reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
//===-- MinidumpParser.cpp ---------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "MinidumpParser.h"
#include "NtStructures.h"
#include "RegisterContextMinidump_x86_32.h"

#include "Plugins/Process/Utility/LinuxProcMaps.h"
#include "lldb/Utility/LLDBAssert.h"
#include "lldb/Utility/Log.h"

// C includes
// C++ includes
#include <algorithm>
#include <map>
#include <vector>
#include <utility>

using namespace lldb_private;
using namespace minidump;

llvm::Expected<MinidumpParser>
MinidumpParser::Create(const lldb::DataBufferSP &data_sp) {
  auto ExpectedFile = llvm::object::MinidumpFile::create(
      llvm::MemoryBufferRef(toStringRef(data_sp->GetData()), "minidump"));
  if (!ExpectedFile)
    return ExpectedFile.takeError();

  return MinidumpParser(data_sp, std::move(*ExpectedFile));
}

MinidumpParser::MinidumpParser(lldb::DataBufferSP data_sp,
                               std::unique_ptr<llvm::object::MinidumpFile> file)
    : m_data_sp(std::move(data_sp)), m_file(std::move(file)) {}

llvm::ArrayRef<uint8_t> MinidumpParser::GetData() {
  return llvm::ArrayRef<uint8_t>(m_data_sp->GetBytes(),
                                 m_data_sp->GetByteSize());
}

llvm::ArrayRef<uint8_t> MinidumpParser::GetStream(StreamType stream_type) {
  return m_file->getRawStream(stream_type)
      .getValueOr(llvm::ArrayRef<uint8_t>());
}

UUID MinidumpParser::GetModuleUUID(const minidump::Module *module) {
  auto cv_record =
      GetData().slice(module->CvRecord.RVA, module->CvRecord.DataSize);

  // Read the CV record signature
  const llvm::support::ulittle32_t *signature = nullptr;
  Status error = consumeObject(cv_record, signature);
  if (error.Fail())
    return UUID();

  const CvSignature cv_signature =
      static_cast<CvSignature>(static_cast<uint32_t>(*signature));

  if (cv_signature == CvSignature::Pdb70) {
    const CvRecordPdb70 *pdb70_uuid = nullptr;
    Status error = consumeObject(cv_record, pdb70_uuid);
    if (error.Fail())
      return UUID();

    CvRecordPdb70 swapped;
    if (!GetArchitecture().GetTriple().isOSBinFormatELF()) {
      // LLDB's UUID class treats the data as a sequence of bytes, but breakpad
      // interprets it as a sequence of little-endian fields, which it converts
      // to big-endian when converting to text. Swap the bytes to big endian so
      // that the string representation comes out right.
      swapped = *pdb70_uuid;
      llvm::sys::swapByteOrder(swapped.Uuid.Data1);
      llvm::sys::swapByteOrder(swapped.Uuid.Data2);
      llvm::sys::swapByteOrder(swapped.Uuid.Data3);
      llvm::sys::swapByteOrder(swapped.Age);
      pdb70_uuid = &swapped;
    }
    if (pdb70_uuid->Age != 0)
      return UUID::fromOptionalData(pdb70_uuid, sizeof(*pdb70_uuid));
    return UUID::fromOptionalData(&pdb70_uuid->Uuid, sizeof(pdb70_uuid->Uuid));
  } else if (cv_signature == CvSignature::ElfBuildId)
    return UUID::fromOptionalData(cv_record);

  return UUID();
}

llvm::ArrayRef<minidump::Thread> MinidumpParser::GetThreads() {
  auto ExpectedThreads = GetMinidumpFile().getThreadList();
  if (ExpectedThreads)
    return *ExpectedThreads;

  LLDB_LOG_ERROR(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_THREAD),
                 ExpectedThreads.takeError(),
                 "Failed to read thread list: {0}");
  return {};
}

llvm::ArrayRef<uint8_t>
MinidumpParser::GetThreadContext(const LocationDescriptor &location) {
  if (location.RVA + location.DataSize > GetData().size())
    return {};
  return GetData().slice(location.RVA, location.DataSize);
}

llvm::ArrayRef<uint8_t>
MinidumpParser::GetThreadContext(const minidump::Thread &td) {
  return GetThreadContext(td.Context);
}

llvm::ArrayRef<uint8_t>
MinidumpParser::GetThreadContextWow64(const minidump::Thread &td) {
  // On Windows, a 32-bit process can run on a 64-bit machine under WOW64. If
  // the minidump was captured with a 64-bit debugger, then the CONTEXT we just
  // grabbed from the mini_dump_thread is the one for the 64-bit "native"
  // process rather than the 32-bit "guest" process we care about.  In this
  // case, we can get the 32-bit CONTEXT from the TEB (Thread Environment
  // Block) of the 64-bit process.
  auto teb_mem = GetMemory(td.EnvironmentBlock, sizeof(TEB64));
  if (teb_mem.empty())
    return {};

  const TEB64 *wow64teb;
  Status error = consumeObject(teb_mem, wow64teb);
  if (error.Fail())
    return {};

  // Slot 1 of the thread-local storage in the 64-bit TEB points to a structure
  // that includes the 32-bit CONTEXT (after a ULONG). See:
  // https://msdn.microsoft.com/en-us/library/ms681670.aspx
  auto context =
      GetMemory(wow64teb->tls_slots[1] + 4, sizeof(MinidumpContext_x86_32));
  if (context.size() < sizeof(MinidumpContext_x86_32))
    return {};

  return context;
  // NOTE:  We don't currently use the TEB for anything else.  If we
  // need it in the future, the 32-bit TEB is located according to the address
  // stored in the first slot of the 64-bit TEB (wow64teb.Reserved1[0]).
}

ArchSpec MinidumpParser::GetArchitecture() {
  if (m_arch.IsValid())
    return m_arch;

  // Set the architecture in m_arch
  llvm::Expected<const SystemInfo &> system_info = m_file->getSystemInfo();

  if (!system_info) {
    LLDB_LOG_ERROR(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS),
                   system_info.takeError(),
                   "Failed to read SystemInfo stream: {0}");
    return m_arch;
  }

  // TODO what to do about big endiand flavors of arm ?
  // TODO set the arm subarch stuff if the minidump has info about it

  llvm::Triple triple;
  triple.setVendor(llvm::Triple::VendorType::UnknownVendor);

  switch (system_info->ProcessorArch) {
  case ProcessorArchitecture::X86:
    triple.setArch(llvm::Triple::ArchType::x86);
    break;
  case ProcessorArchitecture::AMD64:
    triple.setArch(llvm::Triple::ArchType::x86_64);
    break;
  case ProcessorArchitecture::ARM:
    triple.setArch(llvm::Triple::ArchType::arm);
    break;
  case ProcessorArchitecture::ARM64:
    triple.setArch(llvm::Triple::ArchType::aarch64);
    break;
  default:
    triple.setArch(llvm::Triple::ArchType::UnknownArch);
    break;
  }

  // TODO add all of the OSes that Minidump/breakpad distinguishes?
  switch (system_info->PlatformId) {
  case OSPlatform::Win32S:
  case OSPlatform::Win32Windows:
  case OSPlatform::Win32NT:
  case OSPlatform::Win32CE:
    triple.setOS(llvm::Triple::OSType::Win32);
    triple.setVendor(llvm::Triple::VendorType::PC);
    break;
  case OSPlatform::Linux:
    triple.setOS(llvm::Triple::OSType::Linux);
    break;
  case OSPlatform::MacOSX:
    triple.setOS(llvm::Triple::OSType::MacOSX);
    triple.setVendor(llvm::Triple::Apple);
    break;
  case OSPlatform::IOS:
    triple.setOS(llvm::Triple::OSType::IOS);
    triple.setVendor(llvm::Triple::Apple);
    break;
  case OSPlatform::Android:
    triple.setOS(llvm::Triple::OSType::Linux);
    triple.setEnvironment(llvm::Triple::EnvironmentType::Android);
    break;
  default: {
    triple.setOS(llvm::Triple::OSType::UnknownOS);
    auto ExpectedCSD = m_file->getString(system_info->CSDVersionRVA);
    if (!ExpectedCSD) {
      LLDB_LOG_ERROR(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS),
                     ExpectedCSD.takeError(),
                     "Failed to CSD Version string: {0}");
    } else {
      if (ExpectedCSD->find("Linux") != std::string::npos)
        triple.setOS(llvm::Triple::OSType::Linux);
    }
    break;
  }
  }
  m_arch.SetTriple(triple);
  return m_arch;
}

const MinidumpMiscInfo *MinidumpParser::GetMiscInfo() {
  llvm::ArrayRef<uint8_t> data = GetStream(StreamType::MiscInfo);

  if (data.size() == 0)
    return nullptr;

  return MinidumpMiscInfo::Parse(data);
}

llvm::Optional<LinuxProcStatus> MinidumpParser::GetLinuxProcStatus() {
  llvm::ArrayRef<uint8_t> data = GetStream(StreamType::LinuxProcStatus);

  if (data.size() == 0)
    return llvm::None;

  return LinuxProcStatus::Parse(data);
}

llvm::Optional<lldb::pid_t> MinidumpParser::GetPid() {
  const MinidumpMiscInfo *misc_info = GetMiscInfo();
  if (misc_info != nullptr) {
    return misc_info->GetPid();
  }

  llvm::Optional<LinuxProcStatus> proc_status = GetLinuxProcStatus();
  if (proc_status.hasValue()) {
    return proc_status->GetPid();
  }

  return llvm::None;
}

llvm::ArrayRef<minidump::Module> MinidumpParser::GetModuleList() {
  auto ExpectedModules = GetMinidumpFile().getModuleList();
  if (ExpectedModules)
    return *ExpectedModules;

  LLDB_LOG_ERROR(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_MODULES),
                 ExpectedModules.takeError(),
                 "Failed to read module list: {0}");
  return {};
}

std::vector<const minidump::Module *> MinidumpParser::GetFilteredModuleList() {
  Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_MODULES);
  auto ExpectedModules = GetMinidumpFile().getModuleList();
  if (!ExpectedModules) {
    LLDB_LOG_ERROR(log, ExpectedModules.takeError(),
                   "Failed to read module list: {0}");
    return {};
  }

  // map module_name -> filtered_modules index
  typedef llvm::StringMap<size_t> MapType;
  MapType module_name_to_filtered_index;

  std::vector<const minidump::Module *> filtered_modules;

  for (const auto &module : *ExpectedModules) {
    auto ExpectedName = m_file->getString(module.ModuleNameRVA);
    if (!ExpectedName) {
      LLDB_LOG_ERROR(log, ExpectedName.takeError(),
                     "Failed to get module name: {0}");
      continue;
    }

    MapType::iterator iter;
    bool inserted;
    // See if we have inserted this module aready into filtered_modules. If we
    // haven't insert an entry into module_name_to_filtered_index with the
    // index where we will insert it if it isn't in the vector already.
    std::tie(iter, inserted) = module_name_to_filtered_index.try_emplace(
        *ExpectedName, filtered_modules.size());

    if (inserted) {
      // This module has not been seen yet, insert it into filtered_modules at
      // the index that was inserted into module_name_to_filtered_index using
      // "filtered_modules.size()" above.
      filtered_modules.push_back(&module);
    } else {
      // This module has been seen. Modules are sometimes mentioned multiple
      // times when they are mapped discontiguously, so find the module with
      // the lowest "base_of_image" and use that as the filtered module.
      auto dup_module = filtered_modules[iter->second];
      if (module.BaseOfImage < dup_module->BaseOfImage)
        filtered_modules[iter->second] = &module;
    }
  }
  return filtered_modules;
}

const minidump::ExceptionStream *MinidumpParser::GetExceptionStream() {
  auto ExpectedStream = GetMinidumpFile().getExceptionStream();
  if (ExpectedStream)
    return &*ExpectedStream;

  LLDB_LOG_ERROR(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS),
                 ExpectedStream.takeError(),
                 "Failed to read minidump exception stream: {0}");
  return nullptr;
}

llvm::Optional<minidump::Range>
MinidumpParser::FindMemoryRange(lldb::addr_t addr) {
  llvm::ArrayRef<uint8_t> data64 = GetStream(StreamType::Memory64List);
  Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_MODULES);

  auto ExpectedMemory = GetMinidumpFile().getMemoryList();
  if (!ExpectedMemory) {
    LLDB_LOG_ERROR(log, ExpectedMemory.takeError(),
                   "Failed to read memory list: {0}");
  } else {
    for (const auto &memory_desc : *ExpectedMemory) {
      const LocationDescriptor &loc_desc = memory_desc.Memory;
      const lldb::addr_t range_start = memory_desc.StartOfMemoryRange;
      const size_t range_size = loc_desc.DataSize;

      if (loc_desc.RVA + loc_desc.DataSize > GetData().size())
        return llvm::None;

      if (range_start <= addr && addr < range_start + range_size) {
        auto ExpectedSlice = GetMinidumpFile().getRawData(loc_desc);
        if (!ExpectedSlice) {
          LLDB_LOG_ERROR(log, ExpectedSlice.takeError(),
                         "Failed to get memory slice: {0}");
          return llvm::None;
        }
        return minidump::Range(range_start, *ExpectedSlice);
      }
    }
  }

  // Some Minidumps have a Memory64ListStream that captures all the heap memory
  // (full-memory Minidumps).  We can't exactly use the same loop as above,
  // because the Minidump uses slightly different data structures to describe
  // those

  if (!data64.empty()) {
    llvm::ArrayRef<MinidumpMemoryDescriptor64> memory64_list;
    uint64_t base_rva;
    std::tie(memory64_list, base_rva) =
        MinidumpMemoryDescriptor64::ParseMemory64List(data64);

    if (memory64_list.empty())
      return llvm::None;

    for (const auto &memory_desc64 : memory64_list) {
      const lldb::addr_t range_start = memory_desc64.start_of_memory_range;
      const size_t range_size = memory_desc64.data_size;

      if (base_rva + range_size > GetData().size())
        return llvm::None;

      if (range_start <= addr && addr < range_start + range_size) {
        return minidump::Range(range_start,
                               GetData().slice(base_rva, range_size));
      }
      base_rva += range_size;
    }
  }

  return llvm::None;
}

llvm::ArrayRef<uint8_t> MinidumpParser::GetMemory(lldb::addr_t addr,
                                                  size_t size) {
  // I don't have a sense of how frequently this is called or how many memory
  // ranges a Minidump typically has, so I'm not sure if searching for the
  // appropriate range linearly each time is stupid.  Perhaps we should build
  // an index for faster lookups.
  llvm::Optional<minidump::Range> range = FindMemoryRange(addr);
  if (!range)
    return {};

  // There's at least some overlap between the beginning of the desired range
  // (addr) and the current range.  Figure out where the overlap begins and how
  // much overlap there is.

  const size_t offset = addr - range->start;

  if (addr < range->start || offset >= range->range_ref.size())
    return {};

  const size_t overlap = std::min(size, range->range_ref.size() - offset);
  return range->range_ref.slice(offset, overlap);
}

static bool
CreateRegionsCacheFromLinuxMaps(MinidumpParser &parser,
                                std::vector<MemoryRegionInfo> &regions) {
  auto data = parser.GetStream(StreamType::LinuxMaps);
  if (data.empty())
    return false;
  ParseLinuxMapRegions(llvm::toStringRef(data),
                       [&](const lldb_private::MemoryRegionInfo &region,
                           const lldb_private::Status &status) -> bool {
    if (status.Success())
      regions.push_back(region);
    return true;
  });
  return !regions.empty();
}

static bool
CreateRegionsCacheFromMemoryInfoList(MinidumpParser &parser,
                                     std::vector<MemoryRegionInfo> &regions) {
  Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_MODULES);
  auto ExpectedInfo = parser.GetMinidumpFile().getMemoryInfoList();
  if (!ExpectedInfo) {
    LLDB_LOG_ERROR(log, ExpectedInfo.takeError(),
                   "Failed to read memory info list: {0}");
    return false;
  }
  constexpr auto yes = MemoryRegionInfo::eYes;
  constexpr auto no = MemoryRegionInfo::eNo;
  for (const MemoryInfo &entry : *ExpectedInfo) {
    MemoryRegionInfo region;
    region.GetRange().SetRangeBase(entry.BaseAddress);
    region.GetRange().SetByteSize(entry.RegionSize);

    MemoryProtection prot = entry.Protect;
    region.SetReadable(bool(prot & MemoryProtection::NoAccess) ? no : yes);
    region.SetWritable(
        bool(prot & (MemoryProtection::ReadWrite | MemoryProtection::WriteCopy |
                     MemoryProtection::ExecuteReadWrite |
                     MemoryProtection::ExeciteWriteCopy))
            ? yes
            : no);
    region.SetExecutable(
        bool(prot & (MemoryProtection::Execute | MemoryProtection::ExecuteRead |
                     MemoryProtection::ExecuteReadWrite |
                     MemoryProtection::ExeciteWriteCopy))
            ? yes
            : no);
    region.SetMapped(entry.State != MemoryState::Free ? yes : no);
    regions.push_back(region);
  }
  return !regions.empty();
}

static bool
CreateRegionsCacheFromMemoryList(MinidumpParser &parser,
                                 std::vector<MemoryRegionInfo> &regions) {
  Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_MODULES);
  auto ExpectedMemory = parser.GetMinidumpFile().getMemoryList();
  if (!ExpectedMemory) {
    LLDB_LOG_ERROR(log, ExpectedMemory.takeError(),
                   "Failed to read memory list: {0}");
    return false;
  }
  regions.reserve(ExpectedMemory->size());
  for (const MemoryDescriptor &memory_desc : *ExpectedMemory) {
    if (memory_desc.Memory.DataSize == 0)
      continue;
    MemoryRegionInfo region;
    region.GetRange().SetRangeBase(memory_desc.StartOfMemoryRange);
    region.GetRange().SetByteSize(memory_desc.Memory.DataSize);
    region.SetReadable(MemoryRegionInfo::eYes);
    region.SetMapped(MemoryRegionInfo::eYes);
    regions.push_back(region);
  }
  regions.shrink_to_fit();
  return !regions.empty();
}

static bool
CreateRegionsCacheFromMemory64List(MinidumpParser &parser,
                                   std::vector<MemoryRegionInfo> &regions) {
  llvm::ArrayRef<uint8_t> data =
      parser.GetStream(StreamType::Memory64List);
  if (data.empty())
    return false;
  llvm::ArrayRef<MinidumpMemoryDescriptor64> memory64_list;
  uint64_t base_rva;
  std::tie(memory64_list, base_rva) =
      MinidumpMemoryDescriptor64::ParseMemory64List(data);
  
  if (memory64_list.empty())
    return false;
    
  regions.reserve(memory64_list.size());
  for (const auto &memory_desc : memory64_list) {
    if (memory_desc.data_size == 0)
      continue;
    MemoryRegionInfo region;
    region.GetRange().SetRangeBase(memory_desc.start_of_memory_range);
    region.GetRange().SetByteSize(memory_desc.data_size);
    region.SetReadable(MemoryRegionInfo::eYes);
    region.SetMapped(MemoryRegionInfo::eYes);
    regions.push_back(region);
  }
  regions.shrink_to_fit();
  return !regions.empty();
}

std::pair<MemoryRegionInfos, bool> MinidumpParser::BuildMemoryRegions() {
  // We create the region cache using the best source. We start with
  // the linux maps since they are the most complete and have names for the
  // regions. Next we try the MemoryInfoList since it has
  // read/write/execute/map data, and then fall back to the MemoryList and
  // Memory64List to just get a list of the memory that is mapped in this
  // core file
  MemoryRegionInfos result;
  const auto &return_sorted = [&](bool is_complete) {
    llvm::sort(result);
    return std::make_pair(std::move(result), is_complete);
  };
  if (CreateRegionsCacheFromLinuxMaps(*this, result))
    return return_sorted(true);
  if (CreateRegionsCacheFromMemoryInfoList(*this, result))
    return return_sorted(true);
  if (CreateRegionsCacheFromMemoryList(*this, result))
    return return_sorted(false);
  CreateRegionsCacheFromMemory64List(*this, result);
  return return_sorted(false);
}

#define ENUM_TO_CSTR(ST)                                                       \
  case StreamType::ST:                                                         \
    return #ST

llvm::StringRef
MinidumpParser::GetStreamTypeAsString(StreamType stream_type) {
  switch (stream_type) {
    ENUM_TO_CSTR(Unused);
    ENUM_TO_CSTR(ThreadList);
    ENUM_TO_CSTR(ModuleList);
    ENUM_TO_CSTR(MemoryList);
    ENUM_TO_CSTR(Exception);
    ENUM_TO_CSTR(SystemInfo);
    ENUM_TO_CSTR(ThreadExList);
    ENUM_TO_CSTR(Memory64List);
    ENUM_TO_CSTR(CommentA);
    ENUM_TO_CSTR(CommentW);
    ENUM_TO_CSTR(HandleData);
    ENUM_TO_CSTR(FunctionTable);
    ENUM_TO_CSTR(UnloadedModuleList);
    ENUM_TO_CSTR(MiscInfo);
    ENUM_TO_CSTR(MemoryInfoList);
    ENUM_TO_CSTR(ThreadInfoList);
    ENUM_TO_CSTR(HandleOperationList);
    ENUM_TO_CSTR(Token);
    ENUM_TO_CSTR(JavascriptData);
    ENUM_TO_CSTR(SystemMemoryInfo);
    ENUM_TO_CSTR(ProcessVMCounters);
    ENUM_TO_CSTR(LastReserved);
    ENUM_TO_CSTR(BreakpadInfo);
    ENUM_TO_CSTR(AssertionInfo);
    ENUM_TO_CSTR(LinuxCPUInfo);
    ENUM_TO_CSTR(LinuxProcStatus);
    ENUM_TO_CSTR(LinuxLSBRelease);
    ENUM_TO_CSTR(LinuxCMDLine);
    ENUM_TO_CSTR(LinuxEnviron);
    ENUM_TO_CSTR(LinuxAuxv);
    ENUM_TO_CSTR(LinuxMaps);
    ENUM_TO_CSTR(LinuxDSODebug);
    ENUM_TO_CSTR(LinuxProcStat);
    ENUM_TO_CSTR(LinuxProcUptime);
    ENUM_TO_CSTR(LinuxProcFD);
    ENUM_TO_CSTR(FacebookAppCustomData);
    ENUM_TO_CSTR(FacebookBuildID);
    ENUM_TO_CSTR(FacebookAppVersionName);
    ENUM_TO_CSTR(FacebookJavaStack);
    ENUM_TO_CSTR(FacebookDalvikInfo);
    ENUM_TO_CSTR(FacebookUnwindSymbols);
    ENUM_TO_CSTR(FacebookDumpErrorLog);
    ENUM_TO_CSTR(FacebookAppStateLog);
    ENUM_TO_CSTR(FacebookAbortReason);
    ENUM_TO_CSTR(FacebookThreadName);
    ENUM_TO_CSTR(FacebookLogcat);
  }
  return "unknown stream type";
}