reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
//===- Miscompilation.cpp - Debug program miscompilations -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements optimizer and code generation miscompilation debugging
// support.
//
//===----------------------------------------------------------------------===//

#include "BugDriver.h"
#include "ListReducer.h"
#include "ToolRunner.h"
#include "llvm/Config/config.h" // for HAVE_LINK_R
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Linker/Linker.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FileUtilities.h"
#include "llvm/Transforms/Utils/Cloning.h"

using namespace llvm;

namespace llvm {
extern cl::opt<std::string> OutputPrefix;
extern cl::list<std::string> InputArgv;
} // end namespace llvm

namespace {
static llvm::cl::opt<bool> DisableLoopExtraction(
    "disable-loop-extraction",
    cl::desc("Don't extract loops when searching for miscompilations"),
    cl::init(false));
static llvm::cl::opt<bool> DisableBlockExtraction(
    "disable-block-extraction",
    cl::desc("Don't extract blocks when searching for miscompilations"),
    cl::init(false));

class ReduceMiscompilingPasses : public ListReducer<std::string> {
  BugDriver &BD;

public:
  ReduceMiscompilingPasses(BugDriver &bd) : BD(bd) {}

  Expected<TestResult> doTest(std::vector<std::string> &Prefix,
                              std::vector<std::string> &Suffix) override;
};
} // end anonymous namespace

/// TestResult - After passes have been split into a test group and a control
/// group, see if they still break the program.
///
Expected<ReduceMiscompilingPasses::TestResult>
ReduceMiscompilingPasses::doTest(std::vector<std::string> &Prefix,
                                 std::vector<std::string> &Suffix) {
  // First, run the program with just the Suffix passes.  If it is still broken
  // with JUST the kept passes, discard the prefix passes.
  outs() << "Checking to see if '" << getPassesString(Suffix)
         << "' compiles correctly: ";

  std::string BitcodeResult;
  if (BD.runPasses(BD.getProgram(), Suffix, BitcodeResult, false /*delete*/,
                   true /*quiet*/)) {
    errs() << " Error running this sequence of passes"
           << " on the input program!\n";
    BD.setPassesToRun(Suffix);
    BD.EmitProgressBitcode(BD.getProgram(), "pass-error", false);
    // TODO: This should propagate the error instead of exiting.
    if (Error E = BD.debugOptimizerCrash())
      exit(1);
    exit(0);
  }

  // Check to see if the finished program matches the reference output...
  Expected<bool> Diff = BD.diffProgram(BD.getProgram(), BitcodeResult, "",
                                       true /*delete bitcode*/);
  if (Error E = Diff.takeError())
    return std::move(E);
  if (*Diff) {
    outs() << " nope.\n";
    if (Suffix.empty()) {
      errs() << BD.getToolName() << ": I'm confused: the test fails when "
             << "no passes are run, nondeterministic program?\n";
      exit(1);
    }
    return KeepSuffix; // Miscompilation detected!
  }
  outs() << " yup.\n"; // No miscompilation!

  if (Prefix.empty())
    return NoFailure;

  // Next, see if the program is broken if we run the "prefix" passes first,
  // then separately run the "kept" passes.
  outs() << "Checking to see if '" << getPassesString(Prefix)
         << "' compiles correctly: ";

  // If it is not broken with the kept passes, it's possible that the prefix
  // passes must be run before the kept passes to break it.  If the program
  // WORKS after the prefix passes, but then fails if running the prefix AND
  // kept passes, we can update our bitcode file to include the result of the
  // prefix passes, then discard the prefix passes.
  //
  if (BD.runPasses(BD.getProgram(), Prefix, BitcodeResult, false /*delete*/,
                   true /*quiet*/)) {
    errs() << " Error running this sequence of passes"
           << " on the input program!\n";
    BD.setPassesToRun(Prefix);
    BD.EmitProgressBitcode(BD.getProgram(), "pass-error", false);
    // TODO: This should propagate the error instead of exiting.
    if (Error E = BD.debugOptimizerCrash())
      exit(1);
    exit(0);
  }

  // If the prefix maintains the predicate by itself, only keep the prefix!
  Diff = BD.diffProgram(BD.getProgram(), BitcodeResult, "", false);
  if (Error E = Diff.takeError())
    return std::move(E);
  if (*Diff) {
    outs() << " nope.\n";
    sys::fs::remove(BitcodeResult);
    return KeepPrefix;
  }
  outs() << " yup.\n"; // No miscompilation!

  // Ok, so now we know that the prefix passes work, try running the suffix
  // passes on the result of the prefix passes.
  //
  std::unique_ptr<Module> PrefixOutput =
      parseInputFile(BitcodeResult, BD.getContext());
  if (!PrefixOutput) {
    errs() << BD.getToolName() << ": Error reading bitcode file '"
           << BitcodeResult << "'!\n";
    exit(1);
  }
  sys::fs::remove(BitcodeResult);

  // Don't check if there are no passes in the suffix.
  if (Suffix.empty())
    return NoFailure;

  outs() << "Checking to see if '" << getPassesString(Suffix)
         << "' passes compile correctly after the '" << getPassesString(Prefix)
         << "' passes: ";

  std::unique_ptr<Module> OriginalInput =
      BD.swapProgramIn(std::move(PrefixOutput));
  if (BD.runPasses(BD.getProgram(), Suffix, BitcodeResult, false /*delete*/,
                   true /*quiet*/)) {
    errs() << " Error running this sequence of passes"
           << " on the input program!\n";
    BD.setPassesToRun(Suffix);
    BD.EmitProgressBitcode(BD.getProgram(), "pass-error", false);
    // TODO: This should propagate the error instead of exiting.
    if (Error E = BD.debugOptimizerCrash())
      exit(1);
    exit(0);
  }

  // Run the result...
  Diff = BD.diffProgram(BD.getProgram(), BitcodeResult, "",
                        true /*delete bitcode*/);
  if (Error E = Diff.takeError())
    return std::move(E);
  if (*Diff) {
    outs() << " nope.\n";
    return KeepSuffix;
  }

  // Otherwise, we must not be running the bad pass anymore.
  outs() << " yup.\n"; // No miscompilation!
  // Restore orig program & free test.
  BD.setNewProgram(std::move(OriginalInput));
  return NoFailure;
}

namespace {
class ReduceMiscompilingFunctions : public ListReducer<Function *> {
  BugDriver &BD;
  Expected<bool> (*TestFn)(BugDriver &, std::unique_ptr<Module>,
                           std::unique_ptr<Module>);

public:
  ReduceMiscompilingFunctions(BugDriver &bd,
                              Expected<bool> (*F)(BugDriver &,
                                                  std::unique_ptr<Module>,
                                                  std::unique_ptr<Module>))
      : BD(bd), TestFn(F) {}

  Expected<TestResult> doTest(std::vector<Function *> &Prefix,
                              std::vector<Function *> &Suffix) override {
    if (!Suffix.empty()) {
      Expected<bool> Ret = TestFuncs(Suffix);
      if (Error E = Ret.takeError())
        return std::move(E);
      if (*Ret)
        return KeepSuffix;
    }
    if (!Prefix.empty()) {
      Expected<bool> Ret = TestFuncs(Prefix);
      if (Error E = Ret.takeError())
        return std::move(E);
      if (*Ret)
        return KeepPrefix;
    }
    return NoFailure;
  }

  Expected<bool> TestFuncs(const std::vector<Function *> &Prefix);
};
} // end anonymous namespace

/// Given two modules, link them together and run the program, checking to see
/// if the program matches the diff. If there is an error, return NULL. If not,
/// return the merged module. The Broken argument will be set to true if the
/// output is different. If the DeleteInputs argument is set to true then this
/// function deletes both input modules before it returns.
///
static Expected<std::unique_ptr<Module>> testMergedProgram(const BugDriver &BD,
                                                           const Module &M1,
                                                           const Module &M2,
                                                           bool &Broken) {
  // Resulting merge of M1 and M2.
  auto Merged = CloneModule(M1);
  if (Linker::linkModules(*Merged, CloneModule(M2)))
    // TODO: Shouldn't we thread the error up instead of exiting?
    exit(1);

  // Execute the program.
  Expected<bool> Diff = BD.diffProgram(*Merged, "", "", false);
  if (Error E = Diff.takeError())
    return std::move(E);
  Broken = *Diff;
  return std::move(Merged);
}

/// split functions in a Module into two groups: those that are under
/// consideration for miscompilation vs. those that are not, and test
/// accordingly. Each group of functions becomes a separate Module.
Expected<bool>
ReduceMiscompilingFunctions::TestFuncs(const std::vector<Function *> &Funcs) {
  // Test to see if the function is misoptimized if we ONLY run it on the
  // functions listed in Funcs.
  outs() << "Checking to see if the program is misoptimized when "
         << (Funcs.size() == 1 ? "this function is" : "these functions are")
         << " run through the pass"
         << (BD.getPassesToRun().size() == 1 ? "" : "es") << ":";
  PrintFunctionList(Funcs);
  outs() << '\n';

  // Create a clone for two reasons:
  // * If the optimization passes delete any function, the deleted function
  //   will be in the clone and Funcs will still point to valid memory
  // * If the optimization passes use interprocedural information to break
  //   a function, we want to continue with the original function. Otherwise
  //   we can conclude that a function triggers the bug when in fact one
  //   needs a larger set of original functions to do so.
  ValueToValueMapTy VMap;
  std::unique_ptr<Module> Clone = CloneModule(BD.getProgram(), VMap);
  std::unique_ptr<Module> Orig = BD.swapProgramIn(std::move(Clone));

  std::vector<Function *> FuncsOnClone;
  for (unsigned i = 0, e = Funcs.size(); i != e; ++i) {
    Function *F = cast<Function>(VMap[Funcs[i]]);
    FuncsOnClone.push_back(F);
  }

  // Split the module into the two halves of the program we want.
  VMap.clear();
  std::unique_ptr<Module> ToNotOptimize = CloneModule(BD.getProgram(), VMap);
  std::unique_ptr<Module> ToOptimize =
      SplitFunctionsOutOfModule(ToNotOptimize.get(), FuncsOnClone, VMap);

  Expected<bool> Broken =
      TestFn(BD, std::move(ToOptimize), std::move(ToNotOptimize));

  BD.setNewProgram(std::move(Orig));

  return Broken;
}

/// Give anonymous global values names.
static void DisambiguateGlobalSymbols(Module &M) {
  for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E;
       ++I)
    if (!I->hasName())
      I->setName("anon_global");
  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
    if (!I->hasName())
      I->setName("anon_fn");
}

/// Given a reduced list of functions that still exposed the bug, check to see
/// if we can extract the loops in the region without obscuring the bug.  If so,
/// it reduces the amount of code identified.
///
static Expected<bool>
ExtractLoops(BugDriver &BD,
             Expected<bool> (*TestFn)(BugDriver &, std::unique_ptr<Module>,
                                      std::unique_ptr<Module>),
             std::vector<Function *> &MiscompiledFunctions) {
  bool MadeChange = false;
  while (1) {
    if (BugpointIsInterrupted)
      return MadeChange;

    ValueToValueMapTy VMap;
    std::unique_ptr<Module> ToNotOptimize = CloneModule(BD.getProgram(), VMap);
    std::unique_ptr<Module> ToOptimize = SplitFunctionsOutOfModule(
        ToNotOptimize.get(), MiscompiledFunctions, VMap);
    std::unique_ptr<Module> ToOptimizeLoopExtracted =
        BD.extractLoop(ToOptimize.get());
    if (!ToOptimizeLoopExtracted)
      // If the loop extractor crashed or if there were no extractible loops,
      // then this chapter of our odyssey is over with.
      return MadeChange;

    errs() << "Extracted a loop from the breaking portion of the program.\n";

    // Bugpoint is intentionally not very trusting of LLVM transformations.  In
    // particular, we're not going to assume that the loop extractor works, so
    // we're going to test the newly loop extracted program to make sure nothing
    // has broken.  If something broke, then we'll inform the user and stop
    // extraction.
    AbstractInterpreter *AI = BD.switchToSafeInterpreter();
    bool Failure;
    Expected<std::unique_ptr<Module>> New = testMergedProgram(
        BD, *ToOptimizeLoopExtracted, *ToNotOptimize, Failure);
    if (Error E = New.takeError())
      return std::move(E);
    if (!*New)
      return false;

    // Delete the original and set the new program.
    std::unique_ptr<Module> Old = BD.swapProgramIn(std::move(*New));
    for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
      MiscompiledFunctions[i] = cast<Function>(VMap[MiscompiledFunctions[i]]);

    if (Failure) {
      BD.switchToInterpreter(AI);

      // Merged program doesn't work anymore!
      errs() << "  *** ERROR: Loop extraction broke the program. :("
             << " Please report a bug!\n";
      errs() << "      Continuing on with un-loop-extracted version.\n";

      BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-tno.bc",
                            *ToNotOptimize);
      BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-to.bc",
                            *ToOptimize);
      BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-to-le.bc",
                            *ToOptimizeLoopExtracted);

      errs() << "Please submit the " << OutputPrefix
             << "-loop-extract-fail-*.bc files.\n";
      return MadeChange;
    }
    BD.switchToInterpreter(AI);

    outs() << "  Testing after loop extraction:\n";
    // Clone modules, the tester function will free them.
    std::unique_ptr<Module> TOLEBackup =
        CloneModule(*ToOptimizeLoopExtracted, VMap);
    std::unique_ptr<Module> TNOBackup = CloneModule(*ToNotOptimize, VMap);

    for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
      MiscompiledFunctions[i] = cast<Function>(VMap[MiscompiledFunctions[i]]);

    Expected<bool> Result = TestFn(BD, std::move(ToOptimizeLoopExtracted),
                                   std::move(ToNotOptimize));
    if (Error E = Result.takeError())
      return std::move(E);

    ToOptimizeLoopExtracted = std::move(TOLEBackup);
    ToNotOptimize = std::move(TNOBackup);

    if (!*Result) {
      outs() << "*** Loop extraction masked the problem.  Undoing.\n";
      // If the program is not still broken, then loop extraction did something
      // that masked the error.  Stop loop extraction now.

      std::vector<std::pair<std::string, FunctionType *>> MisCompFunctions;
      for (Function *F : MiscompiledFunctions) {
        MisCompFunctions.emplace_back(F->getName(), F->getFunctionType());
      }

      if (Linker::linkModules(*ToNotOptimize,
                              std::move(ToOptimizeLoopExtracted)))
        exit(1);

      MiscompiledFunctions.clear();
      for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
        Function *NewF = ToNotOptimize->getFunction(MisCompFunctions[i].first);

        assert(NewF && "Function not found??");
        MiscompiledFunctions.push_back(NewF);
      }

      BD.setNewProgram(std::move(ToNotOptimize));
      return MadeChange;
    }

    outs() << "*** Loop extraction successful!\n";

    std::vector<std::pair<std::string, FunctionType *>> MisCompFunctions;
    for (Module::iterator I = ToOptimizeLoopExtracted->begin(),
                          E = ToOptimizeLoopExtracted->end();
         I != E; ++I)
      if (!I->isDeclaration())
        MisCompFunctions.emplace_back(I->getName(), I->getFunctionType());

    // Okay, great!  Now we know that we extracted a loop and that loop
    // extraction both didn't break the program, and didn't mask the problem.
    // Replace the current program with the loop extracted version, and try to
    // extract another loop.
    if (Linker::linkModules(*ToNotOptimize, std::move(ToOptimizeLoopExtracted)))
      exit(1);

    // All of the Function*'s in the MiscompiledFunctions list are in the old
    // module.  Update this list to include all of the functions in the
    // optimized and loop extracted module.
    MiscompiledFunctions.clear();
    for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
      Function *NewF = ToNotOptimize->getFunction(MisCompFunctions[i].first);

      assert(NewF && "Function not found??");
      MiscompiledFunctions.push_back(NewF);
    }

    BD.setNewProgram(std::move(ToNotOptimize));
    MadeChange = true;
  }
}

namespace {
class ReduceMiscompiledBlocks : public ListReducer<BasicBlock *> {
  BugDriver &BD;
  Expected<bool> (*TestFn)(BugDriver &, std::unique_ptr<Module>,
                           std::unique_ptr<Module>);
  std::vector<Function *> FunctionsBeingTested;

public:
  ReduceMiscompiledBlocks(BugDriver &bd,
                          Expected<bool> (*F)(BugDriver &,
                                              std::unique_ptr<Module>,
                                              std::unique_ptr<Module>),
                          const std::vector<Function *> &Fns)
      : BD(bd), TestFn(F), FunctionsBeingTested(Fns) {}

  Expected<TestResult> doTest(std::vector<BasicBlock *> &Prefix,
                              std::vector<BasicBlock *> &Suffix) override {
    if (!Suffix.empty()) {
      Expected<bool> Ret = TestFuncs(Suffix);
      if (Error E = Ret.takeError())
        return std::move(E);
      if (*Ret)
        return KeepSuffix;
    }
    if (!Prefix.empty()) {
      Expected<bool> Ret = TestFuncs(Prefix);
      if (Error E = Ret.takeError())
        return std::move(E);
      if (*Ret)
        return KeepPrefix;
    }
    return NoFailure;
  }

  Expected<bool> TestFuncs(const std::vector<BasicBlock *> &BBs);
};
} // end anonymous namespace

/// TestFuncs - Extract all blocks for the miscompiled functions except for the
/// specified blocks.  If the problem still exists, return true.
///
Expected<bool>
ReduceMiscompiledBlocks::TestFuncs(const std::vector<BasicBlock *> &BBs) {
  // Test to see if the function is misoptimized if we ONLY run it on the
  // functions listed in Funcs.
  outs() << "Checking to see if the program is misoptimized when all ";
  if (!BBs.empty()) {
    outs() << "but these " << BBs.size() << " blocks are extracted: ";
    for (unsigned i = 0, e = BBs.size() < 10 ? BBs.size() : 10; i != e; ++i)
      outs() << BBs[i]->getName() << " ";
    if (BBs.size() > 10)
      outs() << "...";
  } else {
    outs() << "blocks are extracted.";
  }
  outs() << '\n';

  // Split the module into the two halves of the program we want.
  ValueToValueMapTy VMap;
  std::unique_ptr<Module> Clone = CloneModule(BD.getProgram(), VMap);
  std::unique_ptr<Module> Orig = BD.swapProgramIn(std::move(Clone));
  std::vector<Function *> FuncsOnClone;
  std::vector<BasicBlock *> BBsOnClone;
  for (unsigned i = 0, e = FunctionsBeingTested.size(); i != e; ++i) {
    Function *F = cast<Function>(VMap[FunctionsBeingTested[i]]);
    FuncsOnClone.push_back(F);
  }
  for (unsigned i = 0, e = BBs.size(); i != e; ++i) {
    BasicBlock *BB = cast<BasicBlock>(VMap[BBs[i]]);
    BBsOnClone.push_back(BB);
  }
  VMap.clear();

  std::unique_ptr<Module> ToNotOptimize = CloneModule(BD.getProgram(), VMap);
  std::unique_ptr<Module> ToOptimize =
      SplitFunctionsOutOfModule(ToNotOptimize.get(), FuncsOnClone, VMap);

  // Try the extraction.  If it doesn't work, then the block extractor crashed
  // or something, in which case bugpoint can't chase down this possibility.
  if (std::unique_ptr<Module> New =
          BD.extractMappedBlocksFromModule(BBsOnClone, ToOptimize.get())) {
    Expected<bool> Ret = TestFn(BD, std::move(New), std::move(ToNotOptimize));
    BD.setNewProgram(std::move(Orig));
    return Ret;
  }
  BD.setNewProgram(std::move(Orig));
  return false;
}

/// Given a reduced list of functions that still expose the bug, extract as many
/// basic blocks from the region as possible without obscuring the bug.
///
static Expected<bool>
ExtractBlocks(BugDriver &BD,
              Expected<bool> (*TestFn)(BugDriver &, std::unique_ptr<Module>,
                                       std::unique_ptr<Module>),
              std::vector<Function *> &MiscompiledFunctions) {
  if (BugpointIsInterrupted)
    return false;

  std::vector<BasicBlock *> Blocks;
  for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
    for (BasicBlock &BB : *MiscompiledFunctions[i])
      Blocks.push_back(&BB);

  // Use the list reducer to identify blocks that can be extracted without
  // obscuring the bug.  The Blocks list will end up containing blocks that must
  // be retained from the original program.
  unsigned OldSize = Blocks.size();

  // Check to see if all blocks are extractible first.
  Expected<bool> Ret = ReduceMiscompiledBlocks(BD, TestFn, MiscompiledFunctions)
                           .TestFuncs(std::vector<BasicBlock *>());
  if (Error E = Ret.takeError())
    return std::move(E);
  if (*Ret) {
    Blocks.clear();
  } else {
    Expected<bool> Ret =
        ReduceMiscompiledBlocks(BD, TestFn, MiscompiledFunctions)
            .reduceList(Blocks);
    if (Error E = Ret.takeError())
      return std::move(E);
    if (Blocks.size() == OldSize)
      return false;
  }

  ValueToValueMapTy VMap;
  std::unique_ptr<Module> ProgClone = CloneModule(BD.getProgram(), VMap);
  std::unique_ptr<Module> ToExtract =
      SplitFunctionsOutOfModule(ProgClone.get(), MiscompiledFunctions, VMap);
  std::unique_ptr<Module> Extracted =
      BD.extractMappedBlocksFromModule(Blocks, ToExtract.get());
  if (!Extracted) {
    // Weird, extraction should have worked.
    errs() << "Nondeterministic problem extracting blocks??\n";
    return false;
  }

  // Otherwise, block extraction succeeded.  Link the two program fragments back
  // together.

  std::vector<std::pair<std::string, FunctionType *>> MisCompFunctions;
  for (Module::iterator I = Extracted->begin(), E = Extracted->end(); I != E;
       ++I)
    if (!I->isDeclaration())
      MisCompFunctions.emplace_back(I->getName(), I->getFunctionType());

  if (Linker::linkModules(*ProgClone, std::move(Extracted)))
    exit(1);

  // Update the list of miscompiled functions.
  MiscompiledFunctions.clear();

  for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
    Function *NewF = ProgClone->getFunction(MisCompFunctions[i].first);
    assert(NewF && "Function not found??");
    MiscompiledFunctions.push_back(NewF);
  }

  // Set the new program and delete the old one.
  BD.setNewProgram(std::move(ProgClone));

  return true;
}

/// This is a generic driver to narrow down miscompilations, either in an
/// optimization or a code generator.
///
static Expected<std::vector<Function *>> DebugAMiscompilation(
    BugDriver &BD,
    Expected<bool> (*TestFn)(BugDriver &, std::unique_ptr<Module>,
                             std::unique_ptr<Module>)) {
  // Okay, now that we have reduced the list of passes which are causing the
  // failure, see if we can pin down which functions are being
  // miscompiled... first build a list of all of the non-external functions in
  // the program.
  std::vector<Function *> MiscompiledFunctions;
  Module &Prog = BD.getProgram();
  for (Function &F : Prog)
    if (!F.isDeclaration())
      MiscompiledFunctions.push_back(&F);

  // Do the reduction...
  if (!BugpointIsInterrupted) {
    Expected<bool> Ret = ReduceMiscompilingFunctions(BD, TestFn)
                             .reduceList(MiscompiledFunctions);
    if (Error E = Ret.takeError()) {
      errs() << "\n***Cannot reduce functions: ";
      return std::move(E);
    }
  }
  outs() << "\n*** The following function"
         << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
         << " being miscompiled: ";
  PrintFunctionList(MiscompiledFunctions);
  outs() << '\n';

  // See if we can rip any loops out of the miscompiled functions and still
  // trigger the problem.

  if (!BugpointIsInterrupted && !DisableLoopExtraction) {
    Expected<bool> Ret = ExtractLoops(BD, TestFn, MiscompiledFunctions);
    if (Error E = Ret.takeError())
      return std::move(E);
    if (*Ret) {
      // Okay, we extracted some loops and the problem still appears.  See if
      // we can eliminate some of the created functions from being candidates.
      DisambiguateGlobalSymbols(BD.getProgram());

      // Do the reduction...
      if (!BugpointIsInterrupted)
        Ret = ReduceMiscompilingFunctions(BD, TestFn)
                  .reduceList(MiscompiledFunctions);
      if (Error E = Ret.takeError())
        return std::move(E);

      outs() << "\n*** The following function"
             << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
             << " being miscompiled: ";
      PrintFunctionList(MiscompiledFunctions);
      outs() << '\n';
    }
  }

  if (!BugpointIsInterrupted && !DisableBlockExtraction) {
    Expected<bool> Ret = ExtractBlocks(BD, TestFn, MiscompiledFunctions);
    if (Error E = Ret.takeError())
      return std::move(E);
    if (*Ret) {
      // Okay, we extracted some blocks and the problem still appears.  See if
      // we can eliminate some of the created functions from being candidates.
      DisambiguateGlobalSymbols(BD.getProgram());

      // Do the reduction...
      Ret = ReduceMiscompilingFunctions(BD, TestFn)
                .reduceList(MiscompiledFunctions);
      if (Error E = Ret.takeError())
        return std::move(E);

      outs() << "\n*** The following function"
             << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
             << " being miscompiled: ";
      PrintFunctionList(MiscompiledFunctions);
      outs() << '\n';
    }
  }

  return MiscompiledFunctions;
}

/// This is the predicate function used to check to see if the "Test" portion of
/// the program is misoptimized.  If so, return true.  In any case, both module
/// arguments are deleted.
///
static Expected<bool> TestOptimizer(BugDriver &BD, std::unique_ptr<Module> Test,
                                    std::unique_ptr<Module> Safe) {
  // Run the optimization passes on ToOptimize, producing a transformed version
  // of the functions being tested.
  outs() << "  Optimizing functions being tested: ";
  std::unique_ptr<Module> Optimized =
      BD.runPassesOn(Test.get(), BD.getPassesToRun());
  if (!Optimized) {
    errs() << " Error running this sequence of passes"
           << " on the input program!\n";
    BD.EmitProgressBitcode(*Test, "pass-error", false);
    BD.setNewProgram(std::move(Test));
    if (Error E = BD.debugOptimizerCrash())
      return std::move(E);
    return false;
  }
  outs() << "done.\n";

  outs() << "  Checking to see if the merged program executes correctly: ";
  bool Broken;
  auto Result = testMergedProgram(BD, *Optimized, *Safe, Broken);
  if (Error E = Result.takeError())
    return std::move(E);
  if (auto New = std::move(*Result)) {
    outs() << (Broken ? " nope.\n" : " yup.\n");
    // Delete the original and set the new program.
    BD.setNewProgram(std::move(New));
  }
  return Broken;
}

/// debugMiscompilation - This method is used when the passes selected are not
/// crashing, but the generated output is semantically different from the
/// input.
///
Error BugDriver::debugMiscompilation() {
  // Make sure something was miscompiled...
  if (!BugpointIsInterrupted) {
    Expected<bool> Result =
        ReduceMiscompilingPasses(*this).reduceList(PassesToRun);
    if (Error E = Result.takeError())
      return E;
    if (!*Result)
      return make_error<StringError>(
          "*** Optimized program matches reference output!  No problem"
          " detected...\nbugpoint can't help you with your problem!\n",
          inconvertibleErrorCode());
  }

  outs() << "\n*** Found miscompiling pass"
         << (getPassesToRun().size() == 1 ? "" : "es") << ": "
         << getPassesString(getPassesToRun()) << '\n';
  EmitProgressBitcode(*Program, "passinput");

  Expected<std::vector<Function *>> MiscompiledFunctions =
      DebugAMiscompilation(*this, TestOptimizer);
  if (Error E = MiscompiledFunctions.takeError())
    return E;

  // Output a bunch of bitcode files for the user...
  outs() << "Outputting reduced bitcode files which expose the problem:\n";
  ValueToValueMapTy VMap;
  Module *ToNotOptimize = CloneModule(getProgram(), VMap).release();
  Module *ToOptimize =
      SplitFunctionsOutOfModule(ToNotOptimize, *MiscompiledFunctions, VMap)
          .release();

  outs() << "  Non-optimized portion: ";
  EmitProgressBitcode(*ToNotOptimize, "tonotoptimize", true);
  delete ToNotOptimize; // Delete hacked module.

  outs() << "  Portion that is input to optimizer: ";
  EmitProgressBitcode(*ToOptimize, "tooptimize");
  delete ToOptimize; // Delete hacked module.

  return Error::success();
}

/// Get the specified modules ready for code generator testing.
///
static std::unique_ptr<Module>
CleanupAndPrepareModules(BugDriver &BD, std::unique_ptr<Module> Test,
                         Module *Safe) {
  // Clean up the modules, removing extra cruft that we don't need anymore...
  Test = BD.performFinalCleanups(std::move(Test));

  // If we are executing the JIT, we have several nasty issues to take care of.
  if (!BD.isExecutingJIT())
    return Test;

  // First, if the main function is in the Safe module, we must add a stub to
  // the Test module to call into it.  Thus, we create a new function `main'
  // which just calls the old one.
  if (Function *oldMain = Safe->getFunction("main"))
    if (!oldMain->isDeclaration()) {
      // Rename it
      oldMain->setName("llvm_bugpoint_old_main");
      // Create a NEW `main' function with same type in the test module.
      Function *newMain =
          Function::Create(oldMain->getFunctionType(),
                           GlobalValue::ExternalLinkage, "main", Test.get());
      // Create an `oldmain' prototype in the test module, which will
      // corresponds to the real main function in the same module.
      Function *oldMainProto = Function::Create(oldMain->getFunctionType(),
                                                GlobalValue::ExternalLinkage,
                                                oldMain->getName(), Test.get());
      // Set up and remember the argument list for the main function.
      std::vector<Value *> args;
      for (Function::arg_iterator I = newMain->arg_begin(),
                                  E = newMain->arg_end(),
                                  OI = oldMain->arg_begin();
           I != E; ++I, ++OI) {
        I->setName(OI->getName()); // Copy argument names from oldMain
        args.push_back(&*I);
      }

      // Call the old main function and return its result
      BasicBlock *BB = BasicBlock::Create(Safe->getContext(), "entry", newMain);
      CallInst *call = CallInst::Create(oldMainProto, args, "", BB);

      // If the type of old function wasn't void, return value of call
      ReturnInst::Create(Safe->getContext(), call, BB);
    }

  // The second nasty issue we must deal with in the JIT is that the Safe
  // module cannot directly reference any functions defined in the test
  // module.  Instead, we use a JIT API call to dynamically resolve the
  // symbol.

  // Add the resolver to the Safe module.
  // Prototype: void *getPointerToNamedFunction(const char* Name)
  FunctionCallee resolverFunc = Safe->getOrInsertFunction(
      "getPointerToNamedFunction", Type::getInt8PtrTy(Safe->getContext()),
      Type::getInt8PtrTy(Safe->getContext()));

  // Use the function we just added to get addresses of functions we need.
  for (Module::iterator F = Safe->begin(), E = Safe->end(); F != E; ++F) {
    if (F->isDeclaration() && !F->use_empty() &&
        &*F != resolverFunc.getCallee() &&
        !F->isIntrinsic() /* ignore intrinsics */) {
      Function *TestFn = Test->getFunction(F->getName());

      // Don't forward functions which are external in the test module too.
      if (TestFn && !TestFn->isDeclaration()) {
        // 1. Add a string constant with its name to the global file
        Constant *InitArray =
            ConstantDataArray::getString(F->getContext(), F->getName());
        GlobalVariable *funcName = new GlobalVariable(
            *Safe, InitArray->getType(), true /*isConstant*/,
            GlobalValue::InternalLinkage, InitArray, F->getName() + "_name");

        // 2. Use `GetElementPtr *funcName, 0, 0' to convert the string to an
        // sbyte* so it matches the signature of the resolver function.

        // GetElementPtr *funcName, ulong 0, ulong 0
        std::vector<Constant *> GEPargs(
            2, Constant::getNullValue(Type::getInt32Ty(F->getContext())));
        Value *GEP = ConstantExpr::getGetElementPtr(InitArray->getType(),
                                                    funcName, GEPargs);
        std::vector<Value *> ResolverArgs;
        ResolverArgs.push_back(GEP);

        // Rewrite uses of F in global initializers, etc. to uses of a wrapper
        // function that dynamically resolves the calls to F via our JIT API
        if (!F->use_empty()) {
          // Create a new global to hold the cached function pointer.
          Constant *NullPtr = ConstantPointerNull::get(F->getType());
          GlobalVariable *Cache = new GlobalVariable(
              *F->getParent(), F->getType(), false,
              GlobalValue::InternalLinkage, NullPtr, F->getName() + ".fpcache");

          // Construct a new stub function that will re-route calls to F
          FunctionType *FuncTy = F->getFunctionType();
          Function *FuncWrapper =
              Function::Create(FuncTy, GlobalValue::InternalLinkage,
                               F->getName() + "_wrapper", F->getParent());
          BasicBlock *EntryBB =
              BasicBlock::Create(F->getContext(), "entry", FuncWrapper);
          BasicBlock *DoCallBB =
              BasicBlock::Create(F->getContext(), "usecache", FuncWrapper);
          BasicBlock *LookupBB =
              BasicBlock::Create(F->getContext(), "lookupfp", FuncWrapper);

          // Check to see if we already looked up the value.
          Value *CachedVal =
              new LoadInst(F->getType(), Cache, "fpcache", EntryBB);
          Value *IsNull = new ICmpInst(*EntryBB, ICmpInst::ICMP_EQ, CachedVal,
                                       NullPtr, "isNull");
          BranchInst::Create(LookupBB, DoCallBB, IsNull, EntryBB);

          // Resolve the call to function F via the JIT API:
          //
          // call resolver(GetElementPtr...)
          CallInst *Resolver = CallInst::Create(resolverFunc, ResolverArgs,
                                                "resolver", LookupBB);

          // Cast the result from the resolver to correctly-typed function.
          CastInst *CastedResolver = new BitCastInst(
              Resolver, PointerType::getUnqual(F->getFunctionType()),
              "resolverCast", LookupBB);

          // Save the value in our cache.
          new StoreInst(CastedResolver, Cache, LookupBB);
          BranchInst::Create(DoCallBB, LookupBB);

          PHINode *FuncPtr =
              PHINode::Create(NullPtr->getType(), 2, "fp", DoCallBB);
          FuncPtr->addIncoming(CastedResolver, LookupBB);
          FuncPtr->addIncoming(CachedVal, EntryBB);

          // Save the argument list.
          std::vector<Value *> Args;
          for (Argument &A : FuncWrapper->args())
            Args.push_back(&A);

          // Pass on the arguments to the real function, return its result
          if (F->getReturnType()->isVoidTy()) {
            CallInst::Create(FuncTy, FuncPtr, Args, "", DoCallBB);
            ReturnInst::Create(F->getContext(), DoCallBB);
          } else {
            CallInst *Call =
                CallInst::Create(FuncTy, FuncPtr, Args, "retval", DoCallBB);
            ReturnInst::Create(F->getContext(), Call, DoCallBB);
          }

          // Use the wrapper function instead of the old function
          F->replaceAllUsesWith(FuncWrapper);
        }
      }
    }
  }

  if (verifyModule(*Test) || verifyModule(*Safe)) {
    errs() << "Bugpoint has a bug, which corrupted a module!!\n";
    abort();
  }

  return Test;
}

/// This is the predicate function used to check to see if the "Test" portion of
/// the program is miscompiled by the code generator under test.  If so, return
/// true.  In any case, both module arguments are deleted.
///
static Expected<bool> TestCodeGenerator(BugDriver &BD,
                                        std::unique_ptr<Module> Test,
                                        std::unique_ptr<Module> Safe) {
  Test = CleanupAndPrepareModules(BD, std::move(Test), Safe.get());

  SmallString<128> TestModuleBC;
  int TestModuleFD;
  std::error_code EC = sys::fs::createTemporaryFile("bugpoint.test", "bc",
                                                    TestModuleFD, TestModuleBC);
  if (EC) {
    errs() << BD.getToolName()
           << "Error making unique filename: " << EC.message() << "\n";
    exit(1);
  }
  if (BD.writeProgramToFile(TestModuleBC.str(), TestModuleFD, *Test)) {
    errs() << "Error writing bitcode to `" << TestModuleBC.str()
           << "'\nExiting.";
    exit(1);
  }

  FileRemover TestModuleBCRemover(TestModuleBC.str(), !SaveTemps);

  // Make the shared library
  SmallString<128> SafeModuleBC;
  int SafeModuleFD;
  EC = sys::fs::createTemporaryFile("bugpoint.safe", "bc", SafeModuleFD,
                                    SafeModuleBC);
  if (EC) {
    errs() << BD.getToolName()
           << "Error making unique filename: " << EC.message() << "\n";
    exit(1);
  }

  if (BD.writeProgramToFile(SafeModuleBC.str(), SafeModuleFD, *Safe)) {
    errs() << "Error writing bitcode to `" << SafeModuleBC << "'\nExiting.";
    exit(1);
  }

  FileRemover SafeModuleBCRemover(SafeModuleBC.str(), !SaveTemps);

  Expected<std::string> SharedObject =
      BD.compileSharedObject(SafeModuleBC.str());
  if (Error E = SharedObject.takeError())
    return std::move(E);

  FileRemover SharedObjectRemover(*SharedObject, !SaveTemps);

  // Run the code generator on the `Test' code, loading the shared library.
  // The function returns whether or not the new output differs from reference.
  Expected<bool> Result =
      BD.diffProgram(BD.getProgram(), TestModuleBC.str(), *SharedObject, false);
  if (Error E = Result.takeError())
    return std::move(E);

  if (*Result)
    errs() << ": still failing!\n";
  else
    errs() << ": didn't fail.\n";

  return Result;
}

/// debugCodeGenerator - debug errors in LLC, LLI, or CBE.
///
Error BugDriver::debugCodeGenerator() {
  if ((void *)SafeInterpreter == (void *)Interpreter) {
    Expected<std::string> Result =
        executeProgramSafely(*Program, "bugpoint.safe.out");
    if (Result) {
      outs() << "\n*** The \"safe\" i.e. 'known good' backend cannot match "
             << "the reference diff.  This may be due to a\n    front-end "
             << "bug or a bug in the original program, but this can also "
             << "happen if bugpoint isn't running the program with the "
             << "right flags or input.\n    I left the result of executing "
             << "the program with the \"safe\" backend in this file for "
             << "you: '" << *Result << "'.\n";
    }
    return Error::success();
  }

  DisambiguateGlobalSymbols(*Program);

  Expected<std::vector<Function *>> Funcs =
      DebugAMiscompilation(*this, TestCodeGenerator);
  if (Error E = Funcs.takeError())
    return E;

  // Split the module into the two halves of the program we want.
  ValueToValueMapTy VMap;
  std::unique_ptr<Module> ToNotCodeGen = CloneModule(getProgram(), VMap);
  std::unique_ptr<Module> ToCodeGen =
      SplitFunctionsOutOfModule(ToNotCodeGen.get(), *Funcs, VMap);

  // Condition the modules
  ToCodeGen =
      CleanupAndPrepareModules(*this, std::move(ToCodeGen), ToNotCodeGen.get());

  SmallString<128> TestModuleBC;
  int TestModuleFD;
  std::error_code EC = sys::fs::createTemporaryFile("bugpoint.test", "bc",
                                                    TestModuleFD, TestModuleBC);
  if (EC) {
    errs() << getToolName() << "Error making unique filename: " << EC.message()
           << "\n";
    exit(1);
  }

  if (writeProgramToFile(TestModuleBC.str(), TestModuleFD, *ToCodeGen)) {
    errs() << "Error writing bitcode to `" << TestModuleBC << "'\nExiting.";
    exit(1);
  }

  // Make the shared library
  SmallString<128> SafeModuleBC;
  int SafeModuleFD;
  EC = sys::fs::createTemporaryFile("bugpoint.safe", "bc", SafeModuleFD,
                                    SafeModuleBC);
  if (EC) {
    errs() << getToolName() << "Error making unique filename: " << EC.message()
           << "\n";
    exit(1);
  }

  if (writeProgramToFile(SafeModuleBC.str(), SafeModuleFD, *ToNotCodeGen)) {
    errs() << "Error writing bitcode to `" << SafeModuleBC << "'\nExiting.";
    exit(1);
  }
  Expected<std::string> SharedObject = compileSharedObject(SafeModuleBC.str());
  if (Error E = SharedObject.takeError())
    return E;

  outs() << "You can reproduce the problem with the command line: \n";
  if (isExecutingJIT()) {
    outs() << "  lli -load " << *SharedObject << " " << TestModuleBC;
  } else {
    outs() << "  llc " << TestModuleBC << " -o " << TestModuleBC << ".s\n";
    outs() << "  cc " << *SharedObject << " " << TestModuleBC.str() << ".s -o "
           << TestModuleBC << ".exe\n";
    outs() << "  ./" << TestModuleBC << ".exe";
  }
  for (unsigned i = 0, e = InputArgv.size(); i != e; ++i)
    outs() << " " << InputArgv[i];
  outs() << '\n';
  outs() << "The shared object was created with:\n  llc -march=c "
         << SafeModuleBC.str() << " -o temporary.c\n"
         << "  cc -xc temporary.c -O2 -o " << *SharedObject;
  if (TargetTriple.getArch() == Triple::sparc)
    outs() << " -G"; // Compile a shared library, `-G' for Sparc
  else
    outs() << " -fPIC -shared"; // `-shared' for Linux/X86, maybe others

  outs() << " -fno-strict-aliasing\n";

  return Error::success();
}