reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
//===- xray-account.h - XRay Function Call Accounting ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements basic function call accounting from an XRay trace.
//
//===----------------------------------------------------------------------===//

#include <algorithm>
#include <cassert>
#include <numeric>
#include <system_error>
#include <utility>

#include "xray-account.h"
#include "xray-registry.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/XRay/InstrumentationMap.h"
#include "llvm/XRay/Trace.h"

using namespace llvm;
using namespace llvm::xray;

static cl::SubCommand Account("account", "Function call accounting");
static cl::opt<std::string> AccountInput(cl::Positional,
                                         cl::desc("<xray log file>"),
                                         cl::Required, cl::sub(Account));
static cl::opt<bool>
    AccountKeepGoing("keep-going", cl::desc("Keep going on errors encountered"),
                     cl::sub(Account), cl::init(false));
static cl::alias AccountKeepGoing2("k", cl::aliasopt(AccountKeepGoing),
                                   cl::desc("Alias for -keep_going"),
                                   cl::sub(Account));
static cl::opt<bool> AccountDeduceSiblingCalls(
    "deduce-sibling-calls",
    cl::desc("Deduce sibling calls when unrolling function call stacks"),
    cl::sub(Account), cl::init(false));
static cl::alias
    AccountDeduceSiblingCalls2("d", cl::aliasopt(AccountDeduceSiblingCalls),
                               cl::desc("Alias for -deduce_sibling_calls"),
                               cl::sub(Account));
static cl::opt<std::string>
    AccountOutput("output", cl::value_desc("output file"), cl::init("-"),
                  cl::desc("output file; use '-' for stdout"),
                  cl::sub(Account));
static cl::alias AccountOutput2("o", cl::aliasopt(AccountOutput),
                                cl::desc("Alias for -output"),
                                cl::sub(Account));
enum class AccountOutputFormats { TEXT, CSV };
static cl::opt<AccountOutputFormats>
    AccountOutputFormat("format", cl::desc("output format"),
                        cl::values(clEnumValN(AccountOutputFormats::TEXT,
                                              "text", "report stats in text"),
                                   clEnumValN(AccountOutputFormats::CSV, "csv",
                                              "report stats in csv")),
                        cl::sub(Account));
static cl::alias AccountOutputFormat2("f", cl::desc("Alias of -format"),
                                      cl::aliasopt(AccountOutputFormat),
                                      cl::sub(Account));

enum class SortField {
  FUNCID,
  COUNT,
  MIN,
  MED,
  PCT90,
  PCT99,
  MAX,
  SUM,
  FUNC,
};

static cl::opt<SortField> AccountSortOutput(
    "sort", cl::desc("sort output by this field"), cl::value_desc("field"),
    cl::sub(Account), cl::init(SortField::FUNCID),
    cl::values(clEnumValN(SortField::FUNCID, "funcid", "function id"),
               clEnumValN(SortField::COUNT, "count", "funciton call counts"),
               clEnumValN(SortField::MIN, "min", "minimum function durations"),
               clEnumValN(SortField::MED, "med", "median function durations"),
               clEnumValN(SortField::PCT90, "90p", "90th percentile durations"),
               clEnumValN(SortField::PCT99, "99p", "99th percentile durations"),
               clEnumValN(SortField::MAX, "max", "maximum function durations"),
               clEnumValN(SortField::SUM, "sum", "sum of call durations"),
               clEnumValN(SortField::FUNC, "func", "function names")));
static cl::alias AccountSortOutput2("s", cl::aliasopt(AccountSortOutput),
                                    cl::desc("Alias for -sort"),
                                    cl::sub(Account));

enum class SortDirection {
  ASCENDING,
  DESCENDING,
};
static cl::opt<SortDirection> AccountSortOrder(
    "sortorder", cl::desc("sort ordering"), cl::init(SortDirection::ASCENDING),
    cl::values(clEnumValN(SortDirection::ASCENDING, "asc", "ascending"),
               clEnumValN(SortDirection::DESCENDING, "dsc", "descending")),
    cl::sub(Account));
static cl::alias AccountSortOrder2("r", cl::aliasopt(AccountSortOrder),
                                   cl::desc("Alias for -sortorder"),
                                   cl::sub(Account));

static cl::opt<int> AccountTop("top", cl::desc("only show the top N results"),
                               cl::value_desc("N"), cl::sub(Account),
                               cl::init(-1));
static cl::alias AccountTop2("p", cl::desc("Alias for -top"),
                             cl::aliasopt(AccountTop), cl::sub(Account));

static cl::opt<std::string>
    AccountInstrMap("instr_map",
                    cl::desc("binary with the instrumentation map, or "
                             "a separate instrumentation map"),
                    cl::value_desc("binary with xray_instr_map"),
                    cl::sub(Account), cl::init(""));
static cl::alias AccountInstrMap2("m", cl::aliasopt(AccountInstrMap),
                                  cl::desc("Alias for -instr_map"),
                                  cl::sub(Account));

namespace {

template <class T, class U> void setMinMax(std::pair<T, T> &MM, U &&V) {
  if (MM.first == 0 || MM.second == 0)
    MM = std::make_pair(std::forward<U>(V), std::forward<U>(V));
  else
    MM = std::make_pair(std::min(MM.first, V), std::max(MM.second, V));
}

template <class T> T diff(T L, T R) { return std::max(L, R) - std::min(L, R); }

} // namespace

bool LatencyAccountant::accountRecord(const XRayRecord &Record) {
  setMinMax(PerThreadMinMaxTSC[Record.TId], Record.TSC);
  setMinMax(PerCPUMinMaxTSC[Record.CPU], Record.TSC);

  if (CurrentMaxTSC == 0)
    CurrentMaxTSC = Record.TSC;

  if (Record.TSC < CurrentMaxTSC)
    return false;

  auto &ThreadStack = PerThreadFunctionStack[Record.TId];
  switch (Record.Type) {
  case RecordTypes::CUSTOM_EVENT:
  case RecordTypes::TYPED_EVENT:
    // TODO: Support custom and typed event accounting in the future.
    return true;
  case RecordTypes::ENTER:
  case RecordTypes::ENTER_ARG: {
    ThreadStack.emplace_back(Record.FuncId, Record.TSC);
    break;
  }
  case RecordTypes::EXIT:
  case RecordTypes::TAIL_EXIT: {
    if (ThreadStack.empty())
      return false;

    if (ThreadStack.back().first == Record.FuncId) {
      const auto &Top = ThreadStack.back();
      recordLatency(Top.first, diff(Top.second, Record.TSC));
      ThreadStack.pop_back();
      break;
    }

    if (!DeduceSiblingCalls)
      return false;

    // Look for the parent up the stack.
    auto Parent =
        std::find_if(ThreadStack.rbegin(), ThreadStack.rend(),
                     [&](const std::pair<const int32_t, uint64_t> &E) {
                       return E.first == Record.FuncId;
                     });
    if (Parent == ThreadStack.rend())
      return false;

    // Account time for this apparently sibling call exit up the stack.
    // Considering the following case:
    //
    //   f()
    //    g()
    //      h()
    //
    // We might only ever see the following entries:
    //
    //   -> f()
    //   -> g()
    //   -> h()
    //   <- h()
    //   <- f()
    //
    // Now we don't see the exit to g() because some older version of the XRay
    // runtime wasn't instrumenting tail exits. If we don't deduce tail calls,
    // we may potentially never account time for g() -- and this code would have
    // already bailed out, because `<- f()` doesn't match the current "top" of
    // stack where we're waiting for the exit to `g()` instead. This is not
    // ideal and brittle -- so instead we provide a potentially inaccurate
    // accounting of g() instead, computing it from the exit of f().
    //
    // While it might be better that we account the time between `-> g()` and
    // `-> h()` as the proper accounting of time for g() here, this introduces
    // complexity to do correctly (need to backtrack, etc.).
    //
    // FIXME: Potentially implement the more complex deduction algorithm?
    auto I = std::next(Parent).base();
    for (auto &E : make_range(I, ThreadStack.end())) {
      recordLatency(E.first, diff(E.second, Record.TSC));
    }
    ThreadStack.erase(I, ThreadStack.end());
    break;
  }
  }

  return true;
}

namespace {

// We consolidate the data into a struct which we can output in various forms.
struct ResultRow {
  uint64_t Count;
  double Min;
  double Median;
  double Pct90;
  double Pct99;
  double Max;
  double Sum;
  std::string DebugInfo;
  std::string Function;
};

ResultRow getStats(std::vector<uint64_t> &Timings) {
  assert(!Timings.empty());
  ResultRow R;
  R.Sum = std::accumulate(Timings.begin(), Timings.end(), 0.0);
  auto MinMax = std::minmax_element(Timings.begin(), Timings.end());
  R.Min = *MinMax.first;
  R.Max = *MinMax.second;
  R.Count = Timings.size();

  auto MedianOff = Timings.size() / 2;
  std::nth_element(Timings.begin(), Timings.begin() + MedianOff, Timings.end());
  R.Median = Timings[MedianOff];

  auto Pct90Off = std::floor(Timings.size() * 0.9);
  std::nth_element(Timings.begin(), Timings.begin() + Pct90Off, Timings.end());
  R.Pct90 = Timings[Pct90Off];

  auto Pct99Off = std::floor(Timings.size() * 0.99);
  std::nth_element(Timings.begin(), Timings.begin() + Pct99Off, Timings.end());
  R.Pct99 = Timings[Pct99Off];
  return R;
}

} // namespace

using TupleType = std::tuple<int32_t, uint64_t, ResultRow>;

template <typename F>
static void sortByKey(std::vector<TupleType> &Results, F Fn) {
  bool ASC = AccountSortOrder == SortDirection::ASCENDING;
  llvm::sort(Results, [=](const TupleType &L, const TupleType &R) {
    return ASC ? Fn(L) < Fn(R) : Fn(L) > Fn(R);
  });
}

template <class F>
void LatencyAccountant::exportStats(const XRayFileHeader &Header, F Fn) const {
  std::vector<TupleType> Results;
  Results.reserve(FunctionLatencies.size());
  for (auto FT : FunctionLatencies) {
    const auto &FuncId = FT.first;
    auto &Timings = FT.second;
    Results.emplace_back(FuncId, Timings.size(), getStats(Timings));
    auto &Row = std::get<2>(Results.back());
    if (Header.CycleFrequency) {
      double CycleFrequency = Header.CycleFrequency;
      Row.Min /= CycleFrequency;
      Row.Median /= CycleFrequency;
      Row.Pct90 /= CycleFrequency;
      Row.Pct99 /= CycleFrequency;
      Row.Max /= CycleFrequency;
      Row.Sum /= CycleFrequency;
    }

    Row.Function = FuncIdHelper.SymbolOrNumber(FuncId);
    Row.DebugInfo = FuncIdHelper.FileLineAndColumn(FuncId);
  }

  // Sort the data according to user-provided flags.
  switch (AccountSortOutput) {
  case SortField::FUNCID:
    sortByKey(Results, [](const TupleType &X) { return std::get<0>(X); });
    break;
  case SortField::COUNT:
    sortByKey(Results, [](const TupleType &X) { return std::get<1>(X); });
    break;
  case SortField::MIN:
    sortByKey(Results, [](const TupleType &X) { return std::get<2>(X).Min; });
    break;
  case SortField::MED:
    sortByKey(Results, [](const TupleType &X) { return std::get<2>(X).Median; });
    break;
  case SortField::PCT90:
    sortByKey(Results, [](const TupleType &X) { return std::get<2>(X).Pct90; });
    break;
  case SortField::PCT99:
    sortByKey(Results, [](const TupleType &X) { return std::get<2>(X).Pct99; });
    break;
  case SortField::MAX:
    sortByKey(Results, [](const TupleType &X) { return std::get<2>(X).Max; });
    break;
  case SortField::SUM:
    sortByKey(Results, [](const TupleType &X) { return std::get<2>(X).Sum; });
    break;
  case SortField::FUNC:
    llvm_unreachable("Not implemented");
  }

  if (AccountTop > 0) {
    auto MaxTop =
        std::min(AccountTop.getValue(), static_cast<int>(Results.size()));
    Results.erase(Results.begin() + MaxTop, Results.end());
  }

  for (const auto &R : Results)
    Fn(std::get<0>(R), std::get<1>(R), std::get<2>(R));
}

void LatencyAccountant::exportStatsAsText(raw_ostream &OS,
                                          const XRayFileHeader &Header) const {
  OS << "Functions with latencies: " << FunctionLatencies.size() << "\n";

  // We spend some effort to make the text output more readable, so we do the
  // following formatting decisions for each of the fields:
  //
  //   - funcid: 32-bit, but we can determine the largest number and be
  //   between
  //     a minimum of 5 characters, up to 9 characters, right aligned.
  //   - count:  64-bit, but we can determine the largest number and be
  //   between
  //     a minimum of 5 characters, up to 9 characters, right aligned.
  //   - min, median, 90pct, 99pct, max: double precision, but we want to keep
  //     the values in seconds, with microsecond precision (0.000'001), so we
  //     have at most 6 significant digits, with the whole number part to be
  //     at
  //     least 1 character. For readability we'll right-align, with full 9
  //     characters each.
  //   - debug info, function name: we format this as a concatenation of the
  //     debug info and the function name.
  //
  static constexpr char StatsHeaderFormat[] =
      "{0,+9} {1,+10} [{2,+9}, {3,+9}, {4,+9}, {5,+9}, {6,+9}] {7,+9}";
  static constexpr char StatsFormat[] =
      R"({0,+9} {1,+10} [{2,+9:f6}, {3,+9:f6}, {4,+9:f6}, {5,+9:f6}, {6,+9:f6}] {7,+9:f6})";
  OS << llvm::formatv(StatsHeaderFormat, "funcid", "count", "min", "med", "90p",
                      "99p", "max", "sum")
     << llvm::formatv("  {0,-12}\n", "function");
  exportStats(Header, [&](int32_t FuncId, size_t Count, const ResultRow &Row) {
    OS << llvm::formatv(StatsFormat, FuncId, Count, Row.Min, Row.Median,
                        Row.Pct90, Row.Pct99, Row.Max, Row.Sum)
       << "  " << Row.DebugInfo << ": " << Row.Function << "\n";
  });
}

void LatencyAccountant::exportStatsAsCSV(raw_ostream &OS,
                                         const XRayFileHeader &Header) const {
  OS << "funcid,count,min,median,90%ile,99%ile,max,sum,debug,function\n";
  exportStats(Header, [&](int32_t FuncId, size_t Count, const ResultRow &Row) {
    OS << FuncId << ',' << Count << ',' << Row.Min << ',' << Row.Median << ','
       << Row.Pct90 << ',' << Row.Pct99 << ',' << Row.Max << "," << Row.Sum
       << ",\"" << Row.DebugInfo << "\",\"" << Row.Function << "\"\n";
  });
}

using namespace llvm::xray;

namespace llvm {
template <> struct format_provider<llvm::xray::RecordTypes> {
  static void format(const llvm::xray::RecordTypes &T, raw_ostream &Stream,
                     StringRef Style) {
    switch (T) {
    case RecordTypes::ENTER:
      Stream << "enter";
      break;
    case RecordTypes::ENTER_ARG:
      Stream << "enter-arg";
      break;
    case RecordTypes::EXIT:
      Stream << "exit";
      break;
    case RecordTypes::TAIL_EXIT:
      Stream << "tail-exit";
      break;
    case RecordTypes::CUSTOM_EVENT:
      Stream << "custom-event";
      break;
    case RecordTypes::TYPED_EVENT:
      Stream << "typed-event";
      break;
    }
  }
};
} // namespace llvm

static CommandRegistration Unused(&Account, []() -> Error {
  InstrumentationMap Map;
  if (!AccountInstrMap.empty()) {
    auto InstrumentationMapOrError = loadInstrumentationMap(AccountInstrMap);
    if (!InstrumentationMapOrError)
      return joinErrors(make_error<StringError>(
                            Twine("Cannot open instrumentation map '") +
                                AccountInstrMap + "'",
                            std::make_error_code(std::errc::invalid_argument)),
                        InstrumentationMapOrError.takeError());
    Map = std::move(*InstrumentationMapOrError);
  }

  std::error_code EC;
  raw_fd_ostream OS(AccountOutput, EC, sys::fs::OpenFlags::OF_Text);
  if (EC)
    return make_error<StringError>(
        Twine("Cannot open file '") + AccountOutput + "' for writing.", EC);

  const auto &FunctionAddresses = Map.getFunctionAddresses();
  symbolize::LLVMSymbolizer Symbolizer;
  llvm::xray::FuncIdConversionHelper FuncIdHelper(AccountInstrMap, Symbolizer,
                                                  FunctionAddresses);
  xray::LatencyAccountant FCA(FuncIdHelper, AccountDeduceSiblingCalls);
  auto TraceOrErr = loadTraceFile(AccountInput);
  if (!TraceOrErr)
    return joinErrors(
        make_error<StringError>(
            Twine("Failed loading input file '") + AccountInput + "'",
            std::make_error_code(std::errc::executable_format_error)),
        TraceOrErr.takeError());

  auto &T = *TraceOrErr;
  for (const auto &Record : T) {
    if (FCA.accountRecord(Record))
      continue;
    errs()
        << "Error processing record: "
        << llvm::formatv(
               R"({{type: {0}; cpu: {1}; record-type: {2}; function-id: {3}; tsc: {4}; thread-id: {5}; process-id: {6}}})",
               Record.RecordType, Record.CPU, Record.Type, Record.FuncId,
               Record.TSC, Record.TId, Record.PId)
        << '\n';
    for (const auto &ThreadStack : FCA.getPerThreadFunctionStack()) {
      errs() << "Thread ID: " << ThreadStack.first << "\n";
      if (ThreadStack.second.empty()) {
        errs() << "  (empty stack)\n";
        continue;
      }
      auto Level = ThreadStack.second.size();
      for (const auto &Entry : llvm::reverse(ThreadStack.second))
        errs() << "  #" << Level-- << "\t"
               << FuncIdHelper.SymbolOrNumber(Entry.first) << '\n';
    }
    if (!AccountKeepGoing)
      return make_error<StringError>(
          Twine("Failed accounting function calls in file '") + AccountInput +
              "'.",
          std::make_error_code(std::errc::executable_format_error));
  }
  switch (AccountOutputFormat) {
  case AccountOutputFormats::TEXT:
    FCA.exportStatsAsText(OS, T.getFileHeader());
    break;
  case AccountOutputFormats::CSV:
    FCA.exportStatsAsCSV(OS, T.getFileHeader());
    break;
  }

  return Error::success();
});