reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
//===-- Uops.cpp ------------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "Uops.h"

#include "Assembler.h"
#include "BenchmarkRunner.h"
#include "MCInstrDescView.h"
#include "Target.h"

// FIXME: Load constants into registers (e.g. with fld1) to not break
// instructions like x87.

// Ideally we would like the only limitation on executing uops to be the issue
// ports. Maximizing port pressure increases the likelihood that the load is
// distributed evenly across possible ports.

// To achieve that, one approach is to generate instructions that do not have
// data dependencies between them.
//
// For some instructions, this is trivial:
//    mov rax, qword ptr [rsi]
//    mov rax, qword ptr [rsi]
//    mov rax, qword ptr [rsi]
//    mov rax, qword ptr [rsi]
// For the above snippet, haswell just renames rax four times and executes the
// four instructions two at a time on P23 and P0126.
//
// For some instructions, we just need to make sure that the source is
// different from the destination. For example, IDIV8r reads from GPR and
// writes to AX. We just need to ensure that the Var is assigned a
// register which is different from AX:
//    idiv bx
//    idiv bx
//    idiv bx
//    idiv bx
// The above snippet will be able to fully saturate the ports, while the same
// with ax would issue one uop every `latency(IDIV8r)` cycles.
//
// Some instructions make this harder because they both read and write from
// the same register:
//    inc rax
//    inc rax
//    inc rax
//    inc rax
// This has a data dependency from each instruction to the next, limit the
// number of instructions that can be issued in parallel.
// It turns out that this is not a big issue on recent Intel CPUs because they
// have heuristics to balance port pressure. In the snippet above, subsequent
// instructions will end up evenly distributed on {P0,P1,P5,P6}, but some CPUs
// might end up executing them all on P0 (just because they can), or try
// avoiding P5 because it's usually under high pressure from vector
// instructions.
// This issue is even more important for high-latency instructions because
// they increase the idle time of the CPU, e.g. :
//    imul rax, rbx
//    imul rax, rbx
//    imul rax, rbx
//    imul rax, rbx
//
// To avoid that, we do the renaming statically by generating as many
// independent exclusive assignments as possible (until all possible registers
// are exhausted) e.g.:
//    imul rax, rbx
//    imul rcx, rbx
//    imul rdx, rbx
//    imul r8,  rbx
//
// Some instruction even make the above static renaming impossible because
// they implicitly read and write from the same operand, e.g. ADC16rr reads
// and writes from EFLAGS.
// In that case we just use a greedy register assignment and hope for the
// best.

namespace llvm {
namespace exegesis {

static SmallVector<const Variable *, 8>
getVariablesWithTiedOperands(const Instruction &Instr) {
  SmallVector<const Variable *, 8> Result;
  for (const auto &Var : Instr.Variables)
    if (Var.hasTiedOperands())
      Result.push_back(&Var);
  return Result;
}

UopsBenchmarkRunner::~UopsBenchmarkRunner() = default;

UopsSnippetGenerator::~UopsSnippetGenerator() = default;

void UopsSnippetGenerator::instantiateMemoryOperands(
    const unsigned ScratchSpacePointerInReg,
    std::vector<InstructionTemplate> &Instructions) const {
  if (ScratchSpacePointerInReg == 0)
    return; // no memory operands.
  const auto &ET = State.getExegesisTarget();
  const unsigned MemStep = ET.getMaxMemoryAccessSize();
  const size_t OriginalInstructionsSize = Instructions.size();
  size_t I = 0;
  for (InstructionTemplate &IT : Instructions) {
    ET.fillMemoryOperands(IT, ScratchSpacePointerInReg, I * MemStep);
    ++I;
  }

  while (Instructions.size() < kMinNumDifferentAddresses) {
    InstructionTemplate IT = Instructions[I % OriginalInstructionsSize];
    ET.fillMemoryOperands(IT, ScratchSpacePointerInReg, I * MemStep);
    ++I;
    Instructions.push_back(std::move(IT));
  }
  assert(I * MemStep < BenchmarkRunner::ScratchSpace::kSize &&
         "not enough scratch space");
}

static std::vector<InstructionTemplate> generateSnippetUsingStaticRenaming(
    const LLVMState &State, const InstructionTemplate &IT,
    const ArrayRef<const Variable *> TiedVariables,
    const BitVector &ForbiddenRegisters) {
  std::vector<InstructionTemplate> Instructions;
  // Assign registers to variables in a round-robin manner. This is simple but
  // ensures that the most register-constrained variable does not get starved.
  std::vector<BitVector> PossibleRegsForVar;
  for (const Variable *Var : TiedVariables) {
    assert(Var);
    const Operand &Op = IT.Instr.getPrimaryOperand(*Var);
    assert(Op.isReg());
    BitVector PossibleRegs = Op.getRegisterAliasing().sourceBits();
    remove(PossibleRegs, ForbiddenRegisters);
    PossibleRegsForVar.push_back(std::move(PossibleRegs));
  }
  SmallVector<int, 2> Iterators(TiedVariables.size(), 0);
  while (true) {
    InstructionTemplate TmpIT = IT;
    // Find a possible register for each variable in turn, marking the
    // register as taken.
    for (size_t VarId = 0; VarId < TiedVariables.size(); ++VarId) {
      const int NextPossibleReg =
          PossibleRegsForVar[VarId].find_next(Iterators[VarId]);
      if (NextPossibleReg <= 0) {
        return Instructions;
      }
      TmpIT.getValueFor(*TiedVariables[VarId]) =
          MCOperand::createReg(NextPossibleReg);
      // Bump iterator.
      Iterators[VarId] = NextPossibleReg;
      // Prevent other variables from using the register.
      for (BitVector &OtherPossibleRegs : PossibleRegsForVar) {
        OtherPossibleRegs.reset(NextPossibleReg);
      }
    }
    Instructions.push_back(std::move(TmpIT));
  }
}

Expected<std::vector<CodeTemplate>> UopsSnippetGenerator::generateCodeTemplates(
    const Instruction &Instr, const BitVector &ForbiddenRegisters) const {
  CodeTemplate CT;
  CT.ScratchSpacePointerInReg =
      Instr.hasMemoryOperands()
          ? State.getExegesisTarget().getScratchMemoryRegister(
                State.getTargetMachine().getTargetTriple())
          : 0;
  const AliasingConfigurations SelfAliasing(Instr, Instr);
  InstructionTemplate IT(Instr);
  if (SelfAliasing.empty()) {
    CT.Info = "instruction is parallel, repeating a random one.";
    CT.Instructions.push_back(std::move(IT));
    instantiateMemoryOperands(CT.ScratchSpacePointerInReg, CT.Instructions);
    return getSingleton(std::move(CT));
  }
  if (SelfAliasing.hasImplicitAliasing()) {
    CT.Info = "instruction is serial, repeating a random one.";
    CT.Instructions.push_back(std::move(IT));
    instantiateMemoryOperands(CT.ScratchSpacePointerInReg, CT.Instructions);
    return getSingleton(std::move(CT));
  }
  const auto TiedVariables = getVariablesWithTiedOperands(Instr);
  if (!TiedVariables.empty()) {
    CT.Info = "instruction has tied variables, using static renaming.";
    CT.Instructions = generateSnippetUsingStaticRenaming(
        State, IT, TiedVariables, ForbiddenRegisters);
    instantiateMemoryOperands(CT.ScratchSpacePointerInReg, CT.Instructions);
    return getSingleton(std::move(CT));
  }
  // No tied variables, we pick random values for defs.
  BitVector Defs(State.getRegInfo().getNumRegs());
  for (const auto &Op : Instr.Operands) {
    if (Op.isReg() && Op.isExplicit() && Op.isDef() && !Op.isMemory()) {
      auto PossibleRegisters = Op.getRegisterAliasing().sourceBits();
      // Do not use forbidden registers.
      remove(PossibleRegisters, ForbiddenRegisters);
      assert(PossibleRegisters.any() && "No register left to choose from");
      const auto RandomReg = randomBit(PossibleRegisters);
      Defs.set(RandomReg);
      IT.getValueFor(Op) = MCOperand::createReg(RandomReg);
    }
  }
  // And pick random use values that are not reserved and don't alias with defs.
  const auto DefAliases = getAliasedBits(State.getRegInfo(), Defs);
  for (const auto &Op : Instr.Operands) {
    if (Op.isReg() && Op.isExplicit() && Op.isUse() && !Op.isMemory()) {
      auto PossibleRegisters = Op.getRegisterAliasing().sourceBits();
      remove(PossibleRegisters, ForbiddenRegisters);
      remove(PossibleRegisters, DefAliases);
      assert(PossibleRegisters.any() && "No register left to choose from");
      const auto RandomReg = randomBit(PossibleRegisters);
      IT.getValueFor(Op) = MCOperand::createReg(RandomReg);
    }
  }
  CT.Info =
      "instruction has no tied variables picking Uses different from defs";
  CT.Instructions.push_back(std::move(IT));
  instantiateMemoryOperands(CT.ScratchSpacePointerInReg, CT.Instructions);
  return getSingleton(std::move(CT));
}

Expected<std::vector<BenchmarkMeasure>>
UopsBenchmarkRunner::runMeasurements(const FunctionExecutor &Executor) const {
  std::vector<BenchmarkMeasure> Result;
  const PfmCountersInfo &PCI = State.getPfmCounters();
  // Uops per port.
  for (const auto *IssueCounter = PCI.IssueCounters,
                  *IssueCounterEnd = PCI.IssueCounters + PCI.NumIssueCounters;
       IssueCounter != IssueCounterEnd; ++IssueCounter) {
    if (!IssueCounter->Counter)
      continue;
    auto ExpectedCounterValue = Executor.runAndMeasure(IssueCounter->Counter);
    if (!ExpectedCounterValue)
      return ExpectedCounterValue.takeError();
    Result.push_back(BenchmarkMeasure::Create(IssueCounter->ProcResName,
                                              *ExpectedCounterValue));
  }
  // NumMicroOps.
  if (const char *const UopsCounter = PCI.UopsCounter) {
    auto ExpectedCounterValue = Executor.runAndMeasure(UopsCounter);
    if (!ExpectedCounterValue)
      return ExpectedCounterValue.takeError();
    Result.push_back(
        BenchmarkMeasure::Create("NumMicroOps", *ExpectedCounterValue));
  }
  return std::move(Result);
}

constexpr const size_t UopsSnippetGenerator::kMinNumDifferentAddresses;

} // namespace exegesis
} // namespace llvm