reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
//===------ ZoneAlgo.cpp ----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Derive information about array elements between statements ("Zones").
//
// The algorithms here work on the scatter space - the image space of the
// schedule returned by Scop::getSchedule(). We call an element in that space a
// "timepoint". Timepoints are lexicographically ordered such that we can
// defined ranges in the scatter space. We use two flavors of such ranges:
// Timepoint sets and zones. A timepoint set is simply a subset of the scatter
// space and is directly stored as isl_set.
//
// Zones are used to describe the space between timepoints as open sets, i.e.
// they do not contain the extrema. Using isl rational sets to express these
// would be overkill. We also cannot store them as the integer timepoints they
// contain; the (nonempty) zone between 1 and 2 would be empty and
// indistinguishable from e.g. the zone between 3 and 4. Also, we cannot store
// the integer set including the extrema; the set ]1,2[ + ]3,4[ could be
// coalesced to ]1,3[, although we defined the range [2,3] to be not in the set.
// Instead, we store the "half-open" integer extrema, including the lower bound,
// but excluding the upper bound. Examples:
//
// * The set { [i] : 1 <= i <= 3 } represents the zone ]0,3[ (which contains the
//   integer points 1 and 2, but not 0 or 3)
//
// * { [1] } represents the zone ]0,1[
//
// * { [i] : i = 1 or i = 3 } represents the zone ]0,1[ + ]2,3[
//
// Therefore, an integer i in the set represents the zone ]i-1,i[, i.e. strictly
// speaking the integer points never belong to the zone. However, depending an
// the interpretation, one might want to include them. Part of the
// interpretation may not be known when the zone is constructed.
//
// Reads are assumed to always take place before writes, hence we can think of
// reads taking place at the beginning of a timepoint and writes at the end.
//
// Let's assume that the zone represents the lifetime of a variable. That is,
// the zone begins with a write that defines the value during its lifetime and
// ends with the last read of that value. In the following we consider whether a
// read/write at the beginning/ending of the lifetime zone should be within the
// zone or outside of it.
//
// * A read at the timepoint that starts the live-range loads the previous
//   value. Hence, exclude the timepoint starting the zone.
//
// * A write at the timepoint that starts the live-range is not defined whether
//   it occurs before or after the write that starts the lifetime. We do not
//   allow this situation to occur. Hence, we include the timepoint starting the
//   zone to determine whether they are conflicting.
//
// * A read at the timepoint that ends the live-range reads the same variable.
//   We include the timepoint at the end of the zone to include that read into
//   the live-range. Doing otherwise would mean that the two reads access
//   different values, which would mean that the value they read are both alive
//   at the same time but occupy the same variable.
//
// * A write at the timepoint that ends the live-range starts a new live-range.
//   It must not be included in the live-range of the previous definition.
//
// All combinations of reads and writes at the endpoints are possible, but most
// of the time only the write->read (for instance, a live-range from definition
// to last use) and read->write (for instance, an unused range from last use to
// overwrite) and combinations are interesting (half-open ranges). write->write
// zones might be useful as well in some context to represent
// output-dependencies.
//
// @see convertZoneToTimepoints
//
//
// The code makes use of maps and sets in many different spaces. To not loose
// track in which space a set or map is expected to be in, variables holding an
// isl reference are usually annotated in the comments. They roughly follow isl
// syntax for spaces, but only the tuples, not the dimensions. The tuples have a
// meaning as follows:
//
// * Space[] - An unspecified tuple. Used for function parameters such that the
//             function caller can use it for anything they like.
//
// * Domain[] - A statement instance as returned by ScopStmt::getDomain()
//     isl_id_get_name: Stmt_<NameOfBasicBlock>
//     isl_id_get_user: Pointer to ScopStmt
//
// * Element[] - An array element as in the range part of
//               MemoryAccess::getAccessRelation()
//     isl_id_get_name: MemRef_<NameOfArrayVariable>
//     isl_id_get_user: Pointer to ScopArrayInfo
//
// * Scatter[] - Scatter space or space of timepoints
//     Has no tuple id
//
// * Zone[] - Range between timepoints as described above
//     Has no tuple id
//
// * ValInst[] - An llvm::Value as defined at a specific timepoint.
//
//     A ValInst[] itself can be structured as one of:
//
//     * [] - An unknown value.
//         Always zero dimensions
//         Has no tuple id
//
//     * Value[] - An llvm::Value that is read-only in the SCoP, i.e. its
//                 runtime content does not depend on the timepoint.
//         Always zero dimensions
//         isl_id_get_name: Val_<NameOfValue>
//         isl_id_get_user: A pointer to an llvm::Value
//
//     * SCEV[...] - A synthesizable llvm::SCEV Expression.
//         In contrast to a Value[] is has at least one dimension per
//         SCEVAddRecExpr in the SCEV.
//
//     * [Domain[] -> Value[]] - An llvm::Value that may change during the
//                               Scop's execution.
//         The tuple itself has no id, but it wraps a map space holding a
//         statement instance which defines the llvm::Value as the map's domain
//         and llvm::Value itself as range.
//
// @see makeValInst()
//
// An annotation "{ Domain[] -> Scatter[] }" therefore means: A map from a
// statement instance to a timepoint, aka a schedule. There is only one scatter
// space, but most of the time multiple statements are processed in one set.
// This is why most of the time isl_union_map has to be used.
//
// The basic algorithm works as follows:
// At first we verify that the SCoP is compatible with this technique. For
// instance, two writes cannot write to the same location at the same statement
// instance because we cannot determine within the polyhedral model which one
// comes first. Once this was verified, we compute zones at which an array
// element is unused. This computation can fail if it takes too long. Then the
// main algorithm is executed. Because every store potentially trails an unused
// zone, we start at stores. We search for a scalar (MemoryKind::Value or
// MemoryKind::PHI) that we can map to the array element overwritten by the
// store, preferably one that is used by the store or at least the ScopStmt.
// When it does not conflict with the lifetime of the values in the array
// element, the map is applied and the unused zone updated as it is now used. We
// continue to try to map scalars to the array element until there are no more
// candidates to map. The algorithm is greedy in the sense that the first scalar
// not conflicting will be mapped. Other scalars processed later that could have
// fit the same unused zone will be rejected. As such the result depends on the
// processing order.
//
//===----------------------------------------------------------------------===//

#include "polly/ZoneAlgo.h"
#include "polly/ScopInfo.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/ISLTools.h"
#include "polly/Support/VirtualInstruction.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/raw_ostream.h"

#define DEBUG_TYPE "polly-zone"

STATISTIC(NumIncompatibleArrays, "Number of not zone-analyzable arrays");
STATISTIC(NumCompatibleArrays, "Number of zone-analyzable arrays");
STATISTIC(NumRecursivePHIs, "Number of recursive PHIs");
STATISTIC(NumNormalizablePHIs, "Number of normalizable PHIs");
STATISTIC(NumPHINormialization, "Number of PHI executed normalizations");

using namespace polly;
using namespace llvm;

static isl::union_map computeReachingDefinition(isl::union_map Schedule,
                                                isl::union_map Writes,
                                                bool InclDef, bool InclRedef) {
  return computeReachingWrite(Schedule, Writes, false, InclDef, InclRedef);
}

/// Compute the reaching definition of a scalar.
///
/// Compared to computeReachingDefinition, there is just one element which is
/// accessed and therefore only a set if instances that accesses that element is
/// required.
///
/// @param Schedule  { DomainWrite[] -> Scatter[] }
/// @param Writes    { DomainWrite[] }
/// @param InclDef   Include the timepoint of the definition to the result.
/// @param InclRedef Include the timepoint of the overwrite into the result.
///
/// @return { Scatter[] -> DomainWrite[] }
static isl::union_map computeScalarReachingDefinition(isl::union_map Schedule,
                                                      isl::union_set Writes,
                                                      bool InclDef,
                                                      bool InclRedef) {
  // { DomainWrite[] -> Element[] }
  isl::union_map Defs = isl::union_map::from_domain(Writes);

  // { [Element[] -> Scatter[]] -> DomainWrite[] }
  auto ReachDefs =
      computeReachingDefinition(Schedule, Defs, InclDef, InclRedef);

  // { Scatter[] -> DomainWrite[] }
  return ReachDefs.curry().range().unwrap();
}

/// Compute the reaching definition of a scalar.
///
/// This overload accepts only a single writing statement as an isl_map,
/// consequently the result also is only a single isl_map.
///
/// @param Schedule  { DomainWrite[] -> Scatter[] }
/// @param Writes    { DomainWrite[] }
/// @param InclDef   Include the timepoint of the definition to the result.
/// @param InclRedef Include the timepoint of the overwrite into the result.
///
/// @return { Scatter[] -> DomainWrite[] }
static isl::map computeScalarReachingDefinition(isl::union_map Schedule,
                                                isl::set Writes, bool InclDef,
                                                bool InclRedef) {
  isl::space DomainSpace = Writes.get_space();
  isl::space ScatterSpace = getScatterSpace(Schedule);

  //  { Scatter[] -> DomainWrite[] }
  isl::union_map UMap = computeScalarReachingDefinition(
      Schedule, isl::union_set(Writes), InclDef, InclRedef);

  isl::space ResultSpace = ScatterSpace.map_from_domain_and_range(DomainSpace);
  return singleton(UMap, ResultSpace);
}

isl::union_map polly::makeUnknownForDomain(isl::union_set Domain) {
  return isl::union_map::from_domain(Domain);
}

/// Create a domain-to-unknown value mapping.
///
/// @see makeUnknownForDomain(isl::union_set)
///
/// @param Domain { Domain[] }
///
/// @return { Domain[] -> ValInst[] }
static isl::map makeUnknownForDomain(isl::set Domain) {
  return isl::map::from_domain(Domain);
}

/// Return whether @p Map maps to an unknown value.
///
/// @param { [] -> ValInst[] }
static bool isMapToUnknown(const isl::map &Map) {
  isl::space Space = Map.get_space().range();
  return Space.has_tuple_id(isl::dim::set).is_false() &&
         Space.is_wrapping().is_false() && Space.dim(isl::dim::set) == 0;
}

isl::union_map polly::filterKnownValInst(const isl::union_map &UMap) {
  isl::union_map Result = isl::union_map::empty(UMap.get_space());
  for (isl::map Map : UMap.get_map_list()) {
    if (!isMapToUnknown(Map))
      Result = Result.add_map(Map);
  }
  return Result;
}

ZoneAlgorithm::ZoneAlgorithm(const char *PassName, Scop *S, LoopInfo *LI)
    : PassName(PassName), IslCtx(S->getSharedIslCtx()), S(S), LI(LI),
      Schedule(S->getSchedule()) {
  auto Domains = S->getDomains();

  Schedule = Schedule.intersect_domain(Domains);
  ParamSpace = Schedule.get_space();
  ScatterSpace = getScatterSpace(Schedule);
}

/// Check if all stores in @p Stmt store the very same value.
///
/// This covers a special situation occurring in Polybench's
/// covariance/correlation (which is typical for algorithms that cover symmetric
/// matrices):
///
/// for (int i = 0; i < n; i += 1)
/// 	for (int j = 0; j <= i; j += 1) {
/// 		double x = ...;
/// 		C[i][j] = x;
/// 		C[j][i] = x;
/// 	}
///
/// For i == j, the same value is written twice to the same element.Double
/// writes to the same element are not allowed in DeLICM because its algorithm
/// does not see which of the writes is effective.But if its the same value
/// anyway, it doesn't matter.
///
/// LLVM passes, however, cannot simplify this because the write is necessary
/// for i != j (unless it would add a condition for one of the writes to occur
/// only if i != j).
///
/// TODO: In the future we may want to extent this to make the checks
///       specific to different memory locations.
static bool onlySameValueWrites(ScopStmt *Stmt) {
  Value *V = nullptr;

  for (auto *MA : *Stmt) {
    if (!MA->isLatestArrayKind() || !MA->isMustWrite() ||
        !MA->isOriginalArrayKind())
      continue;

    if (!V) {
      V = MA->getAccessValue();
      continue;
    }

    if (V != MA->getAccessValue())
      return false;
  }
  return true;
}

/// Is @p InnerLoop nested inside @p OuterLoop?
static bool isInsideLoop(Loop *OuterLoop, Loop *InnerLoop) {
  // If OuterLoop is nullptr, we cannot call its contains() method. In this case
  // OuterLoop represents the 'top level' and therefore contains all loop.
  return !OuterLoop || OuterLoop->contains(InnerLoop);
}

void ZoneAlgorithm::collectIncompatibleElts(ScopStmt *Stmt,
                                            isl::union_set &IncompatibleElts,
                                            isl::union_set &AllElts) {
  auto Stores = makeEmptyUnionMap();
  auto Loads = makeEmptyUnionMap();

  // This assumes that the MemoryKind::Array MemoryAccesses are iterated in
  // order.
  for (auto *MA : *Stmt) {
    if (!MA->isOriginalArrayKind())
      continue;

    isl::map AccRelMap = getAccessRelationFor(MA);
    isl::union_map AccRel = AccRelMap;

    // To avoid solving any ILP problems, always add entire arrays instead of
    // just the elements that are accessed.
    auto ArrayElts = isl::set::universe(AccRelMap.get_space().range());
    AllElts = AllElts.add_set(ArrayElts);

    if (MA->isRead()) {
      // Reject load after store to same location.
      if (!Stores.is_disjoint(AccRel)) {
        LLVM_DEBUG(
            dbgs() << "Load after store of same element in same statement\n");
        OptimizationRemarkMissed R(PassName, "LoadAfterStore",
                                   MA->getAccessInstruction());
        R << "load after store of same element in same statement";
        R << " (previous stores: " << Stores;
        R << ", loading: " << AccRel << ")";
        S->getFunction().getContext().diagnose(R);

        IncompatibleElts = IncompatibleElts.add_set(ArrayElts);
      }

      Loads = Loads.unite(AccRel);

      continue;
    }

    // In region statements the order is less clear, eg. the load and store
    // might be in a boxed loop.
    if (Stmt->isRegionStmt() && !Loads.is_disjoint(AccRel)) {
      LLVM_DEBUG(dbgs() << "WRITE in non-affine subregion not supported\n");
      OptimizationRemarkMissed R(PassName, "StoreInSubregion",
                                 MA->getAccessInstruction());
      R << "store is in a non-affine subregion";
      S->getFunction().getContext().diagnose(R);

      IncompatibleElts = IncompatibleElts.add_set(ArrayElts);
    }

    // Do not allow more than one store to the same location.
    if (!Stores.is_disjoint(AccRel) && !onlySameValueWrites(Stmt)) {
      LLVM_DEBUG(dbgs() << "WRITE after WRITE to same element\n");
      OptimizationRemarkMissed R(PassName, "StoreAfterStore",
                                 MA->getAccessInstruction());
      R << "store after store of same element in same statement";
      R << " (previous stores: " << Stores;
      R << ", storing: " << AccRel << ")";
      S->getFunction().getContext().diagnose(R);

      IncompatibleElts = IncompatibleElts.add_set(ArrayElts);
    }

    Stores = Stores.unite(AccRel);
  }
}

void ZoneAlgorithm::addArrayReadAccess(MemoryAccess *MA) {
  assert(MA->isLatestArrayKind());
  assert(MA->isRead());
  ScopStmt *Stmt = MA->getStatement();

  // { DomainRead[] -> Element[] }
  auto AccRel = intersectRange(getAccessRelationFor(MA), CompatibleElts);
  AllReads = AllReads.add_map(AccRel);

  if (LoadInst *Load = dyn_cast_or_null<LoadInst>(MA->getAccessInstruction())) {
    // { DomainRead[] -> ValInst[] }
    isl::map LoadValInst = makeValInst(
        Load, Stmt, LI->getLoopFor(Load->getParent()), Stmt->isBlockStmt());

    // { DomainRead[] -> [Element[] -> DomainRead[]] }
    isl::map IncludeElement = AccRel.domain_map().curry();

    // { [Element[] -> DomainRead[]] -> ValInst[] }
    isl::map EltLoadValInst = LoadValInst.apply_domain(IncludeElement);

    AllReadValInst = AllReadValInst.add_map(EltLoadValInst);
  }
}

isl::union_map ZoneAlgorithm::getWrittenValue(MemoryAccess *MA,
                                              isl::map AccRel) {
  if (!MA->isMustWrite())
    return {};

  Value *AccVal = MA->getAccessValue();
  ScopStmt *Stmt = MA->getStatement();
  Instruction *AccInst = MA->getAccessInstruction();

  // Write a value to a single element.
  auto L = MA->isOriginalArrayKind() ? LI->getLoopFor(AccInst->getParent())
                                     : Stmt->getSurroundingLoop();
  if (AccVal &&
      AccVal->getType() == MA->getLatestScopArrayInfo()->getElementType() &&
      AccRel.is_single_valued().is_true())
    return makeNormalizedValInst(AccVal, Stmt, L);

  // memset(_, '0', ) is equivalent to writing the null value to all touched
  // elements. isMustWrite() ensures that all of an element's bytes are
  // overwritten.
  if (auto *Memset = dyn_cast<MemSetInst>(AccInst)) {
    auto *WrittenConstant = dyn_cast<Constant>(Memset->getValue());
    Type *Ty = MA->getLatestScopArrayInfo()->getElementType();
    if (WrittenConstant && WrittenConstant->isZeroValue()) {
      Constant *Zero = Constant::getNullValue(Ty);
      return makeNormalizedValInst(Zero, Stmt, L);
    }
  }

  return {};
}

void ZoneAlgorithm::addArrayWriteAccess(MemoryAccess *MA) {
  assert(MA->isLatestArrayKind());
  assert(MA->isWrite());
  auto *Stmt = MA->getStatement();

  // { Domain[] -> Element[] }
  isl::map AccRel = intersectRange(getAccessRelationFor(MA), CompatibleElts);

  if (MA->isMustWrite())
    AllMustWrites = AllMustWrites.add_map(AccRel);

  if (MA->isMayWrite())
    AllMayWrites = AllMayWrites.add_map(AccRel);

  // { Domain[] -> ValInst[] }
  isl::union_map WriteValInstance = getWrittenValue(MA, AccRel);
  if (!WriteValInstance)
    WriteValInstance = makeUnknownForDomain(Stmt);

  // { Domain[] -> [Element[] -> Domain[]] }
  isl::map IncludeElement = AccRel.domain_map().curry();

  // { [Element[] -> DomainWrite[]] -> ValInst[] }
  isl::union_map EltWriteValInst =
      WriteValInstance.apply_domain(IncludeElement);

  AllWriteValInst = AllWriteValInst.unite(EltWriteValInst);
}

/// For an llvm::Value defined in @p DefStmt, compute the RAW dependency for a
/// use in every instance of @p UseStmt.
///
/// @param UseStmt Statement a scalar is used in.
/// @param DefStmt Statement a scalar is defined in.
///
/// @return { DomainUse[] -> DomainDef[] }
isl::map ZoneAlgorithm::computeUseToDefFlowDependency(ScopStmt *UseStmt,
                                                      ScopStmt *DefStmt) {
  // { DomainUse[] -> Scatter[] }
  isl::map UseScatter = getScatterFor(UseStmt);

  // { Zone[] -> DomainDef[] }
  isl::map ReachDefZone = getScalarReachingDefinition(DefStmt);

  // { Scatter[] -> DomainDef[] }
  isl::map ReachDefTimepoints =
      convertZoneToTimepoints(ReachDefZone, isl::dim::in, false, true);

  // { DomainUse[] -> DomainDef[] }
  return UseScatter.apply_range(ReachDefTimepoints);
}

/// Return whether @p PHI refers (also transitively through other PHIs) to
/// itself.
///
/// loop:
///   %phi1 = phi [0, %preheader], [%phi1, %loop]
///   br i1 %c, label %loop, label %exit
///
/// exit:
///   %phi2 = phi [%phi1, %bb]
///
/// In this example, %phi1 is recursive, but %phi2 is not.
static bool isRecursivePHI(const PHINode *PHI) {
  SmallVector<const PHINode *, 8> Worklist;
  SmallPtrSet<const PHINode *, 8> Visited;
  Worklist.push_back(PHI);

  while (!Worklist.empty()) {
    const PHINode *Cur = Worklist.pop_back_val();

    if (Visited.count(Cur))
      continue;
    Visited.insert(Cur);

    for (const Use &Incoming : Cur->incoming_values()) {
      Value *IncomingVal = Incoming.get();
      auto *IncomingPHI = dyn_cast<PHINode>(IncomingVal);
      if (!IncomingPHI)
        continue;

      if (IncomingPHI == PHI)
        return true;
      Worklist.push_back(IncomingPHI);
    }
  }
  return false;
}

isl::union_map ZoneAlgorithm::computePerPHI(const ScopArrayInfo *SAI) {
  // TODO: If the PHI has an incoming block from before the SCoP, it is not
  // represented in any ScopStmt.

  auto *PHI = cast<PHINode>(SAI->getBasePtr());
  auto It = PerPHIMaps.find(PHI);
  if (It != PerPHIMaps.end())
    return It->second;

  assert(SAI->isPHIKind());

  // { DomainPHIWrite[] -> Scatter[] }
  isl::union_map PHIWriteScatter = makeEmptyUnionMap();

  // Collect all incoming block timepoints.
  for (MemoryAccess *MA : S->getPHIIncomings(SAI)) {
    isl::map Scatter = getScatterFor(MA);
    PHIWriteScatter = PHIWriteScatter.add_map(Scatter);
  }

  // { DomainPHIRead[] -> Scatter[] }
  isl::map PHIReadScatter = getScatterFor(S->getPHIRead(SAI));

  // { DomainPHIRead[] -> Scatter[] }
  isl::map BeforeRead = beforeScatter(PHIReadScatter, true);

  // { Scatter[] }
  isl::set WriteTimes = singleton(PHIWriteScatter.range(), ScatterSpace);

  // { DomainPHIRead[] -> Scatter[] }
  isl::map PHIWriteTimes = BeforeRead.intersect_range(WriteTimes);

  // Remove instances outside the context.
  PHIWriteTimes = PHIWriteTimes.intersect_params(S->getAssumedContext());
  PHIWriteTimes = subtractParams(PHIWriteTimes, S->getInvalidContext());

  isl::map LastPerPHIWrites = PHIWriteTimes.lexmax();

  // { DomainPHIRead[] -> DomainPHIWrite[] }
  isl::union_map Result =
      isl::union_map(LastPerPHIWrites).apply_range(PHIWriteScatter.reverse());
  assert(!Result.is_single_valued().is_false());
  assert(!Result.is_injective().is_false());

  PerPHIMaps.insert({PHI, Result});
  return Result;
}

isl::union_set ZoneAlgorithm::makeEmptyUnionSet() const {
  return isl::union_set::empty(ParamSpace);
}

isl::union_map ZoneAlgorithm::makeEmptyUnionMap() const {
  return isl::union_map::empty(ParamSpace);
}

void ZoneAlgorithm::collectCompatibleElts() {
  // First find all the incompatible elements, then take the complement.
  // We compile the list of compatible (rather than incompatible) elements so
  // users can intersect with the list, not requiring a subtract operation. It
  // also allows us to define a 'universe' of all elements and makes it more
  // explicit in which array elements can be used.
  isl::union_set AllElts = makeEmptyUnionSet();
  isl::union_set IncompatibleElts = makeEmptyUnionSet();

  for (auto &Stmt : *S)
    collectIncompatibleElts(&Stmt, IncompatibleElts, AllElts);

  NumIncompatibleArrays += isl_union_set_n_set(IncompatibleElts.get());
  CompatibleElts = AllElts.subtract(IncompatibleElts);
  NumCompatibleArrays += isl_union_set_n_set(CompatibleElts.get());
}

isl::map ZoneAlgorithm::getScatterFor(ScopStmt *Stmt) const {
  isl::space ResultSpace =
      Stmt->getDomainSpace().map_from_domain_and_range(ScatterSpace);
  return Schedule.extract_map(ResultSpace);
}

isl::map ZoneAlgorithm::getScatterFor(MemoryAccess *MA) const {
  return getScatterFor(MA->getStatement());
}

isl::union_map ZoneAlgorithm::getScatterFor(isl::union_set Domain) const {
  return Schedule.intersect_domain(Domain);
}

isl::map ZoneAlgorithm::getScatterFor(isl::set Domain) const {
  auto ResultSpace = Domain.get_space().map_from_domain_and_range(ScatterSpace);
  auto UDomain = isl::union_set(Domain);
  auto UResult = getScatterFor(std::move(UDomain));
  auto Result = singleton(std::move(UResult), std::move(ResultSpace));
  assert(!Result || Result.domain().is_equal(Domain) == isl_bool_true);
  return Result;
}

isl::set ZoneAlgorithm::getDomainFor(ScopStmt *Stmt) const {
  return Stmt->getDomain().remove_redundancies();
}

isl::set ZoneAlgorithm::getDomainFor(MemoryAccess *MA) const {
  return getDomainFor(MA->getStatement());
}

isl::map ZoneAlgorithm::getAccessRelationFor(MemoryAccess *MA) const {
  auto Domain = getDomainFor(MA);
  auto AccRel = MA->getLatestAccessRelation();
  return AccRel.intersect_domain(Domain);
}

isl::map ZoneAlgorithm::getDefToTarget(ScopStmt *DefStmt,
                                       ScopStmt *TargetStmt) {
  // No translation required if the definition is already at the target.
  if (TargetStmt == DefStmt)
    return isl::map::identity(
        getDomainFor(TargetStmt).get_space().map_from_set());

  isl::map &Result = DefToTargetCache[std::make_pair(TargetStmt, DefStmt)];

  // This is a shortcut in case the schedule is still the original and
  // TargetStmt is in the same or nested inside DefStmt's loop. With the
  // additional assumption that operand trees do not cross DefStmt's loop
  // header, then TargetStmt's instance shared coordinates are the same as
  // DefStmt's coordinates. All TargetStmt instances with this prefix share
  // the same DefStmt instance.
  // Model:
  //
  //   for (int i < 0; i < N; i+=1) {
  // DefStmt:
  //    D = ...;
  //    for (int j < 0; j < N; j+=1) {
  // TargetStmt:
  //      use(D);
  //    }
  //  }
  //
  // Here, the value used in TargetStmt is defined in the corresponding
  // DefStmt, i.e.
  //
  //   { DefStmt[i] -> TargetStmt[i,j] }
  //
  // In practice, this should cover the majority of cases.
  if (!Result && S->isOriginalSchedule() &&
      isInsideLoop(DefStmt->getSurroundingLoop(),
                   TargetStmt->getSurroundingLoop())) {
    isl::set DefDomain = getDomainFor(DefStmt);
    isl::set TargetDomain = getDomainFor(TargetStmt);
    assert(DefDomain.dim(isl::dim::set) <= TargetDomain.dim(isl::dim::set));

    Result = isl::map::from_domain_and_range(DefDomain, TargetDomain);
    for (unsigned i = 0, DefDims = DefDomain.dim(isl::dim::set); i < DefDims;
         i += 1)
      Result = Result.equate(isl::dim::in, i, isl::dim::out, i);
  }

  if (!Result) {
    // { DomainDef[] -> DomainTarget[] }
    Result = computeUseToDefFlowDependency(TargetStmt, DefStmt).reverse();
    simplify(Result);
  }

  return Result;
}

isl::map ZoneAlgorithm::getScalarReachingDefinition(ScopStmt *Stmt) {
  auto &Result = ScalarReachDefZone[Stmt];
  if (Result)
    return Result;

  auto Domain = getDomainFor(Stmt);
  Result = computeScalarReachingDefinition(Schedule, Domain, false, true);
  simplify(Result);

  return Result;
}

isl::map ZoneAlgorithm::getScalarReachingDefinition(isl::set DomainDef) {
  auto DomId = DomainDef.get_tuple_id();
  auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(DomId.get()));

  auto StmtResult = getScalarReachingDefinition(Stmt);

  return StmtResult.intersect_range(DomainDef);
}

isl::map ZoneAlgorithm::makeUnknownForDomain(ScopStmt *Stmt) const {
  return ::makeUnknownForDomain(getDomainFor(Stmt));
}

isl::id ZoneAlgorithm::makeValueId(Value *V) {
  if (!V)
    return nullptr;

  auto &Id = ValueIds[V];
  if (Id.is_null()) {
    auto Name = getIslCompatibleName("Val_", V, ValueIds.size() - 1,
                                     std::string(), UseInstructionNames);
    Id = isl::id::alloc(IslCtx.get(), Name.c_str(), V);
  }
  return Id;
}

isl::space ZoneAlgorithm::makeValueSpace(Value *V) {
  auto Result = ParamSpace.set_from_params();
  return Result.set_tuple_id(isl::dim::set, makeValueId(V));
}

isl::set ZoneAlgorithm::makeValueSet(Value *V) {
  auto Space = makeValueSpace(V);
  return isl::set::universe(Space);
}

isl::map ZoneAlgorithm::makeValInst(Value *Val, ScopStmt *UserStmt, Loop *Scope,
                                    bool IsCertain) {
  // If the definition/write is conditional, the value at the location could
  // be either the written value or the old value. Since we cannot know which
  // one, consider the value to be unknown.
  if (!IsCertain)
    return makeUnknownForDomain(UserStmt);

  auto DomainUse = getDomainFor(UserStmt);
  auto VUse = VirtualUse::create(S, UserStmt, Scope, Val, true);
  switch (VUse.getKind()) {
  case VirtualUse::Constant:
  case VirtualUse::Block:
  case VirtualUse::Hoisted:
  case VirtualUse::ReadOnly: {
    // The definition does not depend on the statement which uses it.
    auto ValSet = makeValueSet(Val);
    return isl::map::from_domain_and_range(DomainUse, ValSet);
  }

  case VirtualUse::Synthesizable: {
    auto *ScevExpr = VUse.getScevExpr();
    auto UseDomainSpace = DomainUse.get_space();

    // Construct the SCEV space.
    // TODO: Add only the induction variables referenced in SCEVAddRecExpr
    // expressions, not just all of them.
    auto ScevId = isl::manage(isl_id_alloc(
        UseDomainSpace.get_ctx().get(), nullptr, const_cast<SCEV *>(ScevExpr)));

    auto ScevSpace = UseDomainSpace.drop_dims(isl::dim::set, 0, 0);
    ScevSpace = ScevSpace.set_tuple_id(isl::dim::set, ScevId);

    // { DomainUse[] -> ScevExpr[] }
    auto ValInst =
        isl::map::identity(UseDomainSpace.map_from_domain_and_range(ScevSpace));
    return ValInst;
  }

  case VirtualUse::Intra: {
    // Definition and use is in the same statement. We do not need to compute
    // a reaching definition.

    // { llvm::Value }
    auto ValSet = makeValueSet(Val);

    // {  UserDomain[] -> llvm::Value }
    auto ValInstSet = isl::map::from_domain_and_range(DomainUse, ValSet);

    // { UserDomain[] -> [UserDomain[] - >llvm::Value] }
    auto Result = ValInstSet.domain_map().reverse();
    simplify(Result);
    return Result;
  }

  case VirtualUse::Inter: {
    // The value is defined in a different statement.

    auto *Inst = cast<Instruction>(Val);
    auto *ValStmt = S->getStmtFor(Inst);

    // If the llvm::Value is defined in a removed Stmt, we cannot derive its
    // domain. We could use an arbitrary statement, but this could result in
    // different ValInst[] for the same llvm::Value.
    if (!ValStmt)
      return ::makeUnknownForDomain(DomainUse);

    // { DomainUse[] -> DomainDef[] }
    auto UsedInstance = getDefToTarget(ValStmt, UserStmt).reverse();

    // { llvm::Value }
    auto ValSet = makeValueSet(Val);

    // { DomainUse[] -> llvm::Value[] }
    auto ValInstSet = isl::map::from_domain_and_range(DomainUse, ValSet);

    // { DomainUse[] -> [DomainDef[] -> llvm::Value]  }
    auto Result = UsedInstance.range_product(ValInstSet);

    simplify(Result);
    return Result;
  }
  }
  llvm_unreachable("Unhandled use type");
}

/// Remove all computed PHIs out of @p Input and replace by their incoming
/// value.
///
/// @param Input        { [] -> ValInst[] }
/// @param ComputedPHIs Set of PHIs that are replaced. Its ValInst must appear
///                     on the LHS of @p NormalizeMap.
/// @param NormalizeMap { ValInst[] -> ValInst[] }
static isl::union_map normalizeValInst(isl::union_map Input,
                                       const DenseSet<PHINode *> &ComputedPHIs,
                                       isl::union_map NormalizeMap) {
  isl::union_map Result = isl::union_map::empty(Input.get_space());
  for (isl::map Map : Input.get_map_list()) {
    isl::space Space = Map.get_space();
    isl::space RangeSpace = Space.range();

    // Instructions within the SCoP are always wrapped. Non-wrapped tuples
    // are therefore invariant in the SCoP and don't need normalization.
    if (!RangeSpace.is_wrapping()) {
      Result = Result.add_map(Map);
      continue;
    }

    auto *PHI = dyn_cast<PHINode>(static_cast<Value *>(
        RangeSpace.unwrap().get_tuple_id(isl::dim::out).get_user()));

    // If no normalization is necessary, then the ValInst stands for itself.
    if (!ComputedPHIs.count(PHI)) {
      Result = Result.add_map(Map);
      continue;
    }

    // Otherwise, apply the normalization.
    isl::union_map Mapped = isl::union_map(Map).apply_range(NormalizeMap);
    Result = Result.unite(Mapped);
    NumPHINormialization++;
  }
  return Result;
}

isl::union_map ZoneAlgorithm::makeNormalizedValInst(llvm::Value *Val,
                                                    ScopStmt *UserStmt,
                                                    llvm::Loop *Scope,
                                                    bool IsCertain) {
  isl::map ValInst = makeValInst(Val, UserStmt, Scope, IsCertain);
  isl::union_map Normalized =
      normalizeValInst(ValInst, ComputedPHIs, NormalizeMap);
  return Normalized;
}

bool ZoneAlgorithm::isCompatibleAccess(MemoryAccess *MA) {
  if (!MA)
    return false;
  if (!MA->isLatestArrayKind())
    return false;
  Instruction *AccInst = MA->getAccessInstruction();
  return isa<StoreInst>(AccInst) || isa<LoadInst>(AccInst);
}

bool ZoneAlgorithm::isNormalizable(MemoryAccess *MA) {
  assert(MA->isRead());

  // Exclude ExitPHIs, we are assuming that a normalizable PHI has a READ
  // MemoryAccess.
  if (!MA->isOriginalPHIKind())
    return false;

  // Exclude recursive PHIs, normalizing them would require a transitive
  // closure.
  auto *PHI = cast<PHINode>(MA->getAccessInstruction());
  if (RecursivePHIs.count(PHI))
    return false;

  // Ensure that each incoming value can be represented by a ValInst[].
  // We do represent values from statements associated to multiple incoming
  // value by the PHI itself, but we do not handle this case yet (especially
  // isNormalized()) when normalizing.
  const ScopArrayInfo *SAI = MA->getOriginalScopArrayInfo();
  auto Incomings = S->getPHIIncomings(SAI);
  for (MemoryAccess *Incoming : Incomings) {
    if (Incoming->getIncoming().size() != 1)
      return false;
  }

  return true;
}

isl::boolean ZoneAlgorithm::isNormalized(isl::map Map) {
  isl::space Space = Map.get_space();
  isl::space RangeSpace = Space.range();

  isl::boolean IsWrapping = RangeSpace.is_wrapping();
  if (!IsWrapping.is_true())
    return !IsWrapping;
  isl::space Unwrapped = RangeSpace.unwrap();

  isl::id OutTupleId = Unwrapped.get_tuple_id(isl::dim::out);
  if (OutTupleId.is_null())
    return isl::boolean();
  auto *PHI = dyn_cast<PHINode>(static_cast<Value *>(OutTupleId.get_user()));
  if (!PHI)
    return true;

  isl::id InTupleId = Unwrapped.get_tuple_id(isl::dim::in);
  if (OutTupleId.is_null())
    return isl::boolean();
  auto *IncomingStmt = static_cast<ScopStmt *>(InTupleId.get_user());
  MemoryAccess *PHIRead = IncomingStmt->lookupPHIReadOf(PHI);
  if (!isNormalizable(PHIRead))
    return true;

  return false;
}

isl::boolean ZoneAlgorithm::isNormalized(isl::union_map UMap) {
  isl::boolean Result = true;
  for (isl::map Map : UMap.get_map_list()) {
    Result = isNormalized(Map);
    if (Result.is_true())
      continue;
    break;
  }
  return Result;
}

void ZoneAlgorithm::computeCommon() {
  AllReads = makeEmptyUnionMap();
  AllMayWrites = makeEmptyUnionMap();
  AllMustWrites = makeEmptyUnionMap();
  AllWriteValInst = makeEmptyUnionMap();
  AllReadValInst = makeEmptyUnionMap();

  // Default to empty, i.e. no normalization/replacement is taking place. Call
  // computeNormalizedPHIs() to initialize.
  NormalizeMap = makeEmptyUnionMap();
  ComputedPHIs.clear();

  for (auto &Stmt : *S) {
    for (auto *MA : Stmt) {
      if (!MA->isLatestArrayKind())
        continue;

      if (MA->isRead())
        addArrayReadAccess(MA);

      if (MA->isWrite())
        addArrayWriteAccess(MA);
    }
  }

  // { DomainWrite[] -> Element[] }
  AllWrites = AllMustWrites.unite(AllMayWrites);

  // { [Element[] -> Zone[]] -> DomainWrite[] }
  WriteReachDefZone =
      computeReachingDefinition(Schedule, AllWrites, false, true);
  simplify(WriteReachDefZone);
}

void ZoneAlgorithm::computeNormalizedPHIs() {
  // Determine which PHIs can reference themselves. They are excluded from
  // normalization to avoid problems with transitive closures.
  for (ScopStmt &Stmt : *S) {
    for (MemoryAccess *MA : Stmt) {
      if (!MA->isPHIKind())
        continue;
      if (!MA->isRead())
        continue;

      // TODO: Can be more efficient since isRecursivePHI can theoretically
      // determine recursiveness for multiple values and/or cache results.
      auto *PHI = cast<PHINode>(MA->getAccessInstruction());
      if (isRecursivePHI(PHI)) {
        NumRecursivePHIs++;
        RecursivePHIs.insert(PHI);
      }
    }
  }

  // { PHIValInst[] -> IncomingValInst[] }
  isl::union_map AllPHIMaps = makeEmptyUnionMap();

  // Discover new PHIs and try to normalize them.
  DenseSet<PHINode *> AllPHIs;
  for (ScopStmt &Stmt : *S) {
    for (MemoryAccess *MA : Stmt) {
      if (!MA->isOriginalPHIKind())
        continue;
      if (!MA->isRead())
        continue;
      if (!isNormalizable(MA))
        continue;

      auto *PHI = cast<PHINode>(MA->getAccessInstruction());
      const ScopArrayInfo *SAI = MA->getOriginalScopArrayInfo();

      // { PHIDomain[] -> PHIValInst[] }
      isl::map PHIValInst = makeValInst(PHI, &Stmt, Stmt.getSurroundingLoop());

      // { IncomingDomain[] -> IncomingValInst[] }
      isl::union_map IncomingValInsts = makeEmptyUnionMap();

      // Get all incoming values.
      for (MemoryAccess *MA : S->getPHIIncomings(SAI)) {
        ScopStmt *IncomingStmt = MA->getStatement();

        auto Incoming = MA->getIncoming();
        assert(Incoming.size() == 1 && "The incoming value must be "
                                       "representable by something else than "
                                       "the PHI itself");
        Value *IncomingVal = Incoming[0].second;

        // { IncomingDomain[] -> IncomingValInst[] }
        isl::map IncomingValInst = makeValInst(
            IncomingVal, IncomingStmt, IncomingStmt->getSurroundingLoop());

        IncomingValInsts = IncomingValInsts.add_map(IncomingValInst);
      }

      // Determine which instance of the PHI statement corresponds to which
      // incoming value.
      // { PHIDomain[] -> IncomingDomain[] }
      isl::union_map PerPHI = computePerPHI(SAI);

      // { PHIValInst[] -> IncomingValInst[] }
      isl::union_map PHIMap =
          PerPHI.apply_domain(PHIValInst).apply_range(IncomingValInsts);
      assert(!PHIMap.is_single_valued().is_false());

      // Resolve transitiveness: The incoming value of the newly discovered PHI
      // may reference a previously normalized PHI. At the same time, already
      // normalized PHIs might be normalized to the new PHI. At the end, none of
      // the PHIs may appear on the right-hand-side of the normalization map.
      PHIMap = normalizeValInst(PHIMap, AllPHIs, AllPHIMaps);
      AllPHIs.insert(PHI);
      AllPHIMaps = normalizeValInst(AllPHIMaps, AllPHIs, PHIMap);

      AllPHIMaps = AllPHIMaps.unite(PHIMap);
      NumNormalizablePHIs++;
    }
  }
  simplify(AllPHIMaps);

  // Apply the normalization.
  ComputedPHIs = AllPHIs;
  NormalizeMap = AllPHIMaps;

  assert(!NormalizeMap || isNormalized(NormalizeMap));
}

void ZoneAlgorithm::printAccesses(llvm::raw_ostream &OS, int Indent) const {
  OS.indent(Indent) << "After accesses {\n";
  for (auto &Stmt : *S) {
    OS.indent(Indent + 4) << Stmt.getBaseName() << "\n";
    for (auto *MA : Stmt)
      MA->print(OS);
  }
  OS.indent(Indent) << "}\n";
}

isl::union_map ZoneAlgorithm::computeKnownFromMustWrites() const {
  // { [Element[] -> Zone[]] -> [Element[] -> DomainWrite[]] }
  isl::union_map EltReachdDef = distributeDomain(WriteReachDefZone.curry());

  // { [Element[] -> DomainWrite[]] -> ValInst[] }
  isl::union_map AllKnownWriteValInst = filterKnownValInst(AllWriteValInst);

  // { [Element[] -> Zone[]] -> ValInst[] }
  return EltReachdDef.apply_range(AllKnownWriteValInst);
}

isl::union_map ZoneAlgorithm::computeKnownFromLoad() const {
  // { Element[] }
  isl::union_set AllAccessedElts = AllReads.range().unite(AllWrites.range());

  // { Element[] -> Scatter[] }
  isl::union_map EltZoneUniverse = isl::union_map::from_domain_and_range(
      AllAccessedElts, isl::set::universe(ScatterSpace));

  // This assumes there are no "holes" in
  // isl_union_map_domain(WriteReachDefZone); alternatively, compute the zone
  // before the first write or that are not written at all.
  // { Element[] -> Scatter[] }
  isl::union_set NonReachDef =
      EltZoneUniverse.wrap().subtract(WriteReachDefZone.domain());

  // { [Element[] -> Zone[]] -> ReachDefId[] }
  isl::union_map DefZone =
      WriteReachDefZone.unite(isl::union_map::from_domain(NonReachDef));

  // { [Element[] -> Scatter[]] -> Element[] }
  isl::union_map EltZoneElt = EltZoneUniverse.domain_map();

  // { [Element[] -> Zone[]] -> [Element[] -> ReachDefId[]] }
  isl::union_map DefZoneEltDefId = EltZoneElt.range_product(DefZone);

  // { Element[] -> [Zone[] -> ReachDefId[]] }
  isl::union_map EltDefZone = DefZone.curry();

  // { [Element[] -> Zone[] -> [Element[] -> ReachDefId[]] }
  isl::union_map EltZoneEltDefid = distributeDomain(EltDefZone);

  // { [Element[] -> Scatter[]] -> DomainRead[] }
  isl::union_map Reads = AllReads.range_product(Schedule).reverse();

  // { [Element[] -> Scatter[]] -> [Element[] -> DomainRead[]] }
  isl::union_map ReadsElt = EltZoneElt.range_product(Reads);

  // { [Element[] -> Scatter[]] -> ValInst[] }
  isl::union_map ScatterKnown = ReadsElt.apply_range(AllReadValInst);

  // { [Element[] -> ReachDefId[]] -> ValInst[] }
  isl::union_map DefidKnown =
      DefZoneEltDefId.apply_domain(ScatterKnown).reverse();

  // { [Element[] -> Zone[]] -> ValInst[] }
  return DefZoneEltDefId.apply_range(DefidKnown);
}

isl::union_map ZoneAlgorithm::computeKnown(bool FromWrite,
                                           bool FromRead) const {
  isl::union_map Result = makeEmptyUnionMap();

  if (FromWrite)
    Result = Result.unite(computeKnownFromMustWrites());

  if (FromRead)
    Result = Result.unite(computeKnownFromLoad());

  simplify(Result);
  return Result;
}