reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/DebugInfo/DIContext.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/JSON.h"

#define DEBUG_TYPE "dwarfdump"
using namespace llvm;
using namespace object;

/// This represents the number of categories of debug location coverage being
/// calculated. The first category is the number of variables with 0% location
/// coverage, but the last category is the number of variables with 100%
/// location coverage.
constexpr int NumOfCoverageCategories = 12;

/// Holds statistics for one function (or other entity that has a PC range and
/// contains variables, such as a compile unit).
struct PerFunctionStats {
  /// Number of inlined instances of this function.
  unsigned NumFnInlined = 0;
  /// Number of inlined instances that have abstract origins.
  unsigned NumAbstractOrigins = 0;
  /// Number of variables and parameters with location across all inlined
  /// instances.
  unsigned TotalVarWithLoc = 0;
  /// Number of constants with location across all inlined instances.
  unsigned ConstantMembers = 0;
  /// List of all Variables and parameters in this function.
  StringSet<> VarsInFunction;
  /// Compile units also cover a PC range, but have this flag set to false.
  bool IsFunction = false;
  /// Verify function definition has PC addresses (for detecting when
  /// a function has been inlined everywhere).
  bool HasPCAddresses = false;
  /// Function has source location information.
  bool HasSourceLocation = false;
  /// Number of function parameters.
  unsigned NumParams = 0;
  /// Number of function parameters with source location.
  unsigned NumParamSourceLocations = 0;
  /// Number of function parameters with type.
  unsigned NumParamTypes = 0;
  /// Number of function parameters with a DW_AT_location.
  unsigned NumParamLocations = 0;
  /// Number of variables.
  unsigned NumVars = 0;
  /// Number of variables with source location.
  unsigned NumVarSourceLocations = 0;
  /// Number of variables with type.
  unsigned NumVarTypes = 0;
  /// Number of variables with DW_AT_location.
  unsigned NumVarLocations = 0;
};

/// Holds accumulated global statistics about DIEs.
struct GlobalStats {
  /// Total number of PC range bytes covered by DW_AT_locations.
  unsigned ScopeBytesCovered = 0;
  /// Total number of PC range bytes in each variable's enclosing scope,
  /// starting from the first definition of the variable.
  unsigned ScopeBytesFromFirstDefinition = 0;
  /// Total number of PC range bytes covered by DW_AT_locations with
  /// the debug entry values (DW_OP_entry_value).
  unsigned ScopeEntryValueBytesCovered = 0;
  /// Total number of PC range bytes covered by DW_AT_locations of
  /// formal parameters.
  unsigned ParamScopeBytesCovered = 0;
  /// Total number of PC range bytes in each variable's enclosing scope,
  /// starting from the first definition of the variable (only for parameters).
  unsigned ParamScopeBytesFromFirstDefinition = 0;
  /// Total number of PC range bytes covered by DW_AT_locations with
  /// the debug entry values (DW_OP_entry_value) (only for parameters).
  unsigned ParamScopeEntryValueBytesCovered = 0;
  /// Total number of PC range bytes covered by DW_AT_locations (only for local
  /// variables).
  unsigned VarScopeBytesCovered = 0;
  /// Total number of PC range bytes in each variable's enclosing scope,
  /// starting from the first definition of the variable (only for local
  /// variables).
  unsigned VarScopeBytesFromFirstDefinition = 0;
  /// Total number of PC range bytes covered by DW_AT_locations with
  /// the debug entry values (DW_OP_entry_value) (only for local variables).
  unsigned VarScopeEntryValueBytesCovered = 0;
  /// Total number of call site entries (DW_AT_call_file & DW_AT_call_line).
  unsigned CallSiteEntries = 0;
  /// Total number of call site DIEs (DW_TAG_call_site).
  unsigned CallSiteDIEs = 0;
  /// Total number of call site parameter DIEs (DW_TAG_call_site_parameter).
  unsigned CallSiteParamDIEs = 0;
  /// Total byte size of concrete functions. This byte size includes
  /// inline functions contained in the concrete functions.
  unsigned FunctionSize = 0;
  /// Total byte size of inlined functions. This is the total number of bytes
  /// for the top inline functions within concrete functions. This can help
  /// tune the inline settings when compiling to match user expectations.
  unsigned InlineFunctionSize = 0;
};

/// Holds accumulated debug location statistics about local variables and
/// formal parameters.
struct LocationStats {
  /// Map the scope coverage decile to the number of variables in the decile.
  /// The first element of the array (at the index zero) represents the number
  /// of variables with the no debug location at all, but the last element
  /// in the vector represents the number of fully covered variables within
  /// its scope.
  std::vector<unsigned> VarParamLocStats{
      std::vector<unsigned>(NumOfCoverageCategories, 0)};
  /// Map non debug entry values coverage.
  std::vector<unsigned> VarParamNonEntryValLocStats{
      std::vector<unsigned>(NumOfCoverageCategories, 0)};
  /// The debug location statistics for formal parameters.
  std::vector<unsigned> ParamLocStats{
      std::vector<unsigned>(NumOfCoverageCategories, 0)};
  /// Map non debug entry values coverage for formal parameters.
  std::vector<unsigned> ParamNonEntryValLocStats{
      std::vector<unsigned>(NumOfCoverageCategories, 0)};
  /// The debug location statistics for local variables.
  std::vector<unsigned> VarLocStats{
      std::vector<unsigned>(NumOfCoverageCategories, 0)};
  /// Map non debug entry values coverage for local variables.
  std::vector<unsigned> VarNonEntryValLocStats{
      std::vector<unsigned>(NumOfCoverageCategories, 0)};
  /// Total number of local variables and function parameters processed.
  unsigned NumVarParam = 0;
  /// Total number of formal parameters processed.
  unsigned NumParam = 0;
  /// Total number of local variables processed.
  unsigned NumVar = 0;
};

/// Extract the low pc from a Die.
static uint64_t getLowPC(DWARFDie Die) {
  auto RangesOrError = Die.getAddressRanges();
  DWARFAddressRangesVector Ranges;
  if (RangesOrError)
    Ranges = RangesOrError.get();
  else
    llvm::consumeError(RangesOrError.takeError());
  if (Ranges.size())
    return Ranges[0].LowPC;
  return dwarf::toAddress(Die.find(dwarf::DW_AT_low_pc), 0);
}

/// Collect debug location statistics for one DIE.
static void collectLocStats(uint64_t BytesCovered, uint64_t BytesInScope,
                            std::vector<unsigned> &VarParamLocStats,
                            std::vector<unsigned> &ParamLocStats,
                            std::vector<unsigned> &VarLocStats, bool IsParam,
                            bool IsLocalVar) {
  auto getCoverageBucket = [BytesCovered, BytesInScope]() -> unsigned {
    unsigned LocBucket = 100 * (double)BytesCovered / BytesInScope;
    if (LocBucket == 0) {
      // No debug location at all for the variable.
      return 0;
    } else if (LocBucket == 100 || BytesCovered > BytesInScope) {
      // Fully covered variable within its scope.
      return NumOfCoverageCategories - 1;
    } else {
      // Get covered range (e.g. 20%-29%).
      LocBucket /= 10;
      return LocBucket + 1;
    }
  };

  unsigned CoverageBucket = getCoverageBucket();
  VarParamLocStats[CoverageBucket]++;
  if (IsParam)
    ParamLocStats[CoverageBucket]++;
  else if (IsLocalVar)
    VarLocStats[CoverageBucket]++;
}

/// Collect debug info quality metrics for one DIE.
static void collectStatsForDie(DWARFDie Die, uint64_t UnitLowPC, std::string FnPrefix,
                               std::string VarPrefix, uint64_t ScopeLowPC,
                               uint64_t BytesInScope, uint32_t InlineDepth,
                               StringMap<PerFunctionStats> &FnStatMap,
                               GlobalStats &GlobalStats,
                               LocationStats &LocStats) {
  bool HasLoc = false;
  bool HasSrcLoc = false;
  bool HasType = false;
  bool IsArtificial = false;
  uint64_t BytesCovered = 0;
  uint64_t BytesEntryValuesCovered = 0;
  uint64_t OffsetToFirstDefinition = 0;
  auto &FnStats = FnStatMap[FnPrefix];
  bool IsParam = Die.getTag() == dwarf::DW_TAG_formal_parameter;
  bool IsLocalVar = Die.getTag() == dwarf::DW_TAG_variable;

  if (Die.getTag() == dwarf::DW_TAG_call_site ||
      Die.getTag() == dwarf::DW_TAG_GNU_call_site) {
    GlobalStats.CallSiteDIEs++;
    return;
  }

  if (Die.getTag() == dwarf::DW_TAG_call_site_parameter ||
      Die.getTag() == dwarf::DW_TAG_GNU_call_site_parameter) {
    GlobalStats.CallSiteParamDIEs++;
    return;
  }

  if (!IsParam && !IsLocalVar && Die.getTag() != dwarf::DW_TAG_member) {
    // Not a variable or constant member.
    return;
  }

  if (Die.findRecursively(dwarf::DW_AT_decl_file) &&
      Die.findRecursively(dwarf::DW_AT_decl_line))
    HasSrcLoc = true;

  if (Die.findRecursively(dwarf::DW_AT_type))
    HasType = true;

  if (Die.find(dwarf::DW_AT_artificial))
    IsArtificial = true;

  auto IsEntryValue = [&](ArrayRef<uint8_t> D) -> bool {
    DWARFUnit *U = Die.getDwarfUnit();
    DataExtractor Data(toStringRef(D),
                       Die.getDwarfUnit()->getContext().isLittleEndian(), 0);
    DWARFExpression Expression(Data, U->getVersion(), U->getAddressByteSize());
    // Consider the expression containing the DW_OP_entry_value as
    // an entry value.
    return llvm::any_of(Expression, [](DWARFExpression::Operation &Op) {
      return Op.getCode() == dwarf::DW_OP_entry_value ||
             Op.getCode() == dwarf::DW_OP_GNU_entry_value;
    });
  };

  if (Die.find(dwarf::DW_AT_const_value)) {
    // This catches constant members *and* variables.
    HasLoc = true;
    BytesCovered = BytesInScope;
  } else {
    if (Die.getTag() == dwarf::DW_TAG_member) {
      // Non-const member.
      return;
    }
    // Handle variables and function arguments.
    auto FormValue = Die.find(dwarf::DW_AT_location);
    HasLoc = FormValue.hasValue();
    if (HasLoc) {
      // Get PC coverage.
      if (auto DebugLocOffset = FormValue->getAsSectionOffset()) {
        auto *DebugLoc = Die.getDwarfUnit()->getContext().getDebugLoc();
        if (auto List = DebugLoc->getLocationListAtOffset(*DebugLocOffset)) {
          for (auto Entry : List->Entries) {
            uint64_t BytesEntryCovered = Entry.End - Entry.Begin;
            BytesCovered += BytesEntryCovered;
            if (IsEntryValue(Entry.Loc))
              BytesEntryValuesCovered += BytesEntryCovered;
          }
          if (List->Entries.size()) {
            uint64_t FirstDef = List->Entries[0].Begin;
            uint64_t UnitOfs = UnitLowPC; 
            // Ranges sometimes start before the lexical scope.
            if (UnitOfs + FirstDef >= ScopeLowPC)
              OffsetToFirstDefinition = UnitOfs + FirstDef - ScopeLowPC;
            // Or even after it. Count that as a failure.
            if (OffsetToFirstDefinition > BytesInScope)
              OffsetToFirstDefinition = 0;
          }
        }
        assert(BytesInScope);
      } else {
        // Assume the entire range is covered by a single location.
        BytesCovered = BytesInScope;
      }
    }
  }

  // Calculate the debug location statistics.
  if (BytesInScope) {
    LocStats.NumVarParam++;
    if (IsParam)
      LocStats.NumParam++;
    else if (IsLocalVar)
      LocStats.NumVar++;

    collectLocStats(BytesCovered, BytesInScope, LocStats.VarParamLocStats,
                    LocStats.ParamLocStats, LocStats.VarLocStats, IsParam,
                    IsLocalVar);
    // Non debug entry values coverage statistics.
    collectLocStats(BytesCovered - BytesEntryValuesCovered, BytesInScope,
                    LocStats.VarParamNonEntryValLocStats,
                    LocStats.ParamNonEntryValLocStats,
                    LocStats.VarNonEntryValLocStats, IsParam, IsLocalVar);
  }

  // Collect PC range coverage data.
  if (DWARFDie D =
          Die.getAttributeValueAsReferencedDie(dwarf::DW_AT_abstract_origin))
    Die = D;
  // By using the variable name + the path through the lexical block tree, the
  // keys are consistent across duplicate abstract origins in different CUs.
  std::string VarName = StringRef(Die.getName(DINameKind::ShortName));
  FnStats.VarsInFunction.insert(VarPrefix + VarName);
  if (BytesInScope) {
    FnStats.TotalVarWithLoc += (unsigned)HasLoc;
    // Adjust for the fact the variables often start their lifetime in the
    // middle of the scope.
    BytesInScope -= OffsetToFirstDefinition;
    // Turns out we have a lot of ranges that extend past the lexical scope.
    GlobalStats.ScopeBytesCovered += std::min(BytesInScope, BytesCovered);
    GlobalStats.ScopeBytesFromFirstDefinition += BytesInScope;
    GlobalStats.ScopeEntryValueBytesCovered += BytesEntryValuesCovered;
    if (IsParam) {
      GlobalStats.ParamScopeBytesCovered +=
          std::min(BytesInScope, BytesCovered);
      GlobalStats.ParamScopeBytesFromFirstDefinition += BytesInScope;
      GlobalStats.ParamScopeEntryValueBytesCovered += BytesEntryValuesCovered;
    } else if (IsLocalVar) {
      GlobalStats.VarScopeBytesCovered += std::min(BytesInScope, BytesCovered);
      GlobalStats.VarScopeBytesFromFirstDefinition += BytesInScope;
      GlobalStats.VarScopeEntryValueBytesCovered += BytesEntryValuesCovered;
    }
    assert(GlobalStats.ScopeBytesCovered <=
           GlobalStats.ScopeBytesFromFirstDefinition);
  } else if (Die.getTag() == dwarf::DW_TAG_member) {
    FnStats.ConstantMembers++;
  } else {
    FnStats.TotalVarWithLoc += (unsigned)HasLoc;
  }
  if (!IsArtificial) {
    if (IsParam) {
      FnStats.NumParams++;
      if (HasType)
        FnStats.NumParamTypes++;
      if (HasSrcLoc)
        FnStats.NumParamSourceLocations++;
      if (HasLoc)
        FnStats.NumParamLocations++;
    } else if (IsLocalVar) {
      FnStats.NumVars++;
      if (HasType)
        FnStats.NumVarTypes++;
      if (HasSrcLoc)
        FnStats.NumVarSourceLocations++;
      if (HasLoc)
        FnStats.NumVarLocations++;
    }
  }
}

/// Recursively collect debug info quality metrics.
static void collectStatsRecursive(DWARFDie Die, uint64_t UnitLowPC, std::string FnPrefix,
                                  std::string VarPrefix, uint64_t ScopeLowPC,
                                  uint64_t BytesInScope, uint32_t InlineDepth,
                                  StringMap<PerFunctionStats> &FnStatMap,
                                  GlobalStats &GlobalStats,
                                  LocationStats &LocStats) {
  // Handle any kind of lexical scope.
  const dwarf::Tag Tag = Die.getTag();
  const bool IsFunction = Tag == dwarf::DW_TAG_subprogram;
  const bool IsBlock = Tag == dwarf::DW_TAG_lexical_block;
  const bool IsInlinedFunction = Tag == dwarf::DW_TAG_inlined_subroutine;
  if (IsFunction || IsInlinedFunction || IsBlock) {

    // Reset VarPrefix when entering a new function.
    if (Die.getTag() == dwarf::DW_TAG_subprogram ||
        Die.getTag() == dwarf::DW_TAG_inlined_subroutine)
      VarPrefix = "v";

    // Ignore forward declarations.
    if (Die.find(dwarf::DW_AT_declaration))
      return;

    // Check for call sites.
    if (Die.find(dwarf::DW_AT_call_file) && Die.find(dwarf::DW_AT_call_line))
      GlobalStats.CallSiteEntries++;

    // PC Ranges.
    auto RangesOrError = Die.getAddressRanges();
    if (!RangesOrError) {
      llvm::consumeError(RangesOrError.takeError());
      return;
    }

    auto Ranges = RangesOrError.get();
    uint64_t BytesInThisScope = 0;
    for (auto Range : Ranges)
      BytesInThisScope += Range.HighPC - Range.LowPC;
    ScopeLowPC = getLowPC(Die);

    // Count the function.
    if (!IsBlock) {
      StringRef Name = Die.getName(DINameKind::LinkageName);
      if (Name.empty())
        Name = Die.getName(DINameKind::ShortName);
      FnPrefix = Name;
      // Skip over abstract origins.
      if (Die.find(dwarf::DW_AT_inline))
        return;
      // We've seen an (inlined) instance of this function.
      auto &FnStats = FnStatMap[Name];
      if (IsInlinedFunction) {
        FnStats.NumFnInlined++;
        if (Die.findRecursively(dwarf::DW_AT_abstract_origin))
          FnStats.NumAbstractOrigins++;
      }
      FnStats.IsFunction = true;
      if (BytesInThisScope && !IsInlinedFunction)
        FnStats.HasPCAddresses = true;
      std::string FnName = StringRef(Die.getName(DINameKind::ShortName));
      if (Die.findRecursively(dwarf::DW_AT_decl_file) &&
          Die.findRecursively(dwarf::DW_AT_decl_line))
        FnStats.HasSourceLocation = true;
    }

    if (BytesInThisScope) {
      BytesInScope = BytesInThisScope;
      if (IsFunction)
        GlobalStats.FunctionSize += BytesInThisScope;
      else if (IsInlinedFunction && InlineDepth == 0)
        GlobalStats.InlineFunctionSize += BytesInThisScope;
    }
  } else {
    // Not a scope, visit the Die itself. It could be a variable.
    collectStatsForDie(Die, UnitLowPC, FnPrefix, VarPrefix, ScopeLowPC, BytesInScope,
                       InlineDepth, FnStatMap, GlobalStats, LocStats);
  }

  // Set InlineDepth correctly for child recursion
  if (IsFunction)
    InlineDepth = 0;
  else if (IsInlinedFunction)
    ++InlineDepth;

  // Traverse children.
  unsigned LexicalBlockIndex = 0;
  DWARFDie Child = Die.getFirstChild();
  while (Child) {
    std::string ChildVarPrefix = VarPrefix;
    if (Child.getTag() == dwarf::DW_TAG_lexical_block)
      ChildVarPrefix += toHex(LexicalBlockIndex++) + '.';

    collectStatsRecursive(Child, UnitLowPC, FnPrefix, ChildVarPrefix, ScopeLowPC,
                          BytesInScope, InlineDepth, FnStatMap, GlobalStats,
                          LocStats);
    Child = Child.getSibling();
  }
}

/// Print machine-readable output.
/// The machine-readable format is single-line JSON output.
/// \{
static void printDatum(raw_ostream &OS, const char *Key, json::Value Value) {
  OS << ",\"" << Key << "\":" << Value;
  LLVM_DEBUG(llvm::dbgs() << Key << ": " << Value << '\n');
}
static void printLocationStats(raw_ostream &OS,
                               const char *Key,
                               std::vector<unsigned> &LocationStats) {
  OS << ",\"" << Key << " with 0% of its scope covered\":"
     << LocationStats[0];
  LLVM_DEBUG(llvm::dbgs() << Key << " with 0% of its scope covered: "
                          << LocationStats[0] << '\n');
  OS << ",\"" << Key << " with 1-9% of its scope covered\":"
     << LocationStats[1];
  LLVM_DEBUG(llvm::dbgs() << Key << " with 1-9% of its scope covered: "
                          << LocationStats[1] << '\n');
  for (unsigned i = 2; i < NumOfCoverageCategories - 1; ++i) {
    OS << ",\"" << Key << " with " << (i - 1) * 10 << "-" << i * 10 - 1
       << "% of its scope covered\":" << LocationStats[i];
    LLVM_DEBUG(llvm::dbgs()
               << Key << " with " << (i - 1) * 10 << "-" << i * 10 - 1
               << "% of its scope covered: " << LocationStats[i]);
  }
  OS << ",\"" << Key << " with 100% of its scope covered\":"
     << LocationStats[NumOfCoverageCategories - 1];
  LLVM_DEBUG(llvm::dbgs() << Key << " with 100% of its scope covered: "
                          << LocationStats[NumOfCoverageCategories - 1]);
}
/// \}

/// Collect debug info quality metrics for an entire DIContext.
///
/// Do the impossible and reduce the quality of the debug info down to a few
/// numbers. The idea is to condense the data into numbers that can be tracked
/// over time to identify trends in newer compiler versions and gauge the effect
/// of particular optimizations. The raw numbers themselves are not particularly
/// useful, only the delta between compiling the same program with different
/// compilers is.
bool collectStatsForObjectFile(ObjectFile &Obj, DWARFContext &DICtx,
                               Twine Filename, raw_ostream &OS) {
  StringRef FormatName = Obj.getFileFormatName();
  GlobalStats GlobalStats;
  LocationStats LocStats;
  StringMap<PerFunctionStats> Statistics;
  for (const auto &CU : static_cast<DWARFContext *>(&DICtx)->compile_units())
    if (DWARFDie CUDie = CU->getNonSkeletonUnitDIE(false))
      collectStatsRecursive(CUDie, getLowPC(CUDie), "/", "g", 0, 0, 0,
                            Statistics, GlobalStats, LocStats);

  /// The version number should be increased every time the algorithm is changed
  /// (including bug fixes). New metrics may be added without increasing the
  /// version.
  unsigned Version = 3;
  unsigned VarParamTotal = 0;
  unsigned VarParamUnique = 0;
  unsigned VarParamWithLoc = 0;
  unsigned NumFunctions = 0;
  unsigned NumInlinedFunctions = 0;
  unsigned NumFuncsWithSrcLoc = 0;
  unsigned NumAbstractOrigins = 0;
  unsigned ParamTotal = 0;
  unsigned ParamWithType = 0;
  unsigned ParamWithLoc = 0;
  unsigned ParamWithSrcLoc = 0;
  unsigned VarTotal = 0;
  unsigned VarWithType = 0;
  unsigned VarWithSrcLoc = 0;
  unsigned VarWithLoc = 0;
  for (auto &Entry : Statistics) {
    PerFunctionStats &Stats = Entry.getValue();
    unsigned TotalVars = Stats.VarsInFunction.size() * Stats.NumFnInlined;
    // Count variables in concrete out-of-line functions and in global scope.
    if (Stats.HasPCAddresses || !Stats.IsFunction)
      TotalVars += Stats.VarsInFunction.size();
    unsigned Constants = Stats.ConstantMembers;
    VarParamWithLoc += Stats.TotalVarWithLoc + Constants;
    VarParamTotal += TotalVars;
    VarParamUnique += Stats.VarsInFunction.size();
    LLVM_DEBUG(for (auto &V
                    : Stats.VarsInFunction) llvm::dbgs()
               << Entry.getKey() << ": " << V.getKey() << "\n");
    NumFunctions += Stats.IsFunction;
    NumFuncsWithSrcLoc += Stats.HasSourceLocation;
    NumInlinedFunctions += Stats.IsFunction * Stats.NumFnInlined;
    NumAbstractOrigins += Stats.IsFunction * Stats.NumAbstractOrigins;
    ParamTotal += Stats.NumParams;
    ParamWithType += Stats.NumParamTypes;
    ParamWithLoc += Stats.NumParamLocations;
    ParamWithSrcLoc += Stats.NumParamSourceLocations;
    VarTotal += Stats.NumVars;
    VarWithType += Stats.NumVarTypes;
    VarWithLoc += Stats.NumVarLocations;
    VarWithSrcLoc += Stats.NumVarSourceLocations;
  }

  // Print summary.
  OS.SetBufferSize(1024);
  OS << "{\"version\":" << Version;
  LLVM_DEBUG(llvm::dbgs() << "Variable location quality metrics\n";
             llvm::dbgs() << "---------------------------------\n");
  printDatum(OS, "file", Filename.str());
  printDatum(OS, "format", FormatName);
  printDatum(OS, "source functions", NumFunctions);
  printDatum(OS, "source functions with location", NumFuncsWithSrcLoc);
  printDatum(OS, "inlined functions", NumInlinedFunctions);
  printDatum(OS, "inlined funcs with abstract origins", NumAbstractOrigins);
  printDatum(OS, "unique source variables", VarParamUnique);
  printDatum(OS, "source variables", VarParamTotal);
  printDatum(OS, "variables with location", VarParamWithLoc);
  printDatum(OS, "call site entries", GlobalStats.CallSiteEntries);
  printDatum(OS, "call site DIEs", GlobalStats.CallSiteDIEs);
  printDatum(OS, "call site parameter DIEs", GlobalStats.CallSiteParamDIEs);
  printDatum(OS, "scope bytes total",
             GlobalStats.ScopeBytesFromFirstDefinition);
  printDatum(OS, "scope bytes covered", GlobalStats.ScopeBytesCovered);
  printDatum(OS, "entry value scope bytes covered",
             GlobalStats.ScopeEntryValueBytesCovered);
  printDatum(OS, "formal params scope bytes total",
             GlobalStats.ParamScopeBytesFromFirstDefinition);
  printDatum(OS, "formal params scope bytes covered",
             GlobalStats.ParamScopeBytesCovered);
  printDatum(OS, "formal params entry value scope bytes covered",
             GlobalStats.ParamScopeEntryValueBytesCovered);
  printDatum(OS, "vars scope bytes total",
             GlobalStats.VarScopeBytesFromFirstDefinition);
  printDatum(OS, "vars scope bytes covered", GlobalStats.VarScopeBytesCovered);
  printDatum(OS, "vars entry value scope bytes covered",
             GlobalStats.VarScopeEntryValueBytesCovered);
  printDatum(OS, "total function size", GlobalStats.FunctionSize);
  printDatum(OS, "total inlined function size", GlobalStats.InlineFunctionSize);
  printDatum(OS, "total formal params", ParamTotal);
  printDatum(OS, "formal params with source location", ParamWithSrcLoc);
  printDatum(OS, "formal params with type", ParamWithType);
  printDatum(OS, "formal params with binary location", ParamWithLoc);
  printDatum(OS, "total vars", VarTotal);
  printDatum(OS, "vars with source location", VarWithSrcLoc);
  printDatum(OS, "vars with type", VarWithType);
  printDatum(OS, "vars with binary location", VarWithLoc);
  printDatum(OS, "total variables procesed by location statistics",
             LocStats.NumVarParam);
  printLocationStats(OS, "variables", LocStats.VarParamLocStats);
  printLocationStats(OS, "variables (excluding the debug entry values)",
                     LocStats.VarParamNonEntryValLocStats);
  printDatum(OS, "total params procesed by location statistics",
             LocStats.NumParam);
  printLocationStats(OS, "params", LocStats.ParamLocStats);
  printLocationStats(OS, "params (excluding the debug entry values)",
                     LocStats.ParamNonEntryValLocStats);
  printDatum(OS, "total vars procesed by location statistics", LocStats.NumVar);
  printLocationStats(OS, "vars", LocStats.VarLocStats);
  printLocationStats(OS, "vars (excluding the debug entry values)",
                     LocStats.VarNonEntryValLocStats);
  OS << "}\n";
  LLVM_DEBUG(
      llvm::dbgs() << "Total Availability: "
                   << (int)std::round((VarParamWithLoc * 100.0) / VarParamTotal)
                   << "%\n";
      llvm::dbgs() << "PC Ranges covered: "
                   << (int)std::round((GlobalStats.ScopeBytesCovered * 100.0) /
                                      GlobalStats.ScopeBytesFromFirstDefinition)
                   << "%\n");
  return true;
}