reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
//===- Trace.cpp - XRay Trace Loading implementation. ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// XRay log reader implementation.
//
//===----------------------------------------------------------------------===//
#include "llvm/XRay/Trace.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/XRay/BlockIndexer.h"
#include "llvm/XRay/BlockVerifier.h"
#include "llvm/XRay/FDRRecordConsumer.h"
#include "llvm/XRay/FDRRecordProducer.h"
#include "llvm/XRay/FDRRecords.h"
#include "llvm/XRay/FDRTraceExpander.h"
#include "llvm/XRay/FileHeaderReader.h"
#include "llvm/XRay/YAMLXRayRecord.h"
#include <memory>
#include <vector>

using namespace llvm;
using namespace llvm::xray;
using llvm::yaml::Input;

namespace {
using XRayRecordStorage =
    std::aligned_storage<sizeof(XRayRecord), alignof(XRayRecord)>::type;

Error loadNaiveFormatLog(StringRef Data, bool IsLittleEndian,
                         XRayFileHeader &FileHeader,
                         std::vector<XRayRecord> &Records) {
  if (Data.size() < 32)
    return make_error<StringError>(
        "Not enough bytes for an XRay log.",
        std::make_error_code(std::errc::invalid_argument));

  if (Data.size() - 32 == 0 || Data.size() % 32 != 0)
    return make_error<StringError>(
        "Invalid-sized XRay data.",
        std::make_error_code(std::errc::invalid_argument));

  DataExtractor Reader(Data, IsLittleEndian, 8);
  uint64_t OffsetPtr = 0;
  auto FileHeaderOrError = readBinaryFormatHeader(Reader, OffsetPtr);
  if (!FileHeaderOrError)
    return FileHeaderOrError.takeError();
  FileHeader = std::move(FileHeaderOrError.get());

  // Each record after the header will be 32 bytes, in the following format:
  //
  //   (2)   uint16 : record type
  //   (1)   uint8  : cpu id
  //   (1)   uint8  : type
  //   (4)   sint32 : function id
  //   (8)   uint64 : tsc
  //   (4)   uint32 : thread id
  //   (4)   uint32 : process id
  //   (8)   -      : padding
  while (Reader.isValidOffset(OffsetPtr)) {
    if (!Reader.isValidOffsetForDataOfSize(OffsetPtr, 32))
      return createStringError(
          std::make_error_code(std::errc::executable_format_error),
          "Not enough bytes to read a full record at offset %" PRId64 ".",
          OffsetPtr);
    auto PreReadOffset = OffsetPtr;
    auto RecordType = Reader.getU16(&OffsetPtr);
    if (OffsetPtr == PreReadOffset)
      return createStringError(
          std::make_error_code(std::errc::executable_format_error),
          "Failed reading record type at offset %" PRId64 ".", OffsetPtr);

    switch (RecordType) {
    case 0: { // Normal records.
      Records.emplace_back();
      auto &Record = Records.back();
      Record.RecordType = RecordType;

      PreReadOffset = OffsetPtr;
      Record.CPU = Reader.getU8(&OffsetPtr);
      if (OffsetPtr == PreReadOffset)
        return createStringError(
            std::make_error_code(std::errc::executable_format_error),
            "Failed reading CPU field at offset %" PRId64 ".", OffsetPtr);

      PreReadOffset = OffsetPtr;
      auto Type = Reader.getU8(&OffsetPtr);
      if (OffsetPtr == PreReadOffset)
        return createStringError(
            std::make_error_code(std::errc::executable_format_error),
            "Failed reading record type field at offset %" PRId64 ".",
            OffsetPtr);

      switch (Type) {
      case 0:
        Record.Type = RecordTypes::ENTER;
        break;
      case 1:
        Record.Type = RecordTypes::EXIT;
        break;
      case 2:
        Record.Type = RecordTypes::TAIL_EXIT;
        break;
      case 3:
        Record.Type = RecordTypes::ENTER_ARG;
        break;
      default:
        return createStringError(
            std::make_error_code(std::errc::executable_format_error),
            "Unknown record type '%d' at offset %" PRId64 ".", Type, OffsetPtr);
      }

      PreReadOffset = OffsetPtr;
      Record.FuncId = Reader.getSigned(&OffsetPtr, sizeof(int32_t));
      if (OffsetPtr == PreReadOffset)
        return createStringError(
            std::make_error_code(std::errc::executable_format_error),
            "Failed reading function id field at offset %" PRId64 ".",
            OffsetPtr);

      PreReadOffset = OffsetPtr;
      Record.TSC = Reader.getU64(&OffsetPtr);
      if (OffsetPtr == PreReadOffset)
        return createStringError(
            std::make_error_code(std::errc::executable_format_error),
            "Failed reading TSC field at offset %" PRId64 ".", OffsetPtr);

      PreReadOffset = OffsetPtr;
      Record.TId = Reader.getU32(&OffsetPtr);
      if (OffsetPtr == PreReadOffset)
        return createStringError(
            std::make_error_code(std::errc::executable_format_error),
            "Failed reading thread id field at offset %" PRId64 ".", OffsetPtr);

      PreReadOffset = OffsetPtr;
      Record.PId = Reader.getU32(&OffsetPtr);
      if (OffsetPtr == PreReadOffset)
        return createStringError(
            std::make_error_code(std::errc::executable_format_error),
            "Failed reading process id at offset %" PRId64 ".", OffsetPtr);

      break;
    }
    case 1: { // Arg payload record.
      auto &Record = Records.back();

      // We skip the next two bytes of the record, because we don't need the
      // type and the CPU record for arg payloads.
      OffsetPtr += 2;
      PreReadOffset = OffsetPtr;
      int32_t FuncId = Reader.getSigned(&OffsetPtr, sizeof(int32_t));
      if (OffsetPtr == PreReadOffset)
        return createStringError(
            std::make_error_code(std::errc::executable_format_error),
            "Failed reading function id field at offset %" PRId64 ".",
            OffsetPtr);

      PreReadOffset = OffsetPtr;
      auto TId = Reader.getU32(&OffsetPtr);
      if (OffsetPtr == PreReadOffset)
        return createStringError(
            std::make_error_code(std::errc::executable_format_error),
            "Failed reading thread id field at offset %" PRId64 ".", OffsetPtr);

      PreReadOffset = OffsetPtr;
      auto PId = Reader.getU32(&OffsetPtr);
      if (OffsetPtr == PreReadOffset)
        return createStringError(
            std::make_error_code(std::errc::executable_format_error),
            "Failed reading process id field at offset %" PRId64 ".",
            OffsetPtr);

      // Make a check for versions above 3 for the Pid field
      if (Record.FuncId != FuncId || Record.TId != TId ||
          (FileHeader.Version >= 3 ? Record.PId != PId : false))
        return createStringError(
            std::make_error_code(std::errc::executable_format_error),
            "Corrupted log, found arg payload following non-matching "
            "function+thread record. Record for function %d != %d at offset "
            "%" PRId64 ".",
            Record.FuncId, FuncId, OffsetPtr);

      PreReadOffset = OffsetPtr;
      auto Arg = Reader.getU64(&OffsetPtr);
      if (OffsetPtr == PreReadOffset)
        return createStringError(
            std::make_error_code(std::errc::executable_format_error),
            "Failed reading argument payload at offset %" PRId64 ".",
            OffsetPtr);

      Record.CallArgs.push_back(Arg);
      break;
    }
    default:
      return createStringError(
          std::make_error_code(std::errc::executable_format_error),
          "Unknown record type '%d' at offset %" PRId64 ".", RecordType,
          OffsetPtr);
    }
    // Advance the offset pointer enough bytes to align to 32-byte records for
    // basic mode logs.
    OffsetPtr += 8;
  }
  return Error::success();
}

/// Reads a log in FDR mode for version 1 of this binary format. FDR mode is
/// defined as part of the compiler-rt project in xray_fdr_logging.h, and such
/// a log consists of the familiar 32 bit XRayHeader, followed by sequences of
/// of interspersed 16 byte Metadata Records and 8 byte Function Records.
///
/// The following is an attempt to document the grammar of the format, which is
/// parsed by this function for little-endian machines. Since the format makes
/// use of BitFields, when we support big-endian architectures, we will need to
/// adjust not only the endianness parameter to llvm's RecordExtractor, but also
/// the bit twiddling logic, which is consistent with the little-endian
/// convention that BitFields within a struct will first be packed into the
/// least significant bits the address they belong to.
///
/// We expect a format complying with the grammar in the following pseudo-EBNF
/// in Version 1 of the FDR log.
///
/// FDRLog: XRayFileHeader ThreadBuffer*
/// XRayFileHeader: 32 bytes to identify the log as FDR with machine metadata.
///     Includes BufferSize
/// ThreadBuffer: NewBuffer WallClockTime NewCPUId FunctionSequence EOB
/// BufSize: 8 byte unsigned integer indicating how large the buffer is.
/// NewBuffer: 16 byte metadata record with Thread Id.
/// WallClockTime: 16 byte metadata record with human readable time.
/// Pid: 16 byte metadata record with Pid
/// NewCPUId: 16 byte metadata record with CPUId and a 64 bit TSC reading.
/// EOB: 16 byte record in a thread buffer plus mem garbage to fill BufSize.
/// FunctionSequence: NewCPUId | TSCWrap | FunctionRecord
/// TSCWrap: 16 byte metadata record with a full 64 bit TSC reading.
/// FunctionRecord: 8 byte record with FunctionId, entry/exit, and TSC delta.
///
/// In Version 2, we make the following changes:
///
/// ThreadBuffer: BufferExtents NewBuffer WallClockTime NewCPUId
///               FunctionSequence
/// BufferExtents: 16 byte metdata record describing how many usable bytes are
///                in the buffer. This is measured from the start of the buffer
///                and must always be at least 48 (bytes).
///
/// In Version 3, we make the following changes:
///
/// ThreadBuffer: BufferExtents NewBuffer WallClockTime Pid NewCPUId
///               FunctionSequence
/// EOB: *deprecated*
///
/// In Version 4, we make the following changes:
///
/// CustomEventRecord now includes the CPU data.
///
/// In Version 5, we make the following changes:
///
/// CustomEventRecord and TypedEventRecord now use TSC delta encoding similar to
/// what FunctionRecord instances use, and we no longer need to include the CPU
/// id in the CustomEventRecord.
///
Error loadFDRLog(StringRef Data, bool IsLittleEndian,
                 XRayFileHeader &FileHeader, std::vector<XRayRecord> &Records) {

  if (Data.size() < 32)
    return createStringError(std::make_error_code(std::errc::invalid_argument),
                             "Not enough bytes for an XRay FDR log.");
  DataExtractor DE(Data, IsLittleEndian, 8);

  uint64_t OffsetPtr = 0;
  auto FileHeaderOrError = readBinaryFormatHeader(DE, OffsetPtr);
  if (!FileHeaderOrError)
    return FileHeaderOrError.takeError();
  FileHeader = std::move(FileHeaderOrError.get());

  // First we load the records into memory.
  std::vector<std::unique_ptr<Record>> FDRRecords;

  {
    FileBasedRecordProducer P(FileHeader, DE, OffsetPtr);
    LogBuilderConsumer C(FDRRecords);
    while (DE.isValidOffsetForDataOfSize(OffsetPtr, 1)) {
      auto R = P.produce();
      if (!R)
        return R.takeError();
      if (auto E = C.consume(std::move(R.get())))
        return E;
    }
  }

  // Next we index the records into blocks.
  BlockIndexer::Index Index;
  {
    BlockIndexer Indexer(Index);
    for (auto &R : FDRRecords)
      if (auto E = R->apply(Indexer))
        return E;
    if (auto E = Indexer.flush())
      return E;
  }

  // Then we verify the consistency of the blocks.
  {
    for (auto &PTB : Index) {
      auto &Blocks = PTB.second;
      for (auto &B : Blocks) {
        BlockVerifier Verifier;
        for (auto *R : B.Records)
          if (auto E = R->apply(Verifier))
            return E;
        if (auto E = Verifier.verify())
          return E;
      }
    }
  }

  // This is now the meat of the algorithm. Here we sort the blocks according to
  // the Walltime record in each of the blocks for the same thread. This allows
  // us to more consistently recreate the execution trace in temporal order.
  // After the sort, we then reconstitute `Trace` records using a stateful
  // visitor associated with a single process+thread pair.
  {
    for (auto &PTB : Index) {
      auto &Blocks = PTB.second;
      llvm::sort(Blocks, [](const BlockIndexer::Block &L,
                            const BlockIndexer::Block &R) {
        return (L.WallclockTime->seconds() < R.WallclockTime->seconds() &&
                L.WallclockTime->nanos() < R.WallclockTime->nanos());
      });
      auto Adder = [&](const XRayRecord &R) { Records.push_back(R); };
      TraceExpander Expander(Adder, FileHeader.Version);
      for (auto &B : Blocks) {
        for (auto *R : B.Records)
          if (auto E = R->apply(Expander))
            return E;
      }
      if (auto E = Expander.flush())
        return E;
    }
  }

  return Error::success();
}

Error loadYAMLLog(StringRef Data, XRayFileHeader &FileHeader,
                  std::vector<XRayRecord> &Records) {
  YAMLXRayTrace Trace;
  Input In(Data);
  In >> Trace;
  if (In.error())
    return make_error<StringError>("Failed loading YAML Data.", In.error());

  FileHeader.Version = Trace.Header.Version;
  FileHeader.Type = Trace.Header.Type;
  FileHeader.ConstantTSC = Trace.Header.ConstantTSC;
  FileHeader.NonstopTSC = Trace.Header.NonstopTSC;
  FileHeader.CycleFrequency = Trace.Header.CycleFrequency;

  if (FileHeader.Version != 1)
    return make_error<StringError>(
        Twine("Unsupported XRay file version: ") + Twine(FileHeader.Version),
        std::make_error_code(std::errc::invalid_argument));

  Records.clear();
  std::transform(Trace.Records.begin(), Trace.Records.end(),
                 std::back_inserter(Records), [&](const YAMLXRayRecord &R) {
                   return XRayRecord{R.RecordType, R.CPU,      R.Type,
                                     R.FuncId,     R.TSC,      R.TId,
                                     R.PId,        R.CallArgs, R.Data};
                 });
  return Error::success();
}
} // namespace

Expected<Trace> llvm::xray::loadTraceFile(StringRef Filename, bool Sort) {
  Expected<sys::fs::file_t> FdOrErr = sys::fs::openNativeFileForRead(Filename);
  if (!FdOrErr)
    return FdOrErr.takeError();

  uint64_t FileSize;
  if (auto EC = sys::fs::file_size(Filename, FileSize)) {
    return make_error<StringError>(
        Twine("Cannot read log from '") + Filename + "'", EC);
  }
  if (FileSize < 4) {
    return make_error<StringError>(
        Twine("File '") + Filename + "' too small for XRay.",
        std::make_error_code(std::errc::executable_format_error));
  }

  // Map the opened file into memory and use a StringRef to access it later.
  std::error_code EC;
  sys::fs::mapped_file_region MappedFile(
      *FdOrErr, sys::fs::mapped_file_region::mapmode::readonly, FileSize, 0,
      EC);
  sys::fs::closeFile(*FdOrErr);
  if (EC) {
    return make_error<StringError>(
        Twine("Cannot read log from '") + Filename + "'", EC);
  }
  auto Data = StringRef(MappedFile.data(), MappedFile.size());

  // TODO: Lift the endianness and implementation selection here.
  DataExtractor LittleEndianDE(Data, true, 8);
  auto TraceOrError = loadTrace(LittleEndianDE, Sort);
  if (!TraceOrError) {
    DataExtractor BigEndianDE(Data, false, 8);
    TraceOrError = loadTrace(BigEndianDE, Sort);
  }
  return TraceOrError;
}

Expected<Trace> llvm::xray::loadTrace(const DataExtractor &DE, bool Sort) {
  // Attempt to detect the file type using file magic. We have a slight bias
  // towards the binary format, and we do this by making sure that the first 4
  // bytes of the binary file is some combination of the following byte
  // patterns: (observe the code loading them assumes they're little endian)
  //
  //   0x01 0x00 0x00 0x00 - version 1, "naive" format
  //   0x01 0x00 0x01 0x00 - version 1, "flight data recorder" format
  //   0x02 0x00 0x01 0x00 - version 2, "flight data recorder" format
  //
  // YAML files don't typically have those first four bytes as valid text so we
  // try loading assuming YAML if we don't find these bytes.
  //
  // Only if we can't load either the binary or the YAML format will we yield an
  // error.
  DataExtractor HeaderExtractor(DE.getData(), DE.isLittleEndian(), 8);
  uint64_t OffsetPtr = 0;
  uint16_t Version = HeaderExtractor.getU16(&OffsetPtr);
  uint16_t Type = HeaderExtractor.getU16(&OffsetPtr);

  enum BinaryFormatType { NAIVE_FORMAT = 0, FLIGHT_DATA_RECORDER_FORMAT = 1 };

  Trace T;
  switch (Type) {
  case NAIVE_FORMAT:
    if (Version == 1 || Version == 2 || Version == 3) {
      if (auto E = loadNaiveFormatLog(DE.getData(), DE.isLittleEndian(),
                                      T.FileHeader, T.Records))
        return std::move(E);
    } else {
      return make_error<StringError>(
          Twine("Unsupported version for Basic/Naive Mode logging: ") +
              Twine(Version),
          std::make_error_code(std::errc::executable_format_error));
    }
    break;
  case FLIGHT_DATA_RECORDER_FORMAT:
    if (Version >= 1 && Version <= 5) {
      if (auto E = loadFDRLog(DE.getData(), DE.isLittleEndian(), T.FileHeader,
                              T.Records))
        return std::move(E);
    } else {
      return make_error<StringError>(
          Twine("Unsupported version for FDR Mode logging: ") + Twine(Version),
          std::make_error_code(std::errc::executable_format_error));
    }
    break;
  default:
    if (auto E = loadYAMLLog(DE.getData(), T.FileHeader, T.Records))
      return std::move(E);
  }

  if (Sort)
    llvm::stable_sort(T.Records, [&](const XRayRecord &L, const XRayRecord &R) {
      return L.TSC < R.TSC;
    });

  return std::move(T);
}