reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
//===- MaximalStaticExpansion.cpp -----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass fully expand the memory accesses of a Scop to get rid of
// dependencies.
//
//===----------------------------------------------------------------------===//

#include "polly/DependenceInfo.h"
#include "polly/LinkAllPasses.h"
#include "polly/ScopInfo.h"
#include "polly/ScopPass.h"
#include "polly/Support/ISLTools.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "isl/isl-noexceptions.h"
#include "isl/union_map.h"
#include <cassert>
#include <limits>
#include <string>
#include <vector>

using namespace llvm;
using namespace polly;

#define DEBUG_TYPE "polly-mse"

namespace {

class MaximalStaticExpander : public ScopPass {
public:
  static char ID;

  explicit MaximalStaticExpander() : ScopPass(ID) {}

  ~MaximalStaticExpander() override = default;

  /// Expand the accesses of the SCoP.
  ///
  /// @param S The SCoP that must be expanded.
  bool runOnScop(Scop &S) override;

  /// Print the SCoP.
  ///
  /// @param OS The stream where to print.
  /// @param S The SCop that must be printed.
  void printScop(raw_ostream &OS, Scop &S) const override;

  /// Register all analyses and transformations required.
  void getAnalysisUsage(AnalysisUsage &AU) const override;

private:
  /// OptimizationRemarkEmitter object for displaying diagnostic remarks.
  OptimizationRemarkEmitter *ORE;

  /// Emit remark
  void emitRemark(StringRef Msg, Instruction *Inst);

  /// Return true if the SAI in parameter is expandable.
  ///
  /// @param SAI the SAI that need to be checked.
  /// @param Writes A set that will contains all the write accesses.
  /// @param Reads A set that will contains all the read accesses.
  /// @param S The SCop in which the SAI is in.
  /// @param Dependences The RAW dependences of the SCop.
  bool isExpandable(const ScopArrayInfo *SAI,
                    SmallPtrSetImpl<MemoryAccess *> &Writes,
                    SmallPtrSetImpl<MemoryAccess *> &Reads, Scop &S,
                    const isl::union_map &Dependences);

  /// Expand the MemoryAccess according to its domain.
  ///
  /// @param S The SCop in which the memory access appears in.
  /// @param MA The memory access that need to be expanded.
  ScopArrayInfo *expandAccess(Scop &S, MemoryAccess *MA);

  /// Filter the dependences to have only one related to current memory access.
  ///
  /// @param S The SCop in which the memory access appears in.
  /// @param MapDependences The dependences to filter.
  /// @param MA The memory access that need to be expanded.
  isl::union_map filterDependences(Scop &S,
                                   const isl::union_map &MapDependences,
                                   MemoryAccess *MA);

  /// Expand the MemoryAccess according to Dependences and already expanded
  /// MemoryAccesses.
  ///
  /// @param The SCop in which the memory access appears in.
  /// @param The memory access that need to be expanded.
  /// @param Dependences The RAW dependences of the SCop.
  /// @param ExpandedSAI The expanded SAI created during write expansion.
  /// @param Reverse if true, the Dependences union_map is reversed before
  /// intersection.
  void mapAccess(Scop &S, SmallPtrSetImpl<MemoryAccess *> &Accesses,
                 const isl::union_map &Dependences, ScopArrayInfo *ExpandedSAI,
                 bool Reverse);

  /// Expand PHI memory accesses.
  ///
  /// @param The SCop in which the memory access appears in.
  /// @param The ScopArrayInfo representing the PHI accesses to expand.
  /// @param Dependences The RAW dependences of the SCop.
  void expandPhi(Scop &S, const ScopArrayInfo *SAI,
                 const isl::union_map &Dependences);
};
} // namespace

#ifndef NDEBUG
/// Whether a dimension of a set is bounded (lower and upper) by a constant,
/// i.e. there are two constants Min and Max, such that every value x of the
/// chosen dimensions is Min <= x <= Max.
static bool isDimBoundedByConstant(isl::set Set, unsigned dim) {
  auto ParamDims = Set.dim(isl::dim::param);
  Set = Set.project_out(isl::dim::param, 0, ParamDims);
  Set = Set.project_out(isl::dim::set, 0, dim);
  auto SetDims = Set.dim(isl::dim::set);
  Set = Set.project_out(isl::dim::set, 1, SetDims - 1);
  return bool(Set.is_bounded());
}
#endif

char MaximalStaticExpander::ID = 0;

isl::union_map MaximalStaticExpander::filterDependences(
    Scop &S, const isl::union_map &Dependences, MemoryAccess *MA) {
  auto SAI = MA->getLatestScopArrayInfo();

  auto AccessDomainSet = MA->getAccessRelation().domain();
  auto AccessDomainId = AccessDomainSet.get_tuple_id();

  isl::union_map MapDependences = isl::union_map::empty(S.getParamSpace());

  for (isl::map Map : Dependences.get_map_list()) {
    // Filter out Statement to Statement dependences.
    if (!Map.can_curry())
      continue;

    // Intersect with the relevant SAI.
    auto TmpMapDomainId =
        Map.get_space().domain().unwrap().range().get_tuple_id(isl::dim::set);

    ScopArrayInfo *UserSAI =
        static_cast<ScopArrayInfo *>(TmpMapDomainId.get_user());

    if (SAI != UserSAI)
      continue;

    // Get the correct S1[] -> S2[] dependence.
    auto NewMap = Map.factor_domain();
    auto NewMapDomainId = NewMap.domain().get_tuple_id();

    if (AccessDomainId.get() != NewMapDomainId.get())
      continue;

    // Add the corresponding map to MapDependences.
    MapDependences = MapDependences.add_map(NewMap);
  }

  return MapDependences;
}

bool MaximalStaticExpander::isExpandable(
    const ScopArrayInfo *SAI, SmallPtrSetImpl<MemoryAccess *> &Writes,
    SmallPtrSetImpl<MemoryAccess *> &Reads, Scop &S,
    const isl::union_map &Dependences) {
  if (SAI->isValueKind()) {
    Writes.insert(S.getValueDef(SAI));
    for (auto MA : S.getValueUses(SAI))
      Reads.insert(MA);
    return true;
  } else if (SAI->isPHIKind()) {
    auto Read = S.getPHIRead(SAI);

    auto StmtDomain = isl::union_set(Read->getStatement()->getDomain());

    auto Writes = S.getPHIIncomings(SAI);

    // Get the domain where all the writes are writing to.
    auto WriteDomain = isl::union_set::empty(S.getParamSpace());

    for (auto Write : Writes) {
      auto MapDeps = filterDependences(S, Dependences, Write);
      for (isl::map Map : MapDeps.get_map_list())
        WriteDomain = WriteDomain.add_set(Map.range());
    }

    // For now, read from original scalar is not possible.
    if (!StmtDomain.is_equal(WriteDomain)) {
      emitRemark(SAI->getName() + " read from its original value.",
                 Read->getAccessInstruction());
      return false;
    }

    return true;
  } else if (SAI->isExitPHIKind()) {
    // For now, we are not able to expand ExitPhi.
    emitRemark(SAI->getName() + " is a ExitPhi node.",
               S.getEnteringBlock()->getFirstNonPHI());
    return false;
  }

  int NumberWrites = 0;
  for (ScopStmt &Stmt : S) {
    auto StmtReads = isl::union_map::empty(S.getParamSpace());
    auto StmtWrites = isl::union_map::empty(S.getParamSpace());

    for (MemoryAccess *MA : Stmt) {
      // Check if the current MemoryAccess involved the current SAI.
      if (SAI != MA->getLatestScopArrayInfo())
        continue;

      // For now, we are not able to expand array where read come after write
      // (to the same location) in a same statement.
      auto AccRel = isl::union_map(MA->getAccessRelation());
      if (MA->isRead()) {
        // Reject load after store to same location.
        if (!StmtWrites.is_disjoint(AccRel)) {
          emitRemark(SAI->getName() + " has read after write to the same "
                                      "element in same statement. The "
                                      "dependences found during analysis may "
                                      "be wrong because Polly is not able to "
                                      "handle such case for now.",
                     MA->getAccessInstruction());
          return false;
        }

        StmtReads = StmtReads.unite(AccRel);
      } else {
        StmtWrites = StmtWrites.unite(AccRel);
      }

      // For now, we are not able to expand MayWrite.
      if (MA->isMayWrite()) {
        emitRemark(SAI->getName() + " has a maywrite access.",
                   MA->getAccessInstruction());
        return false;
      }

      // For now, we are not able to expand SAI with more than one write.
      if (MA->isMustWrite()) {
        Writes.insert(MA);
        NumberWrites++;
        if (NumberWrites > 1) {
          emitRemark(SAI->getName() + " has more than 1 write access.",
                     MA->getAccessInstruction());
          return false;
        }
      }

      // Check if it is possible to expand this read.
      if (MA->isRead()) {
        // Get the domain of the current ScopStmt.
        auto StmtDomain = Stmt.getDomain();

        // Get the domain of the future Read access.
        auto ReadDomainSet = MA->getAccessRelation().domain();
        auto ReadDomain = isl::union_set(ReadDomainSet);

        // Get the dependences relevant for this MA
        auto MapDependences = filterDependences(S, Dependences.reverse(), MA);
        unsigned NumberElementMap = isl_union_map_n_map(MapDependences.get());

        if (NumberElementMap == 0) {
          emitRemark("The expansion of " + SAI->getName() +
                         " would lead to a read from the original array.",
                     MA->getAccessInstruction());
          return false;
        }

        auto DepsDomain = MapDependences.domain();

        // If there are multiple maps in the Deps, we cannot handle this case
        // for now.
        if (NumberElementMap != 1) {
          emitRemark(SAI->getName() +
                         " has too many dependences to be handle for now.",
                     MA->getAccessInstruction());
          return false;
        }

        auto DepsDomainSet = isl::set(DepsDomain);

        // For now, read from the original array is not possible.
        if (!StmtDomain.is_subset(DepsDomainSet)) {
          emitRemark("The expansion of " + SAI->getName() +
                         " would lead to a read from the original array.",
                     MA->getAccessInstruction());
          return false;
        }

        Reads.insert(MA);
      }
    }
  }

  // No need to expand SAI with no write.
  if (NumberWrites == 0) {
    emitRemark(SAI->getName() + " has 0 write access.",
               S.getEnteringBlock()->getFirstNonPHI());
    return false;
  }

  return true;
}

void MaximalStaticExpander::mapAccess(Scop &S,
                                      SmallPtrSetImpl<MemoryAccess *> &Accesses,
                                      const isl::union_map &Dependences,
                                      ScopArrayInfo *ExpandedSAI,
                                      bool Reverse) {
  for (auto MA : Accesses) {
    // Get the current AM.
    auto CurrentAccessMap = MA->getAccessRelation();

    // Get RAW dependences for the current WA.
    auto DomainSet = MA->getAccessRelation().domain();
    auto Domain = isl::union_set(DomainSet);

    // Get the dependences relevant for this MA.
    isl::union_map MapDependences =
        filterDependences(S, Reverse ? Dependences.reverse() : Dependences, MA);

    // If no dependences, no need to modify anything.
    if (MapDependences.is_empty())
      return;

    assert(isl_union_map_n_map(MapDependences.get()) == 1 &&
           "There are more than one RAW dependencies in the union map.");
    auto NewAccessMap = isl::map::from_union_map(MapDependences);

    auto Id = ExpandedSAI->getBasePtrId();

    // Replace the out tuple id with the one of the access array.
    NewAccessMap = NewAccessMap.set_tuple_id(isl::dim::out, Id);

    // Set the new access relation.
    MA->setNewAccessRelation(NewAccessMap);
  }
}

ScopArrayInfo *MaximalStaticExpander::expandAccess(Scop &S, MemoryAccess *MA) {
  // Get the current AM.
  auto CurrentAccessMap = MA->getAccessRelation();

  unsigned in_dimensions = CurrentAccessMap.dim(isl::dim::in);

  // Get domain from the current AM.
  auto Domain = CurrentAccessMap.domain();

  // Create a new AM from the domain.
  auto NewAccessMap = isl::map::from_domain(Domain);

  // Add dimensions to the new AM according to the current in_dim.
  NewAccessMap = NewAccessMap.add_dims(isl::dim::out, in_dimensions);

  // Create the string representing the name of the new SAI.
  // One new SAI for each statement so that each write go to a different memory
  // cell.
  auto CurrentStmtDomain = MA->getStatement()->getDomain();
  auto CurrentStmtName = CurrentStmtDomain.get_tuple_name();
  auto CurrentOutId = CurrentAccessMap.get_tuple_id(isl::dim::out);
  std::string CurrentOutIdString =
      MA->getScopArrayInfo()->getName() + "_" + CurrentStmtName + "_expanded";

  // Set the tuple id for the out dimension.
  NewAccessMap = NewAccessMap.set_tuple_id(isl::dim::out, CurrentOutId);

  // Create the size vector.
  std::vector<unsigned> Sizes;
  for (unsigned i = 0; i < in_dimensions; i++) {
    assert(isDimBoundedByConstant(CurrentStmtDomain, i) &&
           "Domain boundary are not constant.");
    auto UpperBound = getConstant(CurrentStmtDomain.dim_max(i), true, false);
    assert(!UpperBound.is_null() && UpperBound.is_pos() &&
           !UpperBound.is_nan() &&
           "The upper bound is not a positive integer.");
    assert(UpperBound.le(isl::val(CurrentAccessMap.get_ctx(),
                                  std::numeric_limits<int>::max() - 1)) &&
           "The upper bound overflow a int.");
    Sizes.push_back(UpperBound.get_num_si() + 1);
  }

  // Get the ElementType of the current SAI.
  auto ElementType = MA->getLatestScopArrayInfo()->getElementType();

  // Create (or get if already existing) the new expanded SAI.
  auto ExpandedSAI =
      S.createScopArrayInfo(ElementType, CurrentOutIdString, Sizes);
  ExpandedSAI->setIsOnHeap(true);

  // Get the out Id of the expanded Array.
  auto NewOutId = ExpandedSAI->getBasePtrId();

  // Set the out id of the new AM to the new SAI id.
  NewAccessMap = NewAccessMap.set_tuple_id(isl::dim::out, NewOutId);

  // Add constraints to linked output with input id.
  auto SpaceMap = NewAccessMap.get_space();
  auto ConstraintBasicMap =
      isl::basic_map::equal(SpaceMap, SpaceMap.dim(isl::dim::in));
  NewAccessMap = isl::map(ConstraintBasicMap);

  // Set the new access relation map.
  MA->setNewAccessRelation(NewAccessMap);

  return ExpandedSAI;
}

void MaximalStaticExpander::expandPhi(Scop &S, const ScopArrayInfo *SAI,
                                      const isl::union_map &Dependences) {
  SmallPtrSet<MemoryAccess *, 4> Writes;
  for (auto MA : S.getPHIIncomings(SAI))
    Writes.insert(MA);
  auto Read = S.getPHIRead(SAI);
  auto ExpandedSAI = expandAccess(S, Read);

  mapAccess(S, Writes, Dependences, ExpandedSAI, false);
}

void MaximalStaticExpander::emitRemark(StringRef Msg, Instruction *Inst) {
  ORE->emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "ExpansionRejection", Inst)
            << Msg);
}

bool MaximalStaticExpander::runOnScop(Scop &S) {
  // Get the ORE from OptimizationRemarkEmitterWrapperPass.
  ORE = &(getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE());

  // Get the RAW Dependences.
  auto &DI = getAnalysis<DependenceInfo>();
  auto &D = DI.getDependences(Dependences::AL_Reference);
  isl::union_map Dependences = D.getDependences(Dependences::TYPE_RAW);

  SmallVector<ScopArrayInfo *, 4> CurrentSAI(S.arrays().begin(),
                                             S.arrays().end());

  for (auto SAI : CurrentSAI) {
    SmallPtrSet<MemoryAccess *, 4> AllWrites;
    SmallPtrSet<MemoryAccess *, 4> AllReads;
    if (!isExpandable(SAI, AllWrites, AllReads, S, Dependences))
      continue;

    if (SAI->isValueKind() || SAI->isArrayKind()) {
      assert(AllWrites.size() == 1 || SAI->isValueKind());

      auto TheWrite = *(AllWrites.begin());
      ScopArrayInfo *ExpandedArray = expandAccess(S, TheWrite);

      mapAccess(S, AllReads, Dependences, ExpandedArray, true);
    } else if (SAI->isPHIKind()) {
      expandPhi(S, SAI, Dependences);
    }
  }

  return false;
}

void MaximalStaticExpander::printScop(raw_ostream &OS, Scop &S) const {
  S.print(OS, false);
}

void MaximalStaticExpander::getAnalysisUsage(AnalysisUsage &AU) const {
  ScopPass::getAnalysisUsage(AU);
  AU.addRequired<DependenceInfo>();
  AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
}

Pass *polly::createMaximalStaticExpansionPass() {
  return new MaximalStaticExpander();
}

INITIALIZE_PASS_BEGIN(MaximalStaticExpander, "polly-mse",
                      "Polly - Maximal static expansion of SCoP", false, false);
INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass);
INITIALIZE_PASS_END(MaximalStaticExpander, "polly-mse",
                    "Polly - Maximal static expansion of SCoP", false, false)