reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
//===-- SnippetGenerator.cpp ------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include <array>
#include <string>

#include "Assembler.h"
#include "Error.h"
#include "MCInstrDescView.h"
#include "SnippetGenerator.h"
#include "Target.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/Program.h"

namespace llvm {
namespace exegesis {

std::vector<CodeTemplate> getSingleton(CodeTemplate &&CT) {
  std::vector<CodeTemplate> Result;
  Result.push_back(std::move(CT));
  return Result;
}

SnippetGeneratorFailure::SnippetGeneratorFailure(const Twine &S)
    : StringError(S, inconvertibleErrorCode()) {}

SnippetGenerator::SnippetGenerator(const LLVMState &State, const Options &Opts)
    : State(State), Opts(Opts) {}

SnippetGenerator::~SnippetGenerator() = default;

Expected<std::vector<BenchmarkCode>> SnippetGenerator::generateConfigurations(
    const Instruction &Instr, const BitVector &ExtraForbiddenRegs) const {
  BitVector ForbiddenRegs = State.getRATC().reservedRegisters();
  ForbiddenRegs |= ExtraForbiddenRegs;
  // If the instruction has memory registers, prevent the generator from
  // using the scratch register and its aliasing registers.
  if (Instr.hasMemoryOperands()) {
    const auto &ET = State.getExegesisTarget();
    unsigned ScratchSpacePointerInReg =
        ET.getScratchMemoryRegister(State.getTargetMachine().getTargetTriple());
    if (ScratchSpacePointerInReg == 0)
      return make_error<Failure>(
          "Infeasible : target does not support memory instructions");
    const auto &ScratchRegAliases =
        State.getRATC().getRegister(ScratchSpacePointerInReg).aliasedBits();
    // If the instruction implicitly writes to ScratchSpacePointerInReg , abort.
    // FIXME: We could make a copy of the scratch register.
    for (const auto &Op : Instr.Operands) {
      if (Op.isDef() && Op.isImplicitReg() &&
          ScratchRegAliases.test(Op.getImplicitReg()))
        return make_error<Failure>(
            "Infeasible : memory instruction uses scratch memory register");
    }
    ForbiddenRegs |= ScratchRegAliases;
  }

  if (auto E = generateCodeTemplates(Instr, ForbiddenRegs)) {
    std::vector<BenchmarkCode> Output;
    for (CodeTemplate &CT : E.get()) {
      // TODO: Generate as many BenchmarkCode as needed.
      {
        BenchmarkCode BC;
        BC.Info = CT.Info;
        for (InstructionTemplate &IT : CT.Instructions) {
          randomizeUnsetVariables(State.getExegesisTarget(), ForbiddenRegs, IT);
          BC.Key.Instructions.push_back(IT.build());
        }
        if (CT.ScratchSpacePointerInReg)
          BC.LiveIns.push_back(CT.ScratchSpacePointerInReg);
        BC.Key.RegisterInitialValues =
            computeRegisterInitialValues(CT.Instructions);
        BC.Key.Config = CT.Config;
        Output.push_back(std::move(BC));
        if (Output.size() >= Opts.MaxConfigsPerOpcode)
          return Output; // Early exit if we exceeded the number of allowed
                         // configs.
      }
    }
    return Output;
  } else
    return E.takeError();
}

std::vector<RegisterValue> SnippetGenerator::computeRegisterInitialValues(
    const std::vector<InstructionTemplate> &Instructions) const {
  // Collect all register uses and create an assignment for each of them.
  // Ignore memory operands which are handled separately.
  // Loop invariant: DefinedRegs[i] is true iif it has been set at least once
  // before the current instruction.
  BitVector DefinedRegs = State.getRATC().emptyRegisters();
  std::vector<RegisterValue> RIV;
  for (const InstructionTemplate &IT : Instructions) {
    // Returns the register that this Operand sets or uses, or 0 if this is not
    // a register.
    const auto GetOpReg = [&IT](const Operand &Op) -> unsigned {
      if (Op.isMemory())
        return 0;
      if (Op.isImplicitReg())
        return Op.getImplicitReg();
      if (Op.isExplicit() && IT.getValueFor(Op).isReg())
        return IT.getValueFor(Op).getReg();
      return 0;
    };
    // Collect used registers that have never been def'ed.
    for (const Operand &Op : IT.Instr.Operands) {
      if (Op.isUse()) {
        const unsigned Reg = GetOpReg(Op);
        if (Reg > 0 && !DefinedRegs.test(Reg)) {
          RIV.push_back(RegisterValue::zero(Reg));
          DefinedRegs.set(Reg);
        }
      }
    }
    // Mark defs as having been def'ed.
    for (const Operand &Op : IT.Instr.Operands) {
      if (Op.isDef()) {
        const unsigned Reg = GetOpReg(Op);
        if (Reg > 0)
          DefinedRegs.set(Reg);
      }
    }
  }
  return RIV;
}

Expected<std::vector<CodeTemplate>>
generateSelfAliasingCodeTemplates(const Instruction &Instr) {
  const AliasingConfigurations SelfAliasing(Instr, Instr);
  if (SelfAliasing.empty())
    return make_error<SnippetGeneratorFailure>("empty self aliasing");
  std::vector<CodeTemplate> Result;
  Result.emplace_back();
  CodeTemplate &CT = Result.back();
  InstructionTemplate IT(Instr);
  if (SelfAliasing.hasImplicitAliasing()) {
    CT.Info = "implicit Self cycles, picking random values.";
  } else {
    CT.Info = "explicit self cycles, selecting one aliasing Conf.";
    // This is a self aliasing instruction so defs and uses are from the same
    // instance, hence twice IT in the following call.
    setRandomAliasing(SelfAliasing, IT, IT);
  }
  CT.Instructions.push_back(std::move(IT));
  return std::move(Result);
}

Expected<std::vector<CodeTemplate>>
generateUnconstrainedCodeTemplates(const Instruction &Instr, StringRef Msg) {
  std::vector<CodeTemplate> Result;
  Result.emplace_back();
  CodeTemplate &CT = Result.back();
  CT.Info = formatv("{0}, repeating an unconstrained assignment", Msg);
  CT.Instructions.emplace_back(Instr);
  return std::move(Result);
}

std::mt19937 &randomGenerator() {
  static std::random_device RandomDevice;
  static std::mt19937 RandomGenerator(RandomDevice());
  return RandomGenerator;
}

size_t randomIndex(size_t Max) {
  std::uniform_int_distribution<> Distribution(0, Max);
  return Distribution(randomGenerator());
}

template <typename C>
static auto randomElement(const C &Container) -> decltype(Container[0]) {
  assert(!Container.empty() &&
         "Can't pick a random element from an empty container)");
  return Container[randomIndex(Container.size() - 1)];
}

static void setRegisterOperandValue(const RegisterOperandAssignment &ROV,
                                    InstructionTemplate &IB) {
  assert(ROV.Op);
  if (ROV.Op->isExplicit()) {
    auto &AssignedValue = IB.getValueFor(*ROV.Op);
    if (AssignedValue.isValid()) {
      assert(AssignedValue.isReg() && AssignedValue.getReg() == ROV.Reg);
      return;
    }
    AssignedValue = MCOperand::createReg(ROV.Reg);
  } else {
    assert(ROV.Op->isImplicitReg());
    assert(ROV.Reg == ROV.Op->getImplicitReg());
  }
}

size_t randomBit(const BitVector &Vector) {
  assert(Vector.any());
  auto Itr = Vector.set_bits_begin();
  for (size_t I = randomIndex(Vector.count() - 1); I != 0; --I)
    ++Itr;
  return *Itr;
}

void setRandomAliasing(const AliasingConfigurations &AliasingConfigurations,
                       InstructionTemplate &DefIB, InstructionTemplate &UseIB) {
  assert(!AliasingConfigurations.empty());
  assert(!AliasingConfigurations.hasImplicitAliasing());
  const auto &RandomConf = randomElement(AliasingConfigurations.Configurations);
  setRegisterOperandValue(randomElement(RandomConf.Defs), DefIB);
  setRegisterOperandValue(randomElement(RandomConf.Uses), UseIB);
}

void randomizeUnsetVariables(const ExegesisTarget &Target,
                             const BitVector &ForbiddenRegs,
                             InstructionTemplate &IT) {
  for (const Variable &Var : IT.Instr.Variables) {
    MCOperand &AssignedValue = IT.getValueFor(Var);
    if (!AssignedValue.isValid())
      Target.randomizeMCOperand(IT.Instr, Var, AssignedValue, ForbiddenRegs);
  }
}

} // namespace exegesis
} // namespace llvm