getRecord()->getLoc(),
          "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
    if (isTruncStore())
      PrintFatalError(
          getOrigPatFragRecord()->getRecord()->getLoc(),
          "IsTruncStore cannot be used with ImmLeaf or its subclasses");
    if (getMemoryVT())
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
                      "MemoryVT cannot be used with ImmLeaf or its subclasses");
    if (getScalarMemoryVT())
      PrintFatalError(
          getOrigPatFragRecord()->getRecord()->getLoc(),
          "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");

    std::string Result = ("    " + getImmType() + " Imm = ").str();
    if (immCodeUsesAPFloat())
      Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
    else if (immCodeUsesAPInt())
      Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
    else
      Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
    return Result + ImmCode;
  }

  // Handle arbitrary node predicates.
  assert(hasPredCode() && "Don't have any predicate code!");
  StringRef ClassName;
  if (PatFragRec->getOnlyTree()->isLeaf())
    ClassName = "SDNode";
  else {
    Record *Op = PatFragRec->getOnlyTree()->getOperator();
    ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
  }
  std::string Result;
  if (ClassName == "SDNode")
    Result = "    SDNode *N = Node;\n";
  else
    Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";

  return (Twine(Result) + "    (void)N;\n" + getPredCode()).str();
}

//===----------------------------------------------------------------------===//
// PatternToMatch implementation
//

static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) {
  if (!P->isLeaf())
    return false;
  DefInit *DI = dyn_cast<DefInit>(P->getLeafValue());
  if (!DI)
    return false;

  Record *R = DI->getDef();
  return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
}

/// getPatternSize - Return the 'size' of this pattern.  We want to match large
/// patterns before small ones.  This is used to determine the size of a
/// pattern.
static unsigned getPatternSize(const TreePatternNode *P,
                               const CodeGenDAGPatterns &CGP) {
  unsigned Size = 3;  // The node itself.
  // If the root node is a ConstantSDNode, increases its size.
  // e.g. (set R32:$dst, 0).
  if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
    Size += 2;

  if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
    Size += AM->getComplexity();
    // We don't want to count any children twice, so return early.
    return Size;
  }

  // If this node has some predicate function that must match, it adds to the
  // complexity of this node.
  if (!P->getPredicateCalls().empty())
    ++Size;

  // Count children in the count if they are also nodes.
  for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
    const TreePatternNode *Child = P->getChild(i);
    if (!Child->isLeaf() && Child->getNumTypes()) {
      const TypeSetByHwMode &T0 = Child->getExtType(0);
      // At this point, all variable type sets should be simple, i.e. only
      // have a default mode.
      if (T0.getMachineValueType() != MVT::Other) {
        Size += getPatternSize(Child, CGP);
        continue;
      }
    }
    if (Child->isLeaf()) {
      if (isa<IntInit>(Child->getLeafValue()))
        Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
      else if (Child->getComplexPatternInfo(CGP))
        Size += getPatternSize(Child, CGP);
      else if (isImmAllOnesAllZerosMatch(Child))
        Size += 4; // Matches a build_vector(+3) and a predicate (+1).
      else if (!Child->getPredicateCalls().empty())
        ++Size;
    }
  }

  return Size;
}

/// Compute the complexity metric for the input pattern.  This roughly
/// corresponds to the number of nodes that are covered.
int PatternToMatch::
getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
  return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
}

/// getPredicateCheck - Return a single string containing all of this
/// pattern's predicates concatenated with "&&" operators.
///
std::string PatternToMatch::getPredicateCheck() const {
  SmallVector<const Predicate*,4> PredList;
  for (const Predicate &P : Predicates) {
    if (!P.getCondString().empty())
      PredList.push_back(&P);
  }
  llvm::sort(PredList, deref<std::less<>>());

  std::string Check;
  for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
    if (i != 0)
      Check += " && ";
    Check += '(' + PredList[i]->getCondString() + ')';
  }
  return Check;
}

//===----------------------------------------------------------------------===//
// SDTypeConstraint implementation
//

SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
  OperandNo = R->getValueAsInt("OperandNum");

  if (R->isSubClassOf("SDTCisVT")) {
    ConstraintType = SDTCisVT;
    VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
    for (const auto &P : VVT)
      if (P.second == MVT::isVoid)
        PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
  } else if (R->isSubClassOf("SDTCisPtrTy")) {
    ConstraintType = SDTCisPtrTy;
  } else if (R->isSubClassOf("SDTCisInt")) {
    ConstraintType = SDTCisInt;
  } else if (R->isSubClassOf("SDTCisFP")) {
    ConstraintType = SDTCisFP;
  } else if (R->isSubClassOf("SDTCisVec")) {
    ConstraintType = SDTCisVec;
  } else if (R->isSubClassOf("SDTCisSameAs")) {
    ConstraintType = SDTCisSameAs;
    x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
  } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
    ConstraintType = SDTCisVTSmallerThanOp;
    x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
      R->getValueAsInt("OtherOperandNum");
  } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
    ConstraintType = SDTCisOpSmallerThanOp;
    x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
      R->getValueAsInt("BigOperandNum");
  } else if (R->isSubClassOf("SDTCisEltOfVec")) {
    ConstraintType = SDTCisEltOfVec;
    x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
  } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
    ConstraintType = SDTCisSubVecOfVec;
    x.SDTCisSubVecOfVec_Info.OtherOperandNum =
      R->getValueAsInt("OtherOpNum");
  } else if (R->isSubClassOf("SDTCVecEltisVT")) {
    ConstraintType = SDTCVecEltisVT;
    VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
    for (const auto &P : VVT) {
      MVT T = P.second;
      if (T.isVector())
        PrintFatalError(R->getLoc(),
                        "Cannot use vector type as SDTCVecEltisVT");
      if (!T.isInteger() && !T.isFloatingPoint())
        PrintFatalError(R->getLoc(), "Must use integer or floating point type "
                                     "as SDTCVecEltisVT");
    }
  } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
    ConstraintType = SDTCisSameNumEltsAs;
    x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
      R->getValueAsInt("OtherOperandNum");
  } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
    ConstraintType = SDTCisSameSizeAs;
    x.SDTCisSameSizeAs_Info.OtherOperandNum =
      R->getValueAsInt("OtherOperandNum");
  } else {
    PrintFatalError(R->getLoc(),
                    "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
  }
}

/// getOperandNum - Return the node corresponding to operand #OpNo in tree
/// N, and the result number in ResNo.
static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
                                      const SDNodeInfo &NodeInfo,
                                      unsigned &ResNo) {
  unsigned NumResults = NodeInfo.getNumResults();
  if (OpNo < NumResults) {
    ResNo = OpNo;
    return N;
  }

  OpNo -= NumResults;

  if (OpNo >= N->getNumChildren()) {
    std::string S;
    raw_string_ostream OS(S);
    OS << "Invalid operand number in type constraint "
           << (OpNo+NumResults) << " ";
    N->print(OS);
    PrintFatalError(OS.str());
  }

  return N->getChild(OpNo);
}

/// ApplyTypeConstraint - Given a node in a pattern, apply this type
/// constraint to the nodes operands.  This returns true if it makes a
/// change, false otherwise.  If a type contradiction is found, flag an error.
bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
                                           const SDNodeInfo &NodeInfo,
                                           TreePattern &TP) const {
  if (TP.hasError())
    return false;

  unsigned ResNo = 0; // The result number being referenced.
  TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
  TypeInfer &TI = TP.getInfer();

  switch (ConstraintType) {
  case SDTCisVT:
    // Operand must be a particular type.
    return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
  case SDTCisPtrTy:
    // Operand must be same as target pointer type.
    return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
  case SDTCisInt:
    // Require it to be one of the legal integer VTs.
     return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
  case SDTCisFP:
    // Require it to be one of the legal fp VTs.
    return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
  case SDTCisVec:
    // Require it to be one of the legal vector VTs.
    return TI.EnforceVector(NodeToApply->getExtType(ResNo));
  case SDTCisSameAs: {
    unsigned OResNo = 0;
    TreePatternNode *OtherNode =
      getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
    return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
           OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
  }
  case SDTCisVTSmallerThanOp: {
    // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
    // have an integer type that is smaller than the VT.
    if (!NodeToApply->isLeaf() ||
        !isa<DefInit>(NodeToApply->getLeafValue()) ||
        !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
               ->isSubClassOf("ValueType")) {
      TP.error(N->getOperator()->getName() + " expects a VT operand!");
      return false;
    }
    DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
    auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
    TypeSetByHwMode TypeListTmp(VVT);

    unsigned OResNo = 0;
    TreePatternNode *OtherNode =
      getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
                    OResNo);

    return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
  }
  case SDTCisOpSmallerThanOp: {
    unsigned BResNo = 0;
    TreePatternNode *BigOperand =
      getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
                    BResNo);
    return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
                                 BigOperand->getExtType(BResNo));
  }
  case SDTCisEltOfVec: {
    unsigned VResNo = 0;
    TreePatternNode *VecOperand =
      getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
                    VResNo);
    // Filter vector types out of VecOperand that don't have the right element
    // type.
    return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
                                     NodeToApply->getExtType(ResNo));
  }
  case SDTCisSubVecOfVec: {
    unsigned VResNo = 0;
    TreePatternNode *BigVecOperand =
      getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
                    VResNo);

    // Filter vector types out of BigVecOperand that don't have the
    // right subvector type.
    return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
                                           NodeToApply->getExtType(ResNo));
  }
  case SDTCVecEltisVT: {
    return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
  }
  case SDTCisSameNumEltsAs: {
    unsigned OResNo = 0;
    TreePatternNode *OtherNode =
      getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
                    N, NodeInfo, OResNo);
    return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
                                 NodeToApply->getExtType(ResNo));
  }
  case SDTCisSameSizeAs: {
    unsigned OResNo = 0;
    TreePatternNode *OtherNode =
      getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
                    N, NodeInfo, OResNo);
    return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
                              NodeToApply->getExtType(ResNo));
  }
  }
  llvm_unreachable("Invalid ConstraintType!");
}

// Update the node type to match an instruction operand or result as specified
// in the ins or outs lists on the instruction definition. Return true if the
// type was actually changed.
bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
                                             Record *Operand,
                                             TreePattern &TP) {
  // The 'unknown' operand indicates that types should be inferred from the
  // context.
  if (Operand->isSubClassOf("unknown_class"))
    return false;

  // The Operand class specifies a type directly.
  if (Operand->isSubClassOf("Operand")) {
    Record *R = Operand->getValueAsDef("Type");
    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
    return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
  }

  // PointerLikeRegClass has a type that is determined at runtime.
  if (Operand->isSubClassOf("PointerLikeRegClass"))
    return UpdateNodeType(ResNo, MVT::iPTR, TP);

  // Both RegisterClass and RegisterOperand operands derive their types from a
  // register class def.
  Record *RC = nullptr;
  if (Operand->isSubClassOf("RegisterClass"))
    RC = Operand;
  else if (Operand->isSubClassOf("RegisterOperand"))
    RC = Operand->getValueAsDef("RegClass");

  assert(RC && "Unknown operand type");
  CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
  return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
}

bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
  for (unsigned i = 0, e = Types.size(); i != e; ++i)
    if (!TP.getInfer().isConcrete(Types[i], true))
      return true;
  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
    if (getChild(i)->ContainsUnresolvedType(TP))
      return true;
  return false;
}

bool TreePatternNode::hasProperTypeByHwMode() const {
  for (const TypeSetByHwMode &S : Types)
    if (!S.isDefaultOnly())
      return true;
  for (const TreePatternNodePtr &C : Children)
    if (C->hasProperTypeByHwMode())
      return true;
  return false;
}

bool TreePatternNode::hasPossibleType() const {
  for (const TypeSetByHwMode &S : Types)
    if (!S.isPossible())
      return false;
  for (const TreePatternNodePtr &C : Children)
    if (!C->hasPossibleType())
      return false;
  return true;
}

bool TreePatternNode::setDefaultMode(unsigned Mode) {
  for (TypeSetByHwMode &S : Types) {
    S.makeSimple(Mode);
    // Check if the selected mode had a type conflict.
    if (S.get(DefaultMode).empty())
      return false;
  }
  for (const TreePatternNodePtr &C : Children)
    if (!C->setDefaultMode(Mode))
      return false;
  return true;
}

//===----------------------------------------------------------------------===//
// SDNodeInfo implementation
//
SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
  EnumName    = R->getValueAsString("Opcode");
  SDClassName = R->getValueAsString("SDClass");
  Record *TypeProfile = R->getValueAsDef("TypeProfile");
  NumResults = TypeProfile->getValueAsInt("NumResults");
  NumOperands = TypeProfile->getValueAsInt("NumOperands");

  // Parse the properties.
  Properties = parseSDPatternOperatorProperties(R);

  // Parse the type constraints.
  std::vector<Record*> ConstraintList =
    TypeProfile->getValueAsListOfDefs("Constraints");
  for (Record *R : ConstraintList)
    TypeConstraints.emplace_back(R, CGH);
}

/// getKnownType - If the type constraints on this node imply a fixed type
/// (e.g. all stores return void, etc), then return it as an
/// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
  unsigned NumResults = getNumResults();
  assert(NumResults <= 1 &&
         "We only work with nodes with zero or one result so far!");
  assert(ResNo == 0 && "Only handles single result nodes so far");

  for (const SDTypeConstraint &Constraint : TypeConstraints) {
    // Make sure that this applies to the correct node result.
    if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
      continue;

    switch (Constraint.ConstraintType) {
    default: break;
    case SDTypeConstraint::SDTCisVT:
      if (Constraint.VVT.isSimple())
        return Constraint.VVT.getSimple().SimpleTy;
      break;
    case SDTypeConstraint::SDTCisPtrTy:
      return MVT::iPTR;
    }
  }
  return MVT::Other;
}

//===----------------------------------------------------------------------===//
// TreePatternNode implementation
//

static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
  if (Operator->getName() == "set" ||
      Operator->getName() == "implicit")
    return 0;  // All return nothing.

  if (Operator->isSubClassOf("Intrinsic"))
    return CDP.getIntrinsic(Operator).IS.RetVTs.size();

  if (Operator->isSubClassOf("SDNode"))
    return CDP.getSDNodeInfo(Operator).getNumResults();

  if (Operator->isSubClassOf("PatFrags")) {
    // If we've already parsed this pattern fragment, get it.  Otherwise, handle
    // the forward reference case where one pattern fragment references another
    // before it is processed.
    if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
      // The number of results of a fragment with alternative records is the
      // maximum number of results across all alternatives.
      unsigned NumResults = 0;
      for (auto T : PFRec->getTrees())
        NumResults = std::max(NumResults, T->getNumTypes());
      return NumResults;
    }

    ListInit *LI = Operator->getValueAsListInit("Fragments");
    assert(LI && "Invalid Fragment");
    unsigned NumResults = 0;
    for (Init *I : LI->getValues()) {
      Record *Op = nullptr;
      if (DagInit *Dag = dyn_cast<DagInit>(I))
        if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
          Op = DI->getDef();
      assert(Op && "Invalid Fragment");
      NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
    }
    return NumResults;
  }

  if (Operator->isSubClassOf("Instruction")) {
    CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);

    unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;

    // Subtract any defaulted outputs.
    for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
      Record *OperandNode = InstInfo.Operands[i].Rec;

      if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
          !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
        --NumDefsToAdd;
    }

    // Add on one implicit def if it has a resolvable type.
    if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
      ++NumDefsToAdd;
    return NumDefsToAdd;
  }

  if (Operator->isSubClassOf("SDNodeXForm"))
    return 1;  // FIXME: Generalize SDNodeXForm

  if (Operator->isSubClassOf("ValueType"))
    return 1;  // A type-cast of one result.

  if (Operator->isSubClassOf("ComplexPattern"))
    return 1;

  errs() << *Operator;
  PrintFatalError("Unhandled node in GetNumNodeResults");
}

void TreePatternNode::print(raw_ostream &OS) const {
  if (isLeaf())
    OS << *getLeafValue();
  else
    OS << '(' << getOperator()->getName();

  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
    OS << ':';
    getExtType(i).writeToStream(OS);
  }

  if (!isLeaf()) {
    if (getNumChildren() != 0) {
      OS << " ";
      getChild(0)->print(OS);
      for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
        OS << ", ";
        getChild(i)->print(OS);
      }
    }
    OS << ")";
  }

  for (const TreePredicateCall &Pred : PredicateCalls) {
    OS << "<<P:";
    if (Pred.Scope)
      OS << Pred.Scope << ":";
    OS << Pred.Fn.getFnName() << ">>";
  }
  if (TransformFn)
    OS << "<<X:" << TransformFn->getName() << ">>";
  if (!getName().empty())
    OS << ":$" << getName();

  for (const ScopedName &Name : NamesAsPredicateArg)
    OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
}
void TreePatternNode::dump() const {
  print(errs());
}

/// isIsomorphicTo - Return true if this node is recursively
/// isomorphic to the specified node.  For this comparison, the node's
/// entire state is considered. The assigned name is ignored, since
/// nodes with differing names are considered isomorphic. However, if
/// the assigned name is present in the dependent variable set, then
/// the assigned name is considered significant and the node is
/// isomorphic if the names match.
bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
                                     const MultipleUseVarSet &DepVars) const {
  if (N == this) return true;
  if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
      getPredicateCalls() != N->getPredicateCalls() ||
      getTransformFn() != N->getTransformFn())
    return false;

  if (isLeaf()) {
    if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
      if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
        return ((DI->getDef() == NDI->getDef())
                && (DepVars.find(getName()) == DepVars.end()
                    || getName() == N->getName()));
      }
    }
    return getLeafValue() == N->getLeafValue();
  }

  if (N->getOperator() != getOperator() ||
      N->getNumChildren() != getNumChildren()) return false;
  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
    if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
      return false;
  return true;
}

/// clone - Make a copy of this tree and all of its children.
///
TreePatternNodePtr TreePatternNode::clone() const {
  TreePatternNodePtr New;
  if (isLeaf()) {
    New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
  } else {
    std::vector<TreePatternNodePtr> CChildren;
    CChildren.reserve(Children.size());
    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
      CChildren.push_back(getChild(i)->clone());
    New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
                                            getNumTypes());
  }
  New->setName(getName());
  New->setNamesAsPredicateArg(getNamesAsPredicateArg());
  New->Types = Types;
  New->setPredicateCalls(getPredicateCalls());
  New->setTransformFn(getTransformFn());
  return New;
}

/// RemoveAllTypes - Recursively strip all the types of this tree.
void TreePatternNode::RemoveAllTypes() {
  // Reset to unknown type.
  std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
  if (isLeaf()) return;
  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
    getChild(i)->RemoveAllTypes();
}


/// SubstituteFormalArguments - Replace the formal arguments in this tree
/// with actual values specified by ArgMap.
void TreePatternNode::SubstituteFormalArguments(
    std::map<std::string, TreePatternNodePtr> &ArgMap) {
  if (isLeaf()) return;

  for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
    TreePatternNode *Child = getChild(i);
    if (Child->isLeaf()) {
      Init *Val = Child->getLeafValue();
      // Note that, when substituting into an output pattern, Val might be an
      // UnsetInit.
      if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
          cast<DefInit>(Val)->getDef()->getName() == "node")) {
        // We found a use of a formal argument, replace it with its value.
        TreePatternNodePtr NewChild = ArgMap[Child->getName()];
        assert(NewChild && "Couldn't find formal argument!");
        assert((Child->getPredicateCalls().empty() ||
                NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
               "Non-empty child predicate clobbered!");
        setChild(i, std::move(NewChild));
      }
    } else {
      getChild(i)->SubstituteFormalArguments(ArgMap);
    }
  }
}


/// InlinePatternFragments - If this pattern refers to any pattern
/// fragments, return the set of inlined versions (this can be more than
/// one if a PatFrags record has multiple alternatives).
void TreePatternNode::InlinePatternFragments(
  TreePatternNodePtr T, TreePattern &TP,
  std::vector<TreePatternNodePtr> &OutAlternatives) {

  if (TP.hasError())
    return;

  if (isLeaf()) {
    OutAlternatives.push_back(T);  // nothing to do.
    return;
  }

  Record *Op = getOperator();

  if (!Op->isSubClassOf("PatFrags")) {
    if (getNumChildren() == 0) {
      OutAlternatives.push_back(T);
      return;
    }

    // Recursively inline children nodes.
    std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
    ChildAlternatives.resize(getNumChildren());
    for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
      TreePatternNodePtr Child = getChildShared(i);
      Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
      // If there are no alternatives for any child, there are no
      // alternatives for this expression as whole.
      if (ChildAlternatives[i].empty())
        return;

      for (auto NewChild : ChildAlternatives[i])
        assert((Child->getPredicateCalls().empty() ||
                NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
               "Non-empty child predicate clobbered!");
    }

    // The end result is an all-pairs construction of the resultant pattern.
    std::vector<unsigned> Idxs;
    Idxs.resize(ChildAlternatives.size());
    bool NotDone;
    do {
      // Create the variant and add it to the output list.
      std::vector<TreePatternNodePtr> NewChildren;
      for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
        NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
      TreePatternNodePtr R = std::make_shared<TreePatternNode>(
          getOperator(), std::move(NewChildren), getNumTypes());

      // Copy over properties.
      R->setName(getName());
      R->setNamesAsPredicateArg(getNamesAsPredicateArg());
      R->setPredicateCalls(getPredicateCalls());
      R->setTransformFn(getTransformFn());
      for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
        R->setType(i, getExtType(i));
      for (unsigned i = 0, e = getNumResults(); i != e; ++i)
        R->setResultIndex(i, getResultIndex(i));

      // Register alternative.
      OutAlternatives.push_back(R);

      // Increment indices to the next permutation by incrementing the
      // indices from last index backward, e.g., generate the sequence
      // [0, 0], [0, 1], [1, 0], [1, 1].
      int IdxsIdx;
      for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
        if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
          Idxs[IdxsIdx] = 0;
        else
          break;
      }
      NotDone = (IdxsIdx >= 0);
    } while (NotDone);

    return;
  }

  // Otherwise, we found a reference to a fragment.  First, look up its
  // TreePattern record.
  TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);

  // Verify that we are passing the right number of operands.
  if (Frag->getNumArgs() != Children.size()) {
    TP.error("'" + Op->getName() + "' fragment requires " +
             Twine(Frag->getNumArgs()) + " operands!");
    return;
  }

  TreePredicateFn PredFn(Frag);
  unsigned Scope = 0;
  if (TreePredicateFn(Frag).usesOperands())
    Scope = TP.getDAGPatterns().allocateScope();

  // Compute the map of formal to actual arguments.
  std::map<std::string, TreePatternNodePtr> ArgMap;
  for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
    TreePatternNodePtr Child = getChildShared(i);
    if (Scope != 0) {
      Child = Child->clone();
      Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
    }
    ArgMap[Frag->getArgName(i)] = Child;
  }

  // Loop over all fragment alternatives.
  for (auto Alternative : Frag->getTrees()) {
    TreePatternNodePtr FragTree = Alternative->clone();

    if (!PredFn.isAlwaysTrue())
      FragTree->addPredicateCall(PredFn, Scope);

    // Resolve formal arguments to their actual value.
    if (Frag->getNumArgs())
      FragTree->SubstituteFormalArguments(ArgMap);

    // Transfer types.  Note that the resolved alternative may have fewer
    // (but not more) results than the PatFrags node.
    FragTree->setName(getName());
    for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
      FragTree->UpdateNodeType(i, getExtType(i), TP);

    // Transfer in the old predicates.
    for (const TreePredicateCall &Pred : getPredicateCalls())
      FragTree->addPredicateCall(Pred);

    // The fragment we inlined could have recursive inlining that is needed.  See
    // if there are any pattern fragments in it and inline them as needed.
    FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
  }
}

/// getImplicitType - Check to see if the specified record has an implicit
/// type which should be applied to it.  This will infer the type of register
/// references from the register file information, for example.
///
/// When Unnamed is set, return the type of a DAG operand with no name, such as
/// the F8RC register class argument in:
///
///   (COPY_TO_REGCLASS GPR:$src, F8RC)
///
/// When Unnamed is false, return the type of a named DAG operand such as the
/// GPR:$src operand above.
///
static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
                                       bool NotRegisters,
                                       bool Unnamed,
                                       TreePattern &TP) {
  CodeGenDAGPatterns &CDP = TP.getDAGPatterns();

  // Check to see if this is a register operand.
  if (R->isSubClassOf("RegisterOperand")) {
    assert(ResNo == 0 && "Regoperand ref only has one result!");
    if (NotRegisters)
      return TypeSetByHwMode(); // Unknown.
    Record *RegClass = R->getValueAsDef("RegClass");
    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
    return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
  }

  // Check to see if this is a register or a register class.
  if (R->isSubClassOf("RegisterClass")) {
    assert(ResNo == 0 && "Regclass ref only has one result!");
    // An unnamed register class represents itself as an i32 immediate, for
    // example on a COPY_TO_REGCLASS instruction.
    if (Unnamed)
      return TypeSetByHwMode(MVT::i32);

    // In a named operand, the register class provides the possible set of
    // types.
    if (NotRegisters)
      return TypeSetByHwMode(); // Unknown.
    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
    return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
  }

  if (R->isSubClassOf("PatFrags")) {
    assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
    // Pattern fragment types will be resolved when they are inlined.
    return TypeSetByHwMode(); // Unknown.
  }

  if (R->isSubClassOf("Register")) {
    assert(ResNo == 0 && "Registers only produce one result!");
    if (NotRegisters)
      return TypeSetByHwMode(); // Unknown.
    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
    return TypeSetByHwMode(T.getRegisterVTs(R));
  }

  if (R->isSubClassOf("SubRegIndex")) {
    assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
    return TypeSetByHwMode(MVT::i32);
  }

  if (R->isSubClassOf("ValueType")) {
    assert(ResNo == 0 && "This node only has one result!");
    // An unnamed VTSDNode represents itself as an MVT::Other immediate.
    //
    //   (sext_inreg GPR:$src, i16)
    //                         ~~~
    if (Unnamed)
      return TypeSetByHwMode(MVT::Other);
    // With a name, the ValueType simply provides the type of the named
    // variable.
    //
    //   (sext_inreg i32:$src, i16)
    //               ~~~~~~~~
    if (NotRegisters)
      return TypeSetByHwMode(); // Unknown.
    const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
    return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
  }

  if (R->isSubClassOf("CondCode")) {
    assert(ResNo == 0 && "This node only has one result!");
    // Using a CondCodeSDNode.
    return TypeSetByHwMode(MVT::Other);
  }

  if (R->isSubClassOf("ComplexPattern")) {
    assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
    if (NotRegisters)
      return TypeSetByHwMode(); // Unknown.
    return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
  }
  if (R->isSubClassOf("PointerLikeRegClass")) {
    assert(ResNo == 0 && "Regclass can only have one result!");
    TypeSetByHwMode VTS(MVT::iPTR);
    TP.getInfer().expandOverloads(VTS);
    return VTS;
  }

  if (R->getName() == "node" || R->getName() == "srcvalue" ||
      R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
      R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
    // Placeholder.
    return TypeSetByHwMode(); // Unknown.
  }

  if (R->isSubClassOf("Operand")) {
    const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
    Record *T = R->getValueAsDef("Type");
    return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
  }

  TP.error("Unknown node flavor used in pattern: " + R->getName());
  return TypeSetByHwMode(MVT::Other);
}


/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
/// CodeGenIntrinsic information for it, otherwise return a null pointer.
const CodeGenIntrinsic *TreePatternNode::
getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
  if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
      getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
      getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
    return nullptr;

  unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
  return &CDP.getIntrinsicInfo(IID);
}

/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
/// return the ComplexPattern information, otherwise return null.
const ComplexPattern *
TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
  Record *Rec;
  if (isLeaf()) {
    DefInit *DI = dyn_cast<DefInit>(getLeafValue());
    if (!DI)
      return nullptr;
    Rec = DI->getDef();
  } else
    Rec = getOperator();

  if (!Rec->isSubClassOf("ComplexPattern"))
    return nullptr;
  return &CGP.getComplexPattern(Rec);
}

unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
  // A ComplexPattern specifically declares how many results it fills in.
  if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
    return CP->getNumOperands();

  // If MIOperandInfo is specified, that gives the count.
  if (isLeaf()) {
    DefInit *DI = dyn_cast<DefInit>(getLeafValue());
    if (DI && DI->getDef()->isSubClassOf("Operand")) {
      DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
      if (MIOps->getNumArgs())
        return MIOps->getNumArgs();
    }
  }

  // Otherwise there is just one result.
  return 1;
}

/// NodeHasProperty - Return true if this node has the specified property.
bool TreePatternNode::NodeHasProperty(SDNP Property,
                                      const CodeGenDAGPatterns &CGP) const {
  if (isLeaf()) {
    if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
      return CP->hasProperty(Property);

    return false;
  }

  if (Property != SDNPHasChain) {
    // The chain proprety is already present on the different intrinsic node
    // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
    // on the intrinsic. Anything else is specific to the individual intrinsic.
    if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
      return Int->hasProperty(Property);
  }

  if (!Operator->isSubClassOf("SDPatternOperator"))
    return false;

  return CGP.getSDNodeInfo(Operator).hasProperty(Property);
}




/// TreeHasProperty - Return true if any node in this tree has the specified
/// property.
bool TreePatternNode::TreeHasProperty(SDNP Property,
                                      const CodeGenDAGPatterns &CGP) const {
  if (NodeHasProperty(Property, CGP))
    return true;
  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
    if (getChild(i)->TreeHasProperty(Property, CGP))
      return true;
  return false;
}

/// isCommutativeIntrinsic - Return true if the node corresponds to a
/// commutative intrinsic.
bool
TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
    return Int->isCommutative;
  return false;
}

static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
  if (!N->isLeaf())
    return N->getOperator()->isSubClassOf(Class);

  DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
  if (DI && DI->getDef()->isSubClassOf(Class))
    return true;

  return false;
}

static void emitTooManyOperandsError(TreePattern &TP,
                                     StringRef InstName,
                                     unsigned Expected,
                                     unsigned Actual) {
  TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
           " operands but expected only " + Twine(Expected) + "!");
}

static void emitTooFewOperandsError(TreePattern &TP,
                                    StringRef InstName,
                                    unsigned Actual) {
  TP.error("Instruction '" + InstName +
           "' expects more than the provided " + Twine(Actual) + " operands!");
}

/// ApplyTypeConstraints - Apply all of the type constraints relevant to
/// this node and its children in the tree.  This returns true if it makes a
/// change, false otherwise.  If a type contradiction is found, flag an error.
bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
  if (TP.hasError())
    return false;

  CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
  if (isLeaf()) {
    if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
      // If it's a regclass or something else known, include the type.
      bool MadeChange = false;
      for (unsigned i = 0, e = Types.size(); i != e; ++i)
        MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
                                                        NotRegisters,
                                                        !hasName(), TP), TP);
      return MadeChange;
    }

    if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
      assert(Types.size() == 1 && "Invalid IntInit");

      // Int inits are always integers. :)
      bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);

      if (!TP.getInfer().isConcrete(Types[0], false))
        return MadeChange;

      ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
      for (auto &P : VVT) {
        MVT::SimpleValueType VT = P.second.SimpleTy;
        if (VT == MVT::iPTR || VT == MVT::iPTRAny)
          continue;
        unsigned Size = MVT(VT).getSizeInBits();
        // Make sure that the value is representable for this type.
        if (Size >= 32)
          continue;
        // Check that the value doesn't use more bits than we have. It must
        // either be a sign- or zero-extended equivalent of the original.
        int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
        if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
            SignBitAndAbove == 1)
          continue;

        TP.error("Integer value '" + Twine(II->getValue()) +
                 "' is out of range for type '" + getEnumName(VT) + "'!");
        break;
      }
      return MadeChange;
    }

    return false;
  }

  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
    bool MadeChange = false;

    // Apply the result type to the node.
    unsigned NumRetVTs = Int->IS.RetVTs.size();
    unsigned NumParamVTs = Int->IS.ParamVTs.size();

    for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
      MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);

    if (getNumChildren() != NumParamVTs + 1) {
      TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
               " operands, not " + Twine(getNumChildren() - 1) + " operands!");
      return false;
    }

    // Apply type info to the intrinsic ID.
    MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);

    for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
      MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);

      MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
      assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
      MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
    }
    return MadeChange;
  }

  if (getOperator()->isSubClassOf("SDNode")) {
    const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());

    // Check that the number of operands is sane.  Negative operands -> varargs.
    if (NI.getNumOperands() >= 0 &&
        getNumChildren() != (unsigned)NI.getNumOperands()) {
      TP.error(getOperator()->getName() + " node requires exactly " +
               Twine(NI.getNumOperands()) + " operands!");
      return false;
    }

    bool MadeChange = false;
    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
    MadeChange |= NI.ApplyTypeConstraints(this, TP);
    return MadeChange;
  }

  if (getOperator()->isSubClassOf("Instruction")) {
    const DAGInstruction &Inst = CDP.getInstruction(getOperator());
    CodeGenInstruction &InstInfo =
      CDP.getTargetInfo().getInstruction(getOperator());

    bool MadeChange = false;

    // Apply the result types to the node, these come from the things in the
    // (outs) list of the instruction.
    unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
                                        Inst.getNumResults());
    for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
      MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);

    // If the instruction has implicit defs, we apply the first one as a result.
    // FIXME: This sucks, it should apply all implicit defs.
    if (!InstInfo.ImplicitDefs.empty()) {
      unsigned ResNo = NumResultsToAdd;

      // FIXME: Generalize to multiple possible types and multiple possible
      // ImplicitDefs.
      MVT::SimpleValueType VT =
        InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());

      if (VT != MVT::Other)
        MadeChange |= UpdateNodeType(ResNo, VT, TP);
    }

    // If this is an INSERT_SUBREG, constrain the source and destination VTs to
    // be the same.
    if (getOperator()->getName() == "INSERT_SUBREG") {
      assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
      MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
      MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
    } else if (getOperator()->getName() == "REG_SEQUENCE") {
      // We need to do extra, custom typechecking for REG_SEQUENCE since it is
      // variadic.

      unsigned NChild = getNumChildren();
      if (NChild < 3) {
        TP.error("REG_SEQUENCE requires at least 3 operands!");
        return false;
      }

      if (NChild % 2 == 0) {
        TP.error("REG_SEQUENCE requires an odd number of operands!");
        return false;
      }

      if (!isOperandClass(getChild(0), "RegisterClass")) {
        TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
        return false;
      }

      for (unsigned I = 1; I < NChild; I += 2) {
        TreePatternNode *SubIdxChild = getChild(I + 1);
        if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
          TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
                   Twine(I + 1) + "!");
          return false;
        }
      }
    }

    // If one or more operands with a default value appear at the end of the
    // formal operand list for an instruction, we allow them to be overridden
    // by optional operands provided in the pattern.
    //
    // But if an operand B without a default appears at any point after an
    // operand A with a default, then we don't allow A to be overridden,
    // because there would be no way to specify whether the next operand in
    // the pattern was intended to override A or skip it.
    unsigned NonOverridableOperands = Inst.getNumOperands();
    while (NonOverridableOperands > 0 &&
           CDP.operandHasDefault(Inst.getOperand(NonOverridableOperands-1)))
      --NonOverridableOperands;

    unsigned ChildNo = 0;
    for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
      Record *OperandNode = Inst.getOperand(i);

      // If the operand has a default value, do we use it? We must use the
      // default if we've run out of children of the pattern DAG to consume,
      // or if the operand is followed by a non-defaulted one.
      if (CDP.operandHasDefault(OperandNode) &&
          (i < NonOverridableOperands || ChildNo >= getNumChildren()))
        continue;

      // If we have run out of child nodes and there _isn't_ a default
      // value we can use for the next operand, give an error.
      if (ChildNo >= getNumChildren()) {
        emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
        return false;
      }

      TreePatternNode *Child = getChild(ChildNo++);
      unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.

      // If the operand has sub-operands, they may be provided by distinct
      // child patterns, so attempt to match each sub-operand separately.
      if (OperandNode->isSubClassOf("Operand")) {
        DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
        if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
          // But don't do that if the whole operand is being provided by
          // a single ComplexPattern-related Operand.

          if (Child->getNumMIResults(CDP) < NumArgs) {
            // Match first sub-operand against the child we already have.
            Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
            MadeChange |=
              Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);

            // And the remaining sub-operands against subsequent children.
            for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
              if (ChildNo >= getNumChildren()) {
                emitTooFewOperandsError(TP, getOperator()->getName(),
                                        getNumChildren());
                return false;
              }
              Child = getChild(ChildNo++);

              SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
              MadeChange |=
                Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
            }
            continue;
          }
        }
      }

      // If we didn't match by pieces above, attempt to match the whole
      // operand now.
      MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
    }

    if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
      emitTooManyOperandsError(TP, getOperator()->getName(),
                               ChildNo, getNumChildren());
      return false;
    }

    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
    return MadeChange;
  }

  if (getOperator()->isSubClassOf("ComplexPattern")) {
    bool MadeChange = false;

    for (unsigned i = 0; i < getNumChildren(); ++i)
      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);

    return MadeChange;
  }

  assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");

  // Node transforms always take one operand.
  if (getNumChildren() != 1) {
    TP.error("Node transform '" + getOperator()->getName() +
             "' requires one operand!");
    return false;
  }

  bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
  return MadeChange;
}

/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
/// RHS of a commutative operation, not the on LHS.
static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
  if (!N->isLeaf() && N->getOperator()->getName() == "imm")
    return true;
  if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
    return true;
  return false;
}


/// canPatternMatch - If it is impossible for this pattern to match on this
/// target, fill in Reason and return false.  Otherwise, return true.  This is
/// used as a sanity check for .td files (to prevent people from writing stuff
/// that can never possibly work), and to prevent the pattern permuter from
/// generating stuff that is useless.
bool TreePatternNode::canPatternMatch(std::string &Reason,
                                      const CodeGenDAGPatterns &CDP) {
  if (isLeaf()) return true;

  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
    if (!getChild(i)->canPatternMatch(Reason, CDP))
      return false;

  // If this is an intrinsic, handle cases that would make it not match.  For
  // example, if an operand is required to be an immediate.
  if (getOperator()->isSubClassOf("Intrinsic")) {
    // TODO:
    return true;
  }

  if (getOperator()->isSubClassOf("ComplexPattern"))
    return true;

  // If this node is a commutative operator, check that the LHS isn't an
  // immediate.
  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
  bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
    // Scan all of the operands of the node and make sure that only the last one
    // is a constant node, unless the RHS also is.
    if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
      unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
      for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
        if (OnlyOnRHSOfCommutative(getChild(i))) {
          Reason="Immediate value must be on the RHS of commutative operators!";
          return false;
        }
    }
  }

  return true;
}

//===----------------------------------------------------------------------===//
// TreePattern implementation
//

TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
                         isInputPattern(isInput), HasError(false),
                         Infer(*this) {
  for (Init *I : RawPat->getValues())
    Trees.push_back(ParseTreePattern(I, ""));
}

TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
                         isInputPattern(isInput), HasError(false),
                         Infer(*this) {
  Trees.push_back(ParseTreePattern(Pat, ""));
}

TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
                         CodeGenDAGPatterns &cdp)
    : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
      Infer(*this) {
  Trees.push_back(Pat);
}

void TreePattern::error(const Twine &Msg) {
  if (HasError)
    return;
  dump();
  PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
  HasError = true;
}

void TreePattern::ComputeNamedNodes() {
  for (TreePatternNodePtr &Tree : Trees)
    ComputeNamedNodes(Tree.get());
}

void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
  if (!N->getName().empty())
    NamedNodes[N->getName()].push_back(N);

  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
    ComputeNamedNodes(N->getChild(i));
}

TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
                                                 StringRef OpName) {
  if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
    Record *R = DI->getDef();

    // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
    // TreePatternNode of its own.  For example:
    ///   (foo GPR, imm) -> (foo GPR, (imm))
    if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
      return ParseTreePattern(
        DagInit::get(DI, nullptr,
                     std::vector<std::pair<Init*, StringInit*> >()),
        OpName);

    // Input argument?
    TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
    if (R->getName() == "node" && !OpName.empty()) {
      if (OpName.empty())
        error("'node' argument requires a name to match with operand list");
      Args.push_back(OpName);
    }

    Res->setName(OpName);
    return Res;
  }

  // ?:$name or just $name.
  if (isa<UnsetInit>(TheInit)) {
    if (OpName.empty())
      error("'?' argument requires a name to match with operand list");
    TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
    Args.push_back(OpName);
    Res->setName(OpName);
    return Res;
  }

  if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
    if (!OpName.empty())
      error("Constant int or bit argument should not have a name!");
    if (isa<BitInit>(TheInit))
      TheInit = TheInit->convertInitializerTo(IntRecTy::get());
    return std::make_shared<TreePatternNode>(TheInit, 1);
  }

  if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
    // Turn this into an IntInit.
    Init *II = BI->convertInitializerTo(IntRecTy::get());
    if (!II || !isa<IntInit>(II))
      error("Bits value must be constants!");
    return ParseTreePattern(II, OpName);
  }

  DagInit *Dag = dyn_cast<DagInit>(TheInit);
  if (!Dag) {
    TheInit->print(errs());
    error("Pattern has unexpected init kind!");
  }
  DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
  if (!OpDef) error("Pattern has unexpected operator type!");
  Record *Operator = OpDef->getDef();

  if (Operator->isSubClassOf("ValueType")) {
    // If the operator is a ValueType, then this must be "type cast" of a leaf
    // node.
    if (Dag->getNumArgs() != 1)
      error("Type cast only takes one operand!");

    TreePatternNodePtr New =
        ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));

    // Apply the type cast.
    assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
    const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
    New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);

    if (!OpName.empty())
      error("ValueType cast should not have a name!");
    return New;
  }

  // Verify that this is something that makes sense for an operator.
  if (!Operator->isSubClassOf("PatFrags") &&
      !Operator->isSubClassOf("SDNode") &&
      !Operator->isSubClassOf("Instruction") &&
      !Operator->isSubClassOf("SDNodeXForm") &&
      !Operator->isSubClassOf("Intrinsic") &&
      !Operator->isSubClassOf("ComplexPattern") &&
      Operator->getName() != "set" &&
      Operator->getName() != "implicit")
    error("Unrecognized node '" + Operator->getName() + "'!");

  //  Check to see if this is something that is illegal in an input pattern.
  if (isInputPattern) {
    if (Operator->isSubClassOf("Instruction") ||
        Operator->isSubClassOf("SDNodeXForm"))
      error("Cannot use '" + Operator->getName() + "' in an input pattern!");
  } else {
    if (Operator->isSubClassOf("Intrinsic"))
      error("Cannot use '" + Operator->getName() + "' in an output pattern!");

    if (Operator->isSubClassOf("SDNode") &&
        Operator->getName() != "imm" &&
        Operator->getName() != "timm" &&
        Operator->getName() != "fpimm" &&
        Operator->getName() != "tglobaltlsaddr" &&
        Operator->getName() != "tconstpool" &&
        Operator->getName() != "tjumptable" &&
        Operator->getName() != "tframeindex" &&
        Operator->getName() != "texternalsym" &&
        Operator->getName() != "tblockaddress" &&
        Operator->getName() != "tglobaladdr" &&
        Operator->getName() != "bb" &&
        Operator->getName() != "vt" &&
        Operator->getName() != "mcsym")
      error("Cannot use '" + Operator->getName() + "' in an output pattern!");
  }

  std::vector<TreePatternNodePtr> Children;

  // Parse all the operands.
  for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
    Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));

  // Get the actual number of results before Operator is converted to an intrinsic
  // node (which is hard-coded to have either zero or one result).
  unsigned NumResults = GetNumNodeResults(Operator, CDP);

  // If the operator is an intrinsic, then this is just syntactic sugar for
  // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
  // convert the intrinsic name to a number.
  if (Operator->isSubClassOf("Intrinsic")) {
    const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
    unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;

    // If this intrinsic returns void, it must have side-effects and thus a
    // chain.
    if (Int.IS.RetVTs.empty())
      Operator = getDAGPatterns().get_intrinsic_void_sdnode();
    else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects)
      // Has side-effects, requires chain.
      Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
    else // Otherwise, no chain.
      Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();

    Children.insert(Children.begin(),
                    std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
  }

  if (Operator->isSubClassOf("ComplexPattern")) {
    for (unsigned i = 0; i < Children.size(); ++i) {
      TreePatternNodePtr Child = Children[i];

      if (Child->getName().empty())
        error("All arguments to a ComplexPattern must be named");

      // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
      // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
      // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
      auto OperandId = std::make_pair(Operator, i);
      auto PrevOp = ComplexPatternOperands.find(Child->getName());
      if (PrevOp != ComplexPatternOperands.end()) {
        if (PrevOp->getValue() != OperandId)
          error("All ComplexPattern operands must appear consistently: "
                "in the same order in just one ComplexPattern instance.");
      } else
        ComplexPatternOperands[Child->getName()] = OperandId;
    }
  }

  TreePatternNodePtr Result =
      std::make_shared<TreePatternNode>(Operator, std::move(Children),
                                        NumResults);
  Result->setName(OpName);

  if (Dag->getName()) {
    assert(Result->getName().empty());
    Result->setName(Dag->getNameStr());
  }
  return Result;
}

/// SimplifyTree - See if we can simplify this tree to eliminate something that
/// will never match in favor of something obvious that will.  This is here
/// strictly as a convenience to target authors because it allows them to write
/// more type generic things and have useless type casts fold away.
///
/// This returns true if any change is made.
static bool SimplifyTree(TreePatternNodePtr &N) {
  if (N->isLeaf())
    return false;

  // If we have a bitconvert with a resolved type and if the source and
  // destination types are the same, then the bitconvert is useless, remove it.
  if (N->getOperator()->getName() == "bitconvert" &&
      N->getExtType(0).isValueTypeByHwMode(false) &&
      N->getExtType(0) == N->getChild(0)->getExtType(0) &&
      N->getName().empty()) {
    N = N->getChildShared(0);
    SimplifyTree(N);
    return true;
  }

  // Walk all children.
  bool MadeChange = false;
  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
    TreePatternNodePtr Child = N->getChildShared(i);
    MadeChange |= SimplifyTree(Child);
    N->setChild(i, std::move(Child));
  }
  return MadeChange;
}



/// InferAllTypes - Infer/propagate as many types throughout the expression
/// patterns as possible.  Return true if all types are inferred, false
/// otherwise.  Flags an error if a type contradiction is found.
bool TreePattern::
InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
  if (NamedNodes.empty())
    ComputeNamedNodes();

  bool MadeChange = true;
  while (MadeChange) {
    MadeChange = false;
    for (TreePatternNodePtr &Tree : Trees) {
      MadeChange |= Tree->ApplyTypeConstraints(*this, false);
      MadeChange |= SimplifyTree(Tree);
    }

    // If there are constraints on our named nodes, apply them.
    for (auto &Entry : NamedNodes) {
      SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;

      // If we have input named node types, propagate their types to the named
      // values here.
      if (InNamedTypes) {
        if (!InNamedTypes->count(Entry.getKey())) {
          error("Node '" + std::string(Entry.getKey()) +
                "' in output pattern but not input pattern");
          return true;
        }

        const SmallVectorImpl<TreePatternNode*> &InNodes =
          InNamedTypes->find(Entry.getKey())->second;

        // The input types should be fully resolved by now.
        for (TreePatternNode *Node : Nodes) {
          // If this node is a register class, and it is the root of the pattern
          // then we're mapping something onto an input register.  We allow
          // changing the type of the input register in this case.  This allows
          // us to match things like:
          //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
          if (Node == Trees[0].get() && Node->isLeaf()) {
            DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
            if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
                       DI->getDef()->isSubClassOf("RegisterOperand")))
              continue;
          }

          assert(Node->getNumTypes() == 1 &&
                 InNodes[0]->getNumTypes() == 1 &&
                 "FIXME: cannot name multiple result nodes yet");
          MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
                                             *this);
        }
      }

      // If there are multiple nodes with the same name, they must all have the
      // same type.
      if (Entry.second.size() > 1) {
        for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
          TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
          assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
                 "FIXME: cannot name multiple result nodes yet");

          MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
          MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
        }
      }
    }
  }

  bool HasUnresolvedTypes = false;
  for (const TreePatternNodePtr &Tree : Trees)
    HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
  return !HasUnresolvedTypes;
}

void TreePattern::print(raw_ostream &OS) const {
  OS << getRecord()->getName();
  if (!Args.empty()) {
    OS << "(" << Args[0];
    for (unsigned i = 1, e = Args.size(); i != e; ++i)
      OS << ", " << Args[i];
    OS << ")";
  }
  OS << ": ";

  if (Trees.size() > 1)
    OS << "[\n";
  for (const TreePatternNodePtr &Tree : Trees) {
    OS << "\t";
    Tree->print(OS);
    OS << "\n";
  }

  if (Trees.size() > 1)
    OS << "]\n";
}

void TreePattern::dump() const { print(errs()); }

//===----------------------------------------------------------------------===//
// CodeGenDAGPatterns implementation
//

CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
                                       PatternRewriterFn PatternRewriter)
    : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
      PatternRewriter(PatternRewriter) {

  Intrinsics = CodeGenIntrinsicTable(Records, false);
  TgtIntrinsics = CodeGenIntrinsicTable(Records, true);
  ParseNodeInfo();
  ParseNodeTransforms();
  ParseComplexPatterns();
  ParsePatternFragments();
  ParseDefaultOperands();
  ParseInstructions();
  ParsePatternFragments(/*OutFrags*/true);
  ParsePatterns();

  // Break patterns with parameterized types into a series of patterns,
  // where each one has a fixed type and is predicated on the conditions
  // of the associated HW mode.
  ExpandHwModeBasedTypes();

  // Generate variants.  For example, commutative patterns can match
  // multiple ways.  Add them to PatternsToMatch as well.
  GenerateVariants();

  // Infer instruction flags.  For example, we can detect loads,
  // stores, and side effects in many cases by examining an
  // instruction's pattern.
  InferInstructionFlags();

  // Verify that instruction flags match the patterns.
  VerifyInstructionFlags();
}

Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
  Record *N = Records.getDef(Name);
  if (!N || !N->isSubClassOf("SDNode"))
    PrintFatalError("Error getting SDNode '" + Name + "'!");

  return N;
}

// Parse all of the SDNode definitions for the target, populating SDNodes.
void CodeGenDAGPatterns::ParseNodeInfo() {
  std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
  const CodeGenHwModes &CGH = getTargetInfo().getHwModes();

  while (!Nodes.empty()) {
    Record *R = Nodes.back();
    SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
    Nodes.pop_back();
  }

  // Get the builtin intrinsic nodes.
  intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
  intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
  intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
}

/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
/// map, and emit them to the file as functions.
void CodeGenDAGPatterns::ParseNodeTransforms() {
  std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
  while (!Xforms.empty()) {
    Record *XFormNode = Xforms.back();
    Record *SDNode = XFormNode->getValueAsDef("Opcode");
    StringRef Code = XFormNode->getValueAsString("XFormFunction");
    SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));

    Xforms.pop_back();
  }
}

void CodeGenDAGPatterns::ParseComplexPatterns() {
  std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
  while (!AMs.empty()) {
    ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
    AMs.pop_back();
  }
}


/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
/// file, building up the PatternFragments map.  After we've collected them all,
/// inline fragments together as necessary, so that there are no references left
/// inside a pattern fragment to a pattern fragment.
///
void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
  std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");

  // First step, parse all of the fragments.
  for (Record *Frag : Fragments) {
    if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
      continue;

    ListInit *LI = Frag->getValueAsListInit("Fragments");
    TreePattern *P =
        (PatternFragments[Frag] = std::make_unique<TreePattern>(
             Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
             *this)).get();

    // Validate the argument list, converting it to set, to discard duplicates.
    std::vector<std::string> &Args = P->getArgList();
    // Copy the args so we can take StringRefs to them.
    auto ArgsCopy = Args;
    SmallDenseSet<StringRef, 4> OperandsSet;
    OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());

    if (OperandsSet.count(""))
      P->error("Cannot have unnamed 'node' values in pattern fragment!");

    // Parse the operands list.
    DagInit *OpsList = Frag->getValueAsDag("Operands");
    DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
    // Special cases: ops == outs == ins. Different names are used to
    // improve readability.
    if (!OpsOp ||
        (OpsOp->getDef()->getName() != "ops" &&
         OpsOp->getDef()->getName() != "outs" &&
         OpsOp->getDef()->getName() != "ins"))
      P->error("Operands list should start with '(ops ... '!");

    // Copy over the arguments.
    Args.clear();
    for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
      if (!isa<DefInit>(OpsList->getArg(j)) ||
          cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
        P->error("Operands list should all be 'node' values.");
      if (!OpsList->getArgName(j))
        P->error("Operands list should have names for each operand!");
      StringRef ArgNameStr = OpsList->getArgNameStr(j);
      if (!OperandsSet.count(ArgNameStr))
        P->error("'" + ArgNameStr +
                 "' does not occur in pattern or was multiply specified!");
      OperandsSet.erase(ArgNameStr);
      Args.push_back(ArgNameStr);
    }

    if (!OperandsSet.empty())
      P->error("Operands list does not contain an entry for operand '" +
               *OperandsSet.begin() + "'!");

    // If there is a node transformation corresponding to this, keep track of
    // it.
    Record *Transform = Frag->getValueAsDef("OperandTransform");
    if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
      for (auto T : P->getTrees())
        T->setTransformFn(Transform);
  }

  // Now that we've parsed all of the tree fragments, do a closure on them so
  // that there are not references to PatFrags left inside of them.
  for (Record *Frag : Fragments) {
    if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
      continue;

    TreePattern &ThePat = *PatternFragments[Frag];
    ThePat.InlinePatternFragments();

    // Infer as many types as possible.  Don't worry about it if we don't infer
    // all of them, some may depend on the inputs of the pattern.  Also, don't
    // validate type sets; validation may cause spurious failures e.g. if a
    // fragment needs floating-point types but the current target does not have
    // any (this is only an error if that fragment is ever used!).
    {
      TypeInfer::SuppressValidation SV(ThePat.getInfer());
      ThePat.InferAllTypes();
      ThePat.resetError();
    }

    // If debugging, print out the pattern fragment result.
    LLVM_DEBUG(ThePat.dump());
  }
}

void CodeGenDAGPatterns::ParseDefaultOperands() {
  std::vector<Record*> DefaultOps;
  DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");

  // Find some SDNode.
  assert(!SDNodes.empty() && "No SDNodes parsed?");
  Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);

  for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
    DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");

    // Clone the DefaultInfo dag node, changing the operator from 'ops' to
    // SomeSDnode so that we can parse this.
    std::vector<std::pair<Init*, StringInit*> > Ops;
    for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
      Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
                                   DefaultInfo->getArgName(op)));
    DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);

    // Create a TreePattern to parse this.
    TreePattern P(DefaultOps[i], DI, false, *this);
    assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");

    // Copy the operands over into a DAGDefaultOperand.
    DAGDefaultOperand DefaultOpInfo;

    const TreePatternNodePtr &T = P.getTree(0);
    for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
      TreePatternNodePtr TPN = T->getChildShared(op);
      while (TPN->ApplyTypeConstraints(P, false))
        /* Resolve all types */;

      if (TPN->ContainsUnresolvedType(P)) {
        PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
                        DefaultOps[i]->getName() +
                        "' doesn't have a concrete type!");
      }
      DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
    }

    // Insert it into the DefaultOperands map so we can find it later.
    DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
  }
}

/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
/// instruction input.  Return true if this is a real use.
static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
                      std::map<std::string, TreePatternNodePtr> &InstInputs) {
  // No name -> not interesting.
  if (Pat->getName().empty()) {
    if (Pat->isLeaf()) {
      DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
      if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
                 DI->getDef()->isSubClassOf("RegisterOperand")))
        I.error("Input " + DI->getDef()->getName() + " must be named!");
    }
    return false;
  }

  Record *Rec;
  if (Pat->isLeaf()) {
    DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
    if (!DI)
      I.error("Input $" + Pat->getName() + " must be an identifier!");
    Rec = DI->getDef();
  } else {
    Rec = Pat->getOperator();
  }

  // SRCVALUE nodes are ignored.
  if (Rec->getName() == "srcvalue")
    return false;

  TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
  if (!Slot) {
    Slot = Pat;
    return true;
  }
  Record *SlotRec;
  if (Slot->isLeaf()) {
    SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
  } else {
    assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
    SlotRec = Slot->getOperator();
  }

  // Ensure that the inputs agree if we've already seen this input.
  if (Rec != SlotRec)
    I.error("All $" + Pat->getName() + " inputs must agree with each other");
  // Ensure that the types can agree as well.
  Slot->UpdateNodeType(0, Pat->getExtType(0), I);
  Pat->UpdateNodeType(0, Slot->getExtType(0), I);
  if (Slot->getExtTypes() != Pat->getExtTypes())
    I.error("All $" + Pat->getName() + " inputs must agree with each other");
  return true;
}

/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
/// part of "I", the instruction), computing the set of inputs and outputs of
/// the pattern.  Report errors if we see anything naughty.
void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
    TreePattern &I, TreePatternNodePtr Pat,
    std::map<std::string, TreePatternNodePtr> &InstInputs,
    MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
        &InstResults,
    std::vector<Record *> &InstImpResults) {

  // The instruction pattern still has unresolved fragments.  For *named*
  // nodes we must resolve those here.  This may not result in multiple
  // alternatives.
  if (!Pat->getName().empty()) {
    TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
    SrcPattern.InlinePatternFragments();
    SrcPattern.InferAllTypes();
    Pat = SrcPattern.getOnlyTree();
  }

  if (Pat->isLeaf()) {
    bool isUse = HandleUse(I, Pat, InstInputs);
    if (!isUse && Pat->getTransformFn())
      I.error("Cannot specify a transform function for a non-input value!");
    return;
  }

  if (Pat->getOperator()->getName() == "implicit") {
    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
      TreePatternNode *Dest = Pat->getChild(i);
      if (!Dest->isLeaf())
        I.error("implicitly defined value should be a register!");

      DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
      if (!Val || !Val->getDef()->isSubClassOf("Register"))
        I.error("implicitly defined value should be a register!");
      InstImpResults.push_back(Val->getDef());
    }
    return;
  }

  if (Pat->getOperator()->getName() != "set") {
    // If this is not a set, verify that the children nodes are not void typed,
    // and recurse.
    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
      if (Pat->getChild(i)->getNumTypes() == 0)
        I.error("Cannot have void nodes inside of patterns!");
      FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
                                  InstResults, InstImpResults);
    }

    // If this is a non-leaf node with no children, treat it basically as if
    // it were a leaf.  This handles nodes like (imm).
    bool isUse = HandleUse(I, Pat, InstInputs);

    if (!isUse && Pat->getTransformFn())
      I.error("Cannot specify a transform function for a non-input value!");
    return;
  }

  // Otherwise, this is a set, validate and collect instruction results.
  if (Pat->getNumChildren() == 0)
    I.error("set requires operands!");

  if (Pat->getTransformFn())
    I.error("Cannot specify a transform function on a set node!");

  // Check the set destinations.
  unsigned NumDests = Pat->getNumChildren()-1;
  for (unsigned i = 0; i != NumDests; ++i) {
    TreePatternNodePtr Dest = Pat->getChildShared(i);
    // For set destinations we also must resolve fragments here.
    TreePattern DestPattern(I.getRecord(), Dest, false, *this);
    DestPattern.InlinePatternFragments();
    DestPattern.InferAllTypes();
    Dest = DestPattern.getOnlyTree();

    if (!Dest->isLeaf())
      I.error("set destination should be a register!");

    DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
    if (!Val) {
      I.error("set destination should be a register!");
      continue;
    }

    if (Val->getDef()->isSubClassOf("RegisterClass") ||
        Val->getDef()->isSubClassOf("ValueType") ||
        Val->getDef()->isSubClassOf("RegisterOperand") ||
        Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
      if (Dest->getName().empty())
        I.error("set destination must have a name!");
      if (InstResults.count(Dest->getName()))
        I.error("cannot set '" + Dest->getName() + "' multiple times");
      InstResults[Dest->getName()] = Dest;
    } else if (Val->getDef()->isSubClassOf("Register")) {
      InstImpResults.push_back(Val->getDef());
    } else {
      I.error("set destination should be a register!");
    }
  }

  // Verify and collect info from the computation.
  FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
                              InstResults, InstImpResults);
}

//===----------------------------------------------------------------------===//
// Instruction Analysis
//===----------------------------------------------------------------------===//

class InstAnalyzer {
  const CodeGenDAGPatterns &CDP;
public:
  bool hasSideEffects;
  bool mayStore;
  bool mayLoad;
  bool isBitcast;
  bool isVariadic;
  bool hasChain;

  InstAnalyzer(const CodeGenDAGPatterns &cdp)
    : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
      isBitcast(false), isVariadic(false), hasChain(false) {}

  void Analyze(const PatternToMatch &Pat) {
    const TreePatternNode *N = Pat.getSrcPattern();
    AnalyzeNode(N);
    // These properties are detected only on the root node.
    isBitcast = IsNodeBitcast(N);
  }

private:
  bool IsNodeBitcast(const TreePatternNode *N) const {
    if (hasSideEffects || mayLoad || mayStore || isVariadic)
      return false;

    if (N->isLeaf())
      return false;
    if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
      return false;

    const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
    if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
      return false;
    return OpInfo.getEnumName() == "ISD::BITCAST";
  }

public:
  void AnalyzeNode(const TreePatternNode *N) {
    if (N->isLeaf()) {
      if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
        Record *LeafRec = DI->getDef();
        // Handle ComplexPattern leaves.
        if (LeafRec->isSubClassOf("ComplexPattern")) {
          const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
          if (CP.hasProperty(SDNPMayStore)) mayStore = true;
          if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
          if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
        }
      }
      return;
    }

    // Analyze children.
    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
      AnalyzeNode(N->getChild(i));

    // Notice properties of the node.
    if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
    if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
    if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
    if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
    if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;

    if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
      // If this is an intrinsic, analyze it.
      if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
        mayLoad = true;// These may load memory.

      if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
        mayStore = true;// Intrinsics that can write to memory are 'mayStore'.

      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
          IntInfo->hasSideEffects)
        // ReadWriteMem intrinsics can have other strange effects.
        hasSideEffects = true;
    }
  }

};

static bool InferFromPattern(CodeGenInstruction &InstInfo,
                             const InstAnalyzer &PatInfo,
                             Record *PatDef) {
  bool Error = false;

  // Remember where InstInfo got its flags.
  if (InstInfo.hasUndefFlags())
      InstInfo.InferredFrom = PatDef;

  // Check explicitly set flags for consistency.
  if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
      !InstInfo.hasSideEffects_Unset) {
    // Allow explicitly setting hasSideEffects = 1 on instructions, even when
    // the pattern has no side effects. That could be useful for div/rem
    // instructions that may trap.
    if (!InstInfo.hasSideEffects) {
      Error = true;
      PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
                 Twine(InstInfo.hasSideEffects));
    }
  }

  if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
    Error = true;
    PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
               Twine(InstInfo.mayStore));
  }

  if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
    // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
    // Some targets translate immediates to loads.
    if (!InstInfo.mayLoad) {
      Error = true;
      PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
                 Twine(InstInfo.mayLoad));
    }
  }

  // Transfer inferred flags.
  InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
  InstInfo.mayStore |= PatInfo.mayStore;
  InstInfo.mayLoad |= PatInfo.mayLoad;

  // These flags are silently added without any verification.
  // FIXME: To match historical behavior of TableGen, for now add those flags
  // only when we're inferring from the primary instruction pattern.
  if (PatDef->isSubClassOf("Instruction")) {
    InstInfo.isBitcast |= PatInfo.isBitcast;
    InstInfo.hasChain |= PatInfo.hasChain;
    InstInfo.hasChain_Inferred = true;
  }

  // Don't infer isVariadic. This flag means something different on SDNodes and
  // instructions. For example, a CALL SDNode is variadic because it has the
  // call arguments as operands, but a CALL instruction is not variadic - it
  // has argument registers as implicit, not explicit uses.

  return Error;
}

/// hasNullFragReference - Return true if the DAG has any reference to the
/// null_frag operator.
static bool hasNullFragReference(DagInit *DI) {
  DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
  if (!OpDef) return false;
  Record *Operator = OpDef->getDef();

  // If this is the null fragment, return true.
  if (Operator->getName() == "null_frag") return true;
  // If any of the arguments reference the null fragment, return true.
  for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
    DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
    if (Arg && hasNullFragReference(Arg))
      return true;
  }

  return false;
}

/// hasNullFragReference - Return true if any DAG in the list references
/// the null_frag operator.
static bool hasNullFragReference(ListInit *LI) {
  for (Init *I : LI->getValues()) {
    DagInit *DI = dyn_cast<DagInit>(I);
    assert(DI && "non-dag in an instruction Pattern list?!");
    if (hasNullFragReference(DI))
      return true;
  }
  return false;
}

/// Get all the instructions in a tree.
static void
getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
  if (Tree->isLeaf())
    return;
  if (Tree->getOperator()->isSubClassOf("Instruction"))
    Instrs.push_back(Tree->getOperator());
  for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
    getInstructionsInTree(Tree->getChild(i), Instrs);
}

/// Check the class of a pattern leaf node against the instruction operand it
/// represents.
static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
                              Record *Leaf) {
  if (OI.Rec == Leaf)
    return true;

  // Allow direct value types to be used in instruction set patterns.
  // The type will be checked later.
  if (Leaf->isSubClassOf("ValueType"))
    return true;

  // Patterns can also be ComplexPattern instances.
  if (Leaf->isSubClassOf("ComplexPattern"))
    return true;

  return false;
}

void CodeGenDAGPatterns::parseInstructionPattern(
    CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {

  assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");

  // Parse the instruction.
  TreePattern I(CGI.TheDef, Pat, true, *this);

  // InstInputs - Keep track of all of the inputs of the instruction, along
  // with the record they are declared as.
  std::map<std::string, TreePatternNodePtr> InstInputs;

  // InstResults - Keep track of all the virtual registers that are 'set'
  // in the instruction, including what reg class they are.
  MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
      InstResults;

  std::vector<Record*> InstImpResults;

  // Verify that the top-level forms in the instruction are of void type, and
  // fill in the InstResults map.
  SmallString<32> TypesString;
  for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
    TypesString.clear();
    TreePatternNodePtr Pat = I.getTree(j);
    if (Pat->getNumTypes() != 0) {
      raw_svector_ostream OS(TypesString);
      for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
        if (k > 0)
          OS << ", ";
        Pat->getExtType(k).writeToStream(OS);
      }
      I.error("Top-level forms in instruction pattern should have"
               " void types, has types " +
               OS.str());
    }

    // Find inputs and outputs, and verify the structure of the uses/defs.
    FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
                                InstImpResults);
  }

  // Now that we have inputs and outputs of the pattern, inspect the operands
  // list for the instruction.  This determines the order that operands are
  // added to the machine instruction the node corresponds to.
  unsigned NumResults = InstResults.size();

  // Parse the operands list from the (ops) list, validating it.
  assert(I.getArgList().empty() && "Args list should still be empty here!");

  // Check that all of the results occur first in the list.
  std::vector<Record*> Results;
  std::vector<unsigned> ResultIndices;
  SmallVector<TreePatternNodePtr, 2> ResNodes;
  for (unsigned i = 0; i != NumResults; ++i) {
    if (i == CGI.Operands.size()) {
      const std::string &OpName =
          std::find_if(InstResults.begin(), InstResults.end(),
                       [](const std::pair<std::string, TreePatternNodePtr> &P) {
                         return P.second;
                       })
              ->first;

      I.error("'" + OpName + "' set but does not appear in operand list!");
    }

    const std::string &OpName = CGI.Operands[i].Name;

    // Check that it exists in InstResults.
    auto InstResultIter = InstResults.find(OpName);
    if (InstResultIter == InstResults.end() || !InstResultIter->second)
      I.error("Operand $" + OpName + " does not exist in operand list!");

    TreePatternNodePtr RNode = InstResultIter->second;
    Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
    ResNodes.push_back(std::move(RNode));
    if (!R)
      I.error("Operand $" + OpName + " should be a set destination: all "
               "outputs must occur before inputs in operand list!");

    if (!checkOperandClass(CGI.Operands[i], R))
      I.error("Operand $" + OpName + " class mismatch!");

    // Remember the return type.
    Results.push_back(CGI.Operands[i].Rec);

    // Remember the result index.
    ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));

    // Okay, this one checks out.
    InstResultIter->second = nullptr;
  }

  // Loop over the inputs next.
  std::vector<TreePatternNodePtr> ResultNodeOperands;
  std::vector<Record*> Operands;
  for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
    CGIOperandList::OperandInfo &Op = CGI.Operands[i];
    const std::string &OpName = Op.Name;
    if (OpName.empty())
      I.error("Operand #" + Twine(i) + " in operands list has no name!");

    if (!InstInputs.count(OpName)) {
      // If this is an operand with a DefaultOps set filled in, we can ignore
      // this.  When we codegen it, we will do so as always executed.
      if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
        // Does it have a non-empty DefaultOps field?  If so, ignore this
        // operand.
        if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
          continue;
      }
      I.error("Operand $" + OpName +
               " does not appear in the instruction pattern");
    }
    TreePatternNodePtr InVal = InstInputs[OpName];
    InstInputs.erase(OpName);   // It occurred, remove from map.

    if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
      Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
      if (!checkOperandClass(Op, InRec))
        I.error("Operand $" + OpName + "'s register class disagrees"
                 " between the operand and pattern");
    }
    Operands.push_back(Op.Rec);

    // Construct the result for the dest-pattern operand list.
    TreePatternNodePtr OpNode = InVal->clone();

    // No predicate is useful on the result.
    OpNode->clearPredicateCalls();

    // Promote the xform function to be an explicit node if set.
    if (Record *Xform = OpNode->getTransformFn()) {
      OpNode->setTransformFn(nullptr);
      std::vector<TreePatternNodePtr> Children;
      Children.push_back(OpNode);
      OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
                                                 OpNode->getNumTypes());
    }

    ResultNodeOperands.push_back(std::move(OpNode));
  }

  if (!InstInputs.empty())
    I.error("Input operand $" + InstInputs.begin()->first +
            " occurs in pattern but not in operands list!");

  TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
      I.getRecord(), std::move(ResultNodeOperands),
      GetNumNodeResults(I.getRecord(), *this));
  // Copy fully inferred output node types to instruction result pattern.
  for (unsigned i = 0; i != NumResults; ++i) {
    assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
    ResultPattern->setType(i, ResNodes[i]->getExtType(0));
    ResultPattern->setResultIndex(i, ResultIndices[i]);
  }

  // FIXME: Assume only the first tree is the pattern. The others are clobber
  // nodes.
  TreePatternNodePtr Pattern = I.getTree(0);
  TreePatternNodePtr SrcPattern;
  if (Pattern->getOperator()->getName() == "set") {
    SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
  } else{
    // Not a set (store or something?)
    SrcPattern = Pattern;
  }

  // Create and insert the instruction.
  // FIXME: InstImpResults should not be part of DAGInstruction.
  Record *R = I.getRecord();
  DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
                   std::forward_as_tuple(Results, Operands, InstImpResults,
                                         SrcPattern, ResultPattern));

  LLVM_DEBUG(I.dump());
}

/// ParseInstructions - Parse all of the instructions, inlining and resolving
/// any fragments involved.  This populates the Instructions list with fully
/// resolved instructions.
void CodeGenDAGPatterns::ParseInstructions() {
  std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");

  for (Record *Instr : Instrs) {
    ListInit *LI = nullptr;

    if (isa<ListInit>(Instr->getValueInit("Pattern")))
      LI = Instr->getValueAsListInit("Pattern");

    // If there is no pattern, only collect minimal information about the
    // instruction for its operand list.  We have to assume that there is one
    // result, as we have no detailed info. A pattern which references the
    // null_frag operator is as-if no pattern were specified. Normally this
    // is from a multiclass expansion w/ a SDPatternOperator passed in as
    // null_frag.
    if (!LI || LI->empty() || hasNullFragReference(LI)) {
      std::vector<Record*> Results;
      std::vector<Record*> Operands;

      CodeGenInstruction &InstInfo = Target.getInstruction(Instr);

      if (InstInfo.Operands.size() != 0) {
        for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
          Results.push_back(InstInfo.Operands[j].Rec);

        // The rest are inputs.
        for (unsigned j = InstInfo.Operands.NumDefs,
               e = InstInfo.Operands.size(); j < e; ++j)
          Operands.push_back(InstInfo.Operands[j].Rec);
      }

      // Create and insert the instruction.
      std::vector<Record*> ImpResults;
      Instructions.insert(std::make_pair(Instr,
                            DAGInstruction(Results, Operands, ImpResults)));
      continue;  // no pattern.
    }

    CodeGenInstruction &CGI = Target.getInstruction(Instr);
    parseInstructionPattern(CGI, LI, Instructions);
  }

  // If we can, convert the instructions to be patterns that are matched!
  for (auto &Entry : Instructions) {
    Record *Instr = Entry.first;
    DAGInstruction &TheInst = Entry.second;
    TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
    TreePatternNodePtr ResultPattern = TheInst.getResultPattern();

    if (SrcPattern && ResultPattern) {
      TreePattern Pattern(Instr, SrcPattern, true, *this);
      TreePattern Result(Instr, ResultPattern, false, *this);
      ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
    }
  }
}

typedef std::pair<TreePatternNode *, unsigned> NameRecord;

static void FindNames(TreePatternNode *P,
                      std::map<std::string, NameRecord> &Names,
                      TreePattern *PatternTop) {
  if (!P->getName().empty()) {
    NameRecord &Rec = Names[P->getName()];
    // If this is the first instance of the name, remember the node.
    if (Rec.second++ == 0)
      Rec.first = P;
    else if (Rec.first->getExtTypes() != P->getExtTypes())
      PatternTop->error("repetition of value: $" + P->getName() +
                        " where different uses have different types!");
  }

  if (!P->isLeaf()) {
    for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
      FindNames(P->getChild(i), Names, PatternTop);
  }
}

std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
  std::vector<Predicate> Preds;
  for (Init *I : L->getValues()) {
    if (DefInit *Pred = dyn_cast<DefInit>(I))
      Preds.push_back(Pred->getDef());
    else
      llvm_unreachable("Non-def on the list");
  }

  // Sort so that different orders get canonicalized to the same string.
  llvm::sort(Preds);
  return Preds;
}

void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
                                           PatternToMatch &&PTM) {
  // Do some sanity checking on the pattern we're about to match.
  std::string Reason;
  if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
    PrintWarning(Pattern->getRecord()->getLoc(),
      Twine("Pattern can never match: ") + Reason);
    return;
  }

  // If the source pattern's root is a complex pattern, that complex pattern
  // must specify the nodes it can potentially match.
  if (const ComplexPattern *CP =
        PTM.getSrcPattern()->getComplexPatternInfo(*this))
    if (CP->getRootNodes().empty())
      Pattern->error("ComplexPattern at root must specify list of opcodes it"
                     " could match");


  // Find all of the named values in the input and output, ensure they have the
  // same type.
  std::map<std::string, NameRecord> SrcNames, DstNames;
  FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
  FindNames(PTM.getDstPattern(), DstNames, Pattern);

  // Scan all of the named values in the destination pattern, rejecting them if
  // they don't exist in the input pattern.
  for (const auto &Entry : DstNames) {
    if (SrcNames[Entry.first].first == nullptr)
      Pattern->error("Pattern has input without matching name in output: $" +
                     Entry.first);
  }

  // Scan all of the named values in the source pattern, rejecting them if the
  // name isn't used in the dest, and isn't used to tie two values together.
  for (const auto &Entry : SrcNames)
    if (DstNames[Entry.first].first == nullptr &&
        SrcNames[Entry.first].second == 1)
      Pattern->error("Pattern has dead named input: $" + Entry.first);

  PatternsToMatch.push_back(PTM);
}

void CodeGenDAGPatterns::InferInstructionFlags() {
  ArrayRef<const CodeGenInstruction*> Instructions =
    Target.getInstructionsByEnumValue();

  unsigned Errors = 0;

  // Try to infer flags from all patterns in PatternToMatch.  These include
  // both the primary instruction patterns (which always come first) and
  // patterns defined outside the instruction.
  for (const PatternToMatch &PTM : ptms()) {
    // We can only infer from single-instruction patterns, otherwise we won't
    // know which instruction should get the flags.
    SmallVector<Record*, 8> PatInstrs;
    getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
    if (PatInstrs.size() != 1)
      continue;

    // Get the single instruction.
    CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());

    // Only infer properties from the first pattern. We'll verify the others.
    if (InstInfo.InferredFrom)
      continue;

    InstAnalyzer PatInfo(*this);
    PatInfo.Analyze(PTM);
    Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
  }

  if (Errors)
    PrintFatalError("pattern conflicts");

  // If requested by the target, guess any undefined properties.
  if (Target.guessInstructionProperties()) {
    for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
      CodeGenInstruction *InstInfo =
        const_cast<CodeGenInstruction *>(Instructions[i]);
      if (InstInfo->InferredFrom)
        continue;
      // The mayLoad and mayStore flags default to false.
      // Conservatively assume hasSideEffects if it wasn't explicit.
      if (InstInfo->hasSideEffects_Unset)
        InstInfo->hasSideEffects = true;
    }
    return;
  }

  // Complain about any flags that are still undefined.
  for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
    CodeGenInstruction *InstInfo =
      const_cast<CodeGenInstruction *>(Instructions[i]);
    if (InstInfo->InferredFrom)
      continue;
    if (InstInfo->hasSideEffects_Unset)
      PrintError(InstInfo->TheDef->getLoc(),
                 "Can't infer hasSideEffects from patterns");
    if (InstInfo->mayStore_Unset)
      PrintError(InstInfo->TheDef->getLoc(),
                 "Can't infer mayStore from patterns");
    if (InstInfo->mayLoad_Unset)
      PrintError(InstInfo->TheDef->getLoc(),
                 "Can't infer mayLoad from patterns");
  }
}


/// Verify instruction flags against pattern node properties.
void CodeGenDAGPatterns::VerifyInstructionFlags() {
  unsigned Errors = 0;
  for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
    const PatternToMatch &PTM = *I;
    SmallVector<Record*, 8> Instrs;
    getInstructionsInTree(PTM.getDstPattern(), Instrs);
    if (Instrs.empty())
      continue;

    // Count the number of instructions with each flag set.
    unsigned NumSideEffects = 0;
    unsigned NumStores = 0;
    unsigned NumLoads = 0;
    for (const Record *Instr : Instrs) {
      const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
      NumSideEffects += InstInfo.hasSideEffects;
      NumStores += InstInfo.mayStore;
      NumLoads += InstInfo.mayLoad;
    }

    // Analyze the source pattern.
    InstAnalyzer PatInfo(*this);
    PatInfo.Analyze(PTM);

    // Collect error messages.
    SmallVector<std::string, 4> Msgs;

    // Check for missing flags in the output.
    // Permit extra flags for now at least.
    if (PatInfo.hasSideEffects && !NumSideEffects)
      Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");

    // Don't verify store flags on instructions with side effects. At least for
    // intrinsics, side effects implies mayStore.
    if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
      Msgs.push_back("pattern may store, but mayStore isn't set");

    // Similarly, mayStore implies mayLoad on intrinsics.
    if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
      Msgs.push_back("pattern may load, but mayLoad isn't set");

    // Print error messages.
    if (Msgs.empty())
      continue;
    ++Errors;

    for (const std::string &Msg : Msgs)
      PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
                 (Instrs.size() == 1 ?
                  "instruction" : "output instructions"));
    // Provide the location of the relevant instruction definitions.
    for (const Record *Instr : Instrs) {
      if (Instr != PTM.getSrcRecord())
        PrintError(Instr->getLoc(), "defined here");
      const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
      if (InstInfo.InferredFrom &&
          InstInfo.InferredFrom != InstInfo.TheDef &&
          InstInfo.InferredFrom != PTM.getSrcRecord())
        PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
    }
  }
  if (Errors)
    PrintFatalError("Errors in DAG patterns");
}

/// Given a pattern result with an unresolved type, see if we can find one
/// instruction with an unresolved result type.  Force this result type to an
/// arbitrary element if it's possible types to converge results.
static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
  if (N->isLeaf())
    return false;

  // Analyze children.
  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
    if (ForceArbitraryInstResultType(N->getChild(i), TP))
      return true;

  if (!N->getOperator()->isSubClassOf("Instruction"))
    return false;

  // If this type is already concrete or completely unknown we can't do
  // anything.
  TypeInfer &TI = TP.getInfer();
  for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
    if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
      continue;

    // Otherwise, force its type to an arbitrary choice.
    if (TI.forceArbitrary(N->getExtType(i)))
      return true;
  }

  return false;
}

// Promote xform function to be an explicit node wherever set.
static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
  if (Record *Xform = N->getTransformFn()) {
      N->setTransformFn(nullptr);
      std::vector<TreePatternNodePtr> Children;
      Children.push_back(PromoteXForms(N));
      return std::make_shared<TreePatternNode>(Xform, std::move(Children),
                                               N->getNumTypes());
  }

  if (!N->isLeaf())
    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
      TreePatternNodePtr Child = N->getChildShared(i);
      N->setChild(i, PromoteXForms(Child));
    }
  return N;
}

void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
       TreePattern &Pattern, TreePattern &Result,
       const std::vector<Record *> &InstImpResults) {

  // Inline pattern fragments and expand multiple alternatives.
  Pattern.InlinePatternFragments();
  Result.InlinePatternFragments();

  if (Result.getNumTrees() != 1)
    Result.error("Cannot use multi-alternative fragments in result pattern!");

  // Infer types.
  bool IterateInference;
  bool InferredAllPatternTypes, InferredAllResultTypes;
  do {
    // Infer as many types as possible.  If we cannot infer all of them, we
    // can never do anything with this pattern: report it to the user.
    InferredAllPatternTypes =
        Pattern.InferAllTypes(&Pattern.getNamedNodesMap());

    // Infer as many types as possible.  If we cannot infer all of them, we
    // can never do anything with this pattern: report it to the user.
    InferredAllResultTypes =
        Result.InferAllTypes(&Pattern.getNamedNodesMap());

    IterateInference = false;

    // Apply the type of the result to the source pattern.  This helps us
    // resolve cases where the input type is known to be a pointer type (which
    // is considered resolved), but the result knows it needs to be 32- or
    // 64-bits.  Infer the other way for good measure.
    for (auto T : Pattern.getTrees())
      for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
                                        T->getNumTypes());
         i != e; ++i) {
        IterateInference |= T->UpdateNodeType(
            i, Result.getOnlyTree()->getExtType(i), Result);
        IterateInference |= Result.getOnlyTree()->UpdateNodeType(
            i, T->getExtType(i), Result);
      }

    // If our iteration has converged and the input pattern's types are fully
    // resolved but the result pattern is not fully resolved, we may have a
    // situation where we have two instructions in the result pattern and
    // the instructions require a common register class, but don't care about
    // what actual MVT is used.  This is actually a bug in our modelling:
    // output patterns should have register classes, not MVTs.
    //
    // In any case, to handle this, we just go through and disambiguate some
    // arbitrary types to the result pattern's nodes.
    if (!IterateInference && InferredAllPatternTypes &&
        !InferredAllResultTypes)
      IterateInference =
          ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
  } while (IterateInference);

  // Verify that we inferred enough types that we can do something with the
  // pattern and result.  If these fire the user has to add type casts.
  if (!InferredAllPatternTypes)
    Pattern.error("Could not infer all types in pattern!");
  if (!InferredAllResultTypes) {
    Pattern.dump();
    Result.error("Could not infer all types in pattern result!");
  }

  // Promote xform function to be an explicit node wherever set.
  TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());

  TreePattern Temp(Result.getRecord(), DstShared, false, *this);
  Temp.InferAllTypes();

  ListInit *Preds = TheDef->getValueAsListInit("Predicates");
  int Complexity = TheDef->getValueAsInt("AddedComplexity");

  if (PatternRewriter)
    PatternRewriter(&Pattern);

  // A pattern may end up with an "impossible" type, i.e. a situation
  // where all types have been eliminated for some node in this pattern.
  // This could occur for intrinsics that only make sense for a specific
  // value type, and use a specific register class. If, for some mode,
  // that register class does not accept that type, the type inference
  // will lead to a contradiction, which is not an error however, but
  // a sign that this pattern will simply never match.
  if (Temp.getOnlyTree()->hasPossibleType())
    for (auto T : Pattern.getTrees())
      if (T->hasPossibleType())
        AddPatternToMatch(&Pattern,
                          PatternToMatch(TheDef, makePredList(Preds),
                                         T, Temp.getOnlyTree(),
                                         InstImpResults, Complexity,
                                         TheDef->getID()));
}

void CodeGenDAGPatterns::ParsePatterns() {
  std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");

  for (Record *CurPattern : Patterns) {
    DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");

    // If the pattern references the null_frag, there's nothing to do.
    if (hasNullFragReference(Tree))
      continue;

    TreePattern Pattern(CurPattern, Tree, true, *this);

    ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
    if (LI->empty()) continue;  // no pattern.

    // Parse the instruction.
    TreePattern Result(CurPattern, LI, false, *this);

    if (Result.getNumTrees() != 1)
      Result.error("Cannot handle instructions producing instructions "
                   "with temporaries yet!");

    // Validate that the input pattern is correct.
    std::map<std::string, TreePatternNodePtr> InstInputs;
    MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
        InstResults;
    std::vector<Record*> InstImpResults;
    for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
      FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
                                  InstResults, InstImpResults);

    ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
  }
}

static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
  for (const TypeSetByHwMode &VTS : N->getExtTypes())
    for (const auto &I : VTS)
      Modes.insert(I.first);

  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
    collectModes(Modes, N->getChild(i));
}

void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
  const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
  std::map<unsigned,std::vector<Predicate>> ModeChecks;
  std::vector<PatternToMatch> Copy = PatternsToMatch;
  PatternsToMatch.clear();

  auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) {
    TreePatternNodePtr NewSrc = P.SrcPattern->clone();
    TreePatternNodePtr NewDst = P.DstPattern->clone();
    if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
      return;
    }

    std::vector<Predicate> Preds = P.Predicates;
    const std::vector<Predicate> &MC = ModeChecks[Mode];
    Preds.insert(Preds.end(), MC.begin(), MC.end());
    PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc),
                                 std::move(NewDst), P.getDstRegs(),
                                 P.getAddedComplexity(), Record::getNewUID(),
                                 Mode);
  };

  for (PatternToMatch &P : Copy) {
    TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
    if (P.SrcPattern->hasProperTypeByHwMode())
      SrcP = P.SrcPattern;
    if (P.DstPattern->hasProperTypeByHwMode())
      DstP = P.DstPattern;
    if (!SrcP && !DstP) {
      PatternsToMatch.push_back(P);
      continue;
    }

    std::set<unsigned> Modes;
    if (SrcP)
      collectModes(Modes, SrcP.get());
    if (DstP)
      collectModes(Modes, DstP.get());

    // The predicate for the default mode needs to be constructed for each
    // pattern separately.
    // Since not all modes must be present in each pattern, if a mode m is
    // absent, then there is no point in constructing a check for m. If such
    // a check was created, it would be equivalent to checking the default
    // mode, except not all modes' predicates would be a part of the checking
    // code. The subsequently generated check for the default mode would then
    // have the exact same patterns, but a different predicate code. To avoid
    // duplicated patterns with different predicate checks, construct the
    // default check as a negation of all predicates that are actually present
    // in the source/destination patterns.
    std::vector<Predicate> DefaultPred;

    for (unsigned M : Modes) {
      if (M == DefaultMode)
        continue;
      if (ModeChecks.find(M) != ModeChecks.end())
        continue;

      // Fill the map entry for this mode.
      const HwMode &HM = CGH.getMode(M);
      ModeChecks[M].emplace_back(Predicate(HM.Features, true));

      // Add negations of the HM's predicates to the default predicate.
      DefaultPred.emplace_back(Predicate(HM.Features, false));
    }

    for (unsigned M : Modes) {
      if (M == DefaultMode)
        continue;
      AppendPattern(P, M);
    }

    bool HasDefault = Modes.count(DefaultMode);
    if (HasDefault)
      AppendPattern(P, DefaultMode);
  }
}

/// Dependent variable map for CodeGenDAGPattern variant generation
typedef StringMap<int> DepVarMap;

static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
  if (N->isLeaf()) {
    if (N->hasName() && isa<DefInit>(N->getLeafValue()))
      DepMap[N->getName()]++;
  } else {
    for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
      FindDepVarsOf(N->getChild(i), DepMap);
  }
}

/// Find dependent variables within child patterns
static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
  DepVarMap depcounts;
  FindDepVarsOf(N, depcounts);
  for (const auto &Pair : depcounts) {
    if (Pair.getValue() > 1)
      DepVars.insert(Pair.getKey());
  }
}

#ifndef NDEBUG
/// Dump the dependent variable set:
static void DumpDepVars(MultipleUseVarSet &DepVars) {
  if (DepVars.empty()) {
    LLVM_DEBUG(errs() << "<empty set>");
  } else {
    LLVM_DEBUG(errs() << "[ ");
    for (const auto &DepVar : DepVars) {
      LLVM_DEBUG(errs() << DepVar.getKey() << " ");
    }
    LLVM_DEBUG(errs() << "]");
  }
}
#endif


/// CombineChildVariants - Given a bunch of permutations of each child of the
/// 'operator' node, put them together in all possible ways.
static void CombineChildVariants(
    TreePatternNodePtr Orig,
    const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
    std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
    const MultipleUseVarSet &DepVars) {
  // Make sure that each operand has at least one variant to choose from.
  for (const auto &Variants : ChildVariants)
    if (Variants.empty())
      return;

  // The end result is an all-pairs construction of the resultant pattern.
  std::vector<unsigned> Idxs;
  Idxs.resize(ChildVariants.size());
  bool NotDone;
  do {
#ifndef NDEBUG
    LLVM_DEBUG(if (!Idxs.empty()) {
      errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
      for (unsigned Idx : Idxs) {
        errs() << Idx << " ";
      }
      errs() << "]\n";
    });
#endif
    // Create the variant and add it to the output list.
    std::vector<TreePatternNodePtr> NewChildren;
    for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
      NewChildren.push_back(ChildVariants[i][Idxs[i]]);
    TreePatternNodePtr R = std::make_shared<TreePatternNode>(
        Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());

    // Copy over properties.
    R->setName(Orig->getName());
    R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
    R->setPredicateCalls(Orig->getPredicateCalls());
    R->setTransformFn(Orig->getTransformFn());
    for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
      R->setType(i, Orig->getExtType(i));

    // If this pattern cannot match, do not include it as a variant.
    std::string ErrString;
    // Scan to see if this pattern has already been emitted.  We can get
    // duplication due to things like commuting:
    //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
    // which are the same pattern.  Ignore the dups.
    if (R->canPatternMatch(ErrString, CDP) &&
        none_of(OutVariants, [&](TreePatternNodePtr Variant) {
          return R->isIsomorphicTo(Variant.get(), DepVars);
        }))
      OutVariants.push_back(R);

    // Increment indices to the next permutation by incrementing the
    // indices from last index backward, e.g., generate the sequence
    // [0, 0], [0, 1], [1, 0], [1, 1].
    int IdxsIdx;
    for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
      if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
        Idxs[IdxsIdx] = 0;
      else
        break;
    }
    NotDone = (IdxsIdx >= 0);
  } while (NotDone);
}

/// CombineChildVariants - A helper function for binary operators.
///
static void CombineChildVariants(TreePatternNodePtr Orig,
                                 const std::vector<TreePatternNodePtr> &LHS,
                                 const std::vector<TreePatternNodePtr> &RHS,
                                 std::vector<TreePatternNodePtr> &OutVariants,
                                 CodeGenDAGPatterns &CDP,
                                 const MultipleUseVarSet &DepVars) {
  std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
  ChildVariants.push_back(LHS);
  ChildVariants.push_back(RHS);
  CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
}

static void
GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
                                  std::vector<TreePatternNodePtr> &Children) {
  assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
  Record *Operator = N->getOperator();

  // Only permit raw nodes.
  if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
      N->getTransformFn()) {
    Children.push_back(N);
    return;
  }

  if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
    Children.push_back(N->getChildShared(0));
  else
    GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);

  if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
    Children.push_back(N->getChildShared(1));
  else
    GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
}

/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
/// the (potentially recursive) pattern by using algebraic laws.
///
static void GenerateVariantsOf(TreePatternNodePtr N,
                               std::vector<TreePatternNodePtr> &OutVariants,
                               CodeGenDAGPatterns &CDP,
                               const MultipleUseVarSet &DepVars) {
  // We cannot permute leaves or ComplexPattern uses.
  if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
    OutVariants.push_back(N);
    return;
  }

  // Look up interesting info about the node.
  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());

  // If this node is associative, re-associate.
  if (NodeInfo.hasProperty(SDNPAssociative)) {
    // Re-associate by pulling together all of the linked operators
    std::vector<TreePatternNodePtr> MaximalChildren;
    GatherChildrenOfAssociativeOpcode(N, MaximalChildren);

    // Only handle child sizes of 3.  Otherwise we'll end up trying too many
    // permutations.
    if (MaximalChildren.size() == 3) {
      // Find the variants of all of our maximal children.
      std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
      GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
      GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
      GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);

      // There are only two ways we can permute the tree:
      //   (A op B) op C    and    A op (B op C)
      // Within these forms, we can also permute A/B/C.

      // Generate legal pair permutations of A/B/C.
      std::vector<TreePatternNodePtr> ABVariants;
      std::vector<TreePatternNodePtr> BAVariants;
      std::vector<TreePatternNodePtr> ACVariants;
      std::vector<TreePatternNodePtr> CAVariants;
      std::vector<TreePatternNodePtr> BCVariants;
      std::vector<TreePatternNodePtr> CBVariants;
      CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
      CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
      CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
      CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
      CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
      CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);

      // Combine those into the result: (x op x) op x
      CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
      CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
      CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
      CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
      CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
      CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);

      // Combine those into the result: x op (x op x)
      CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
      CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
      CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
      CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
      CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
      CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
      return;
    }
  }

  // Compute permutations of all children.
  std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
  ChildVariants.resize(N->getNumChildren());
  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
    GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);

  // Build all permutations based on how the children were formed.
  CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);

  // If this node is commutative, consider the commuted order.
  bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
    assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
           "Commutative but doesn't have 2 children!");
    // Don't count children which are actually register references.
    unsigned NC = 0;
    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
      TreePatternNode *Child = N->getChild(i);
      if (Child->isLeaf())
        if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
          Record *RR = DI->getDef();
          if (RR->isSubClassOf("Register"))
            continue;
        }
      NC++;
    }
    // Consider the commuted order.
    if (isCommIntrinsic) {
      // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
      // operands are the commutative operands, and there might be more operands
      // after those.
      assert(NC >= 3 &&
             "Commutative intrinsic should have at least 3 children!");
      std::vector<std::vector<TreePatternNodePtr>> Variants;
      Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
      Variants.push_back(std::move(ChildVariants[2]));
      Variants.push_back(std::move(ChildVariants[1]));
      for (unsigned i = 3; i != NC; ++i)
        Variants.push_back(std::move(ChildVariants[i]));
      CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
    } else if (NC == N->getNumChildren()) {
      std::vector<std::vector<TreePatternNodePtr>> Variants;
      Variants.push_back(std::move(ChildVariants[1]));
      Variants.push_back(std::move(ChildVariants[0]));
      for (unsigned i = 2; i != NC; ++i)
        Variants.push_back(std::move(ChildVariants[i]));
      CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
    }
  }
}


// GenerateVariants - Generate variants.  For example, commutative patterns can
// match multiple ways.  Add them to PatternsToMatch as well.
void CodeGenDAGPatterns::GenerateVariants() {
  LLVM_DEBUG(errs() << "Generating instruction variants.\n");

  // Loop over all of the patterns we've collected, checking to see if we can
  // generate variants of the instruction, through the exploitation of
  // identities.  This permits the target to provide aggressive matching without
  // the .td file having to contain tons of variants of instructions.
  //
  // Note that this loop adds new patterns to the PatternsToMatch list, but we
  // intentionally do not reconsider these.  Any variants of added patterns have
  // already been added.
  //
  const unsigned NumOriginalPatterns = PatternsToMatch.size();
  BitVector MatchedPatterns(NumOriginalPatterns);
  std::vector<BitVector> MatchedPredicates(NumOriginalPatterns,
                                           BitVector(NumOriginalPatterns));

  typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>>
      DepsAndVariants;
  std::map<unsigned, DepsAndVariants> PatternsWithVariants;

  // Collect patterns with more than one variant.
  for (unsigned i = 0; i != NumOriginalPatterns; ++i) {
    MultipleUseVarSet DepVars;
    std::vector<TreePatternNodePtr> Variants;
    FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
    LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
    LLVM_DEBUG(DumpDepVars(DepVars));
    LLVM_DEBUG(errs() << "\n");
    GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
                       *this, DepVars);

    assert(!Variants.empty() && "Must create at least original variant!");
    if (Variants.size() == 1) // No additional variants for this pattern.
      continue;

    LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
               PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");

    PatternsWithVariants[i] = std::make_pair(DepVars, Variants);

    // Cache matching predicates.
    if (MatchedPatterns[i])
      continue;

    const std::vector<Predicate> &Predicates =
        PatternsToMatch[i].getPredicates();

    BitVector &Matches = MatchedPredicates[i];
    MatchedPatterns.set(i);
    Matches.set(i);

    // Don't test patterns that have already been cached - it won't match.
    for (unsigned p = 0; p != NumOriginalPatterns; ++p)
      if (!MatchedPatterns[p])
        Matches[p] = (Predicates == PatternsToMatch[p].getPredicates());

    // Copy this to all the matching patterns.
    for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p))
      if (p != (int)i) {
        MatchedPatterns.set(p);
        MatchedPredicates[p] = Matches;
      }
  }

  for (auto it : PatternsWithVariants) {
    unsigned i = it.first;
    const MultipleUseVarSet &DepVars = it.second.first;
    const std::vector<TreePatternNodePtr> &Variants = it.second.second;

    for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
      TreePatternNodePtr Variant = Variants[v];
      BitVector &Matches = MatchedPredicates[i];

      LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump();
                 errs() << "\n");

      // Scan to see if an instruction or explicit pattern already matches this.
      bool AlreadyExists = false;
      for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
        // Skip if the top level predicates do not match.
        if (!Matches[p])
          continue;
        // Check to see if this variant already exists.
        if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
                                    DepVars)) {
          LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
          AlreadyExists = true;
          break;
        }
      }
      // If we already have it, ignore the variant.
      if (AlreadyExists) continue;

      // Otherwise, add it to the list of patterns we have.
      PatternsToMatch.push_back(PatternToMatch(
          PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
          Variant, PatternsToMatch[i].getDstPatternShared(),
          PatternsToMatch[i].getDstRegs(),
          PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
      MatchedPredicates.push_back(Matches);

      // Add a new match the same as this pattern.
      for (auto &P : MatchedPredicates)
        P.push_back(P[i]);
    }

    LLVM_DEBUG(errs() << "\n");
  }
}