reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
//===-- UniqueCStringMap.h --------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef liblldb_UniqueCStringMap_h_
#define liblldb_UniqueCStringMap_h_

#include <algorithm>
#include <vector>

#include "lldb/Utility/ConstString.h"
#include "lldb/Utility/RegularExpression.h"

namespace lldb_private {

// Templatized uniqued string map.
//
// This map is useful for mapping unique C string names to values of type T.
// Each "const char *" name added must be unique for a given
// C string value. ConstString::GetCString() can provide such strings.
// Any other string table that has guaranteed unique values can also be used.
template <typename T> class UniqueCStringMap {
public:
  struct Entry {
    Entry(ConstString cstr, const T &v) : cstring(cstr), value(v) {}

    ConstString cstring;
    T value;
  };

  // Call this function multiple times to add a bunch of entries to this map,
  // then later call UniqueCStringMap<T>::Sort() before doing any searches by
  // name.
  void Append(ConstString unique_cstr, const T &value) {
    m_map.push_back(typename UniqueCStringMap<T>::Entry(unique_cstr, value));
  }

  void Append(const Entry &e) { m_map.push_back(e); }

  void Clear() { m_map.clear(); }

  // Get an entries by index in a variety of forms.
  //
  // The caller is responsible for ensuring that the collection does not change
  // during while using the returned values.
  bool GetValueAtIndex(uint32_t idx, T &value) const {
    if (idx < m_map.size()) {
      value = m_map[idx].value;
      return true;
    }
    return false;
  }

  ConstString GetCStringAtIndexUnchecked(uint32_t idx) const {
    return m_map[idx].cstring;
  }

  // Use this function if you have simple types in your map that you can easily
  // copy when accessing values by index.
  T GetValueAtIndexUnchecked(uint32_t idx) const { return m_map[idx].value; }

  // Use this function if you have complex types in your map that you don't
  // want to copy when accessing values by index.
  const T &GetValueRefAtIndexUnchecked(uint32_t idx) const {
    return m_map[idx].value;
  }

  ConstString GetCStringAtIndex(uint32_t idx) const {
    return ((idx < m_map.size()) ? m_map[idx].cstring : ConstString());
  }

  // Find the value for the unique string in the map.
  //
  // Return the value for \a unique_cstr if one is found, return \a fail_value
  // otherwise. This method works well for simple type
  // T values and only if there is a sensible failure value that can
  // be returned and that won't match any existing values.
  T Find(ConstString unique_cstr, T fail_value) const {
    auto pos = llvm::lower_bound(m_map, unique_cstr, Compare());
    if (pos != m_map.end() && pos->cstring == unique_cstr)
      return pos->value;
    return fail_value;
  }

  // Get a pointer to the first entry that matches "name". nullptr will be
  // returned if there is no entry that matches "name".
  //
  // The caller is responsible for ensuring that the collection does not change
  // during while using the returned pointer.
  const Entry *FindFirstValueForName(ConstString unique_cstr) const {
    auto pos = llvm::lower_bound(m_map, unique_cstr, Compare());
    if (pos != m_map.end() && pos->cstring == unique_cstr)
      return &(*pos);
    return nullptr;
  }

  // Get a pointer to the next entry that matches "name" from a previously
  // returned Entry pointer. nullptr will be returned if there is no subsequent
  // entry that matches "name".
  //
  // The caller is responsible for ensuring that the collection does not change
  // during while using the returned pointer.
  const Entry *FindNextValueForName(const Entry *entry_ptr) const {
    if (!m_map.empty()) {
      const Entry *first_entry = &m_map[0];
      const Entry *after_last_entry = first_entry + m_map.size();
      const Entry *next_entry = entry_ptr + 1;
      if (first_entry <= next_entry && next_entry < after_last_entry) {
        if (next_entry->cstring == entry_ptr->cstring)
          return next_entry;
      }
    }
    return nullptr;
  }

  size_t GetValues(ConstString unique_cstr, std::vector<T> &values) const {
    const size_t start_size = values.size();

    for (const Entry &entry : llvm::make_range(std::equal_range(
             m_map.begin(), m_map.end(), unique_cstr, Compare())))
      values.push_back(entry.value);

    return values.size() - start_size;
  }

  size_t GetValues(const RegularExpression &regex,
                   std::vector<T> &values) const {
    const size_t start_size = values.size();

    const_iterator pos, end = m_map.end();
    for (pos = m_map.begin(); pos != end; ++pos) {
      if (regex.Execute(pos->cstring.GetCString()))
        values.push_back(pos->value);
    }

    return values.size() - start_size;
  }

  // Get the total number of entries in this map.
  size_t GetSize() const { return m_map.size(); }

  // Returns true if this map is empty.
  bool IsEmpty() const { return m_map.empty(); }

  // Reserve memory for at least "n" entries in the map. This is useful to call
  // when you know you will be adding a lot of entries using
  // UniqueCStringMap::Append() (which should be followed by a call to
  // UniqueCStringMap::Sort()) or to UniqueCStringMap::Insert().
  void Reserve(size_t n) { m_map.reserve(n); }

  // Sort the unsorted contents in this map. A typical code flow would be:
  // size_t approximate_num_entries = ....
  // UniqueCStringMap<uint32_t> my_map;
  // my_map.Reserve (approximate_num_entries);
  // for (...)
  // {
  //      my_map.Append (UniqueCStringMap::Entry(GetName(...), GetValue(...)));
  // }
  // my_map.Sort();
  void Sort() { llvm::sort(m_map.begin(), m_map.end(), Compare()); }

  // Since we are using a vector to contain our items it will always double its
  // memory consumption as things are added to the vector, so if you intend to
  // keep a UniqueCStringMap around and have a lot of entries in the map, you
  // will want to call this function to create a new vector and copy _only_ the
  // exact size needed as part of the finalization of the string map.
  void SizeToFit() {
    if (m_map.size() < m_map.capacity()) {
      collection temp(m_map.begin(), m_map.end());
      m_map.swap(temp);
    }
  }

protected:
  struct Compare {
    bool operator()(const Entry &lhs, const Entry &rhs) {
      return operator()(lhs.cstring, rhs.cstring);
    }

    bool operator()(const Entry &lhs, ConstString rhs) {
      return operator()(lhs.cstring, rhs);
    }

    bool operator()(ConstString lhs, const Entry &rhs) {
      return operator()(lhs, rhs.cstring);
    }

    // This is only for uniqueness, not lexicographical ordering, so we can
    // just compare pointers. *However*, comparing pointers from different
    // allocations is UB, so we need compare their integral values instead.
    bool operator()(ConstString lhs, ConstString rhs) {
      return uintptr_t(lhs.GetCString()) < uintptr_t(rhs.GetCString());
    }
  };
  typedef std::vector<Entry> collection;
  typedef typename collection::iterator iterator;
  typedef typename collection::const_iterator const_iterator;
  collection m_map;
};

} // namespace lldb_private

#endif // liblldb_UniqueCStringMap_h_