reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
//===-- xray_profile_collector.cpp -----------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// This implements the interface for the profileCollectorService.
//
//===----------------------------------------------------------------------===//
#include "xray_profile_collector.h"
#include "sanitizer_common/sanitizer_common.h"
#include "xray_allocator.h"
#include "xray_defs.h"
#include "xray_profiling_flags.h"
#include "xray_segmented_array.h"
#include <memory>
#include <pthread.h>
#include <utility>

namespace __xray {
namespace profileCollectorService {

namespace {

SpinMutex GlobalMutex;
struct ThreadTrie {
  tid_t TId;
  typename std::aligned_storage<sizeof(FunctionCallTrie)>::type TrieStorage;
};

struct ProfileBuffer {
  void *Data;
  size_t Size;
};

// Current version of the profile format.
constexpr u64 XRayProfilingVersion = 0x20180424;

// Identifier for XRay profiling files 'xrayprof' in hex.
constexpr u64 XRayMagicBytes = 0x7872617970726f66;

struct XRayProfilingFileHeader {
  const u64 MagicBytes = XRayMagicBytes;
  const u64 Version = XRayProfilingVersion;
  u64 Timestamp = 0; // System time in nanoseconds.
  u64 PID = 0;       // Process ID.
};

struct BlockHeader {
  u32 BlockSize;
  u32 BlockNum;
  u64 ThreadId;
};

struct ThreadData {
  BufferQueue *BQ;
  FunctionCallTrie::Allocators::Buffers Buffers;
  FunctionCallTrie::Allocators Allocators;
  FunctionCallTrie FCT;
  tid_t TId;
};

using ThreadDataArray = Array<ThreadData>;
using ThreadDataAllocator = ThreadDataArray::AllocatorType;

// We use a separate buffer queue for the backing store for the allocator used
// by the ThreadData array. This lets us host the buffers, allocators, and tries
// associated with a thread by moving the data into the array instead of
// attempting to copy the data to a separately backed set of tries.
static typename std::aligned_storage<
    sizeof(BufferQueue), alignof(BufferQueue)>::type BufferQueueStorage;
static BufferQueue *BQ = nullptr;
static BufferQueue::Buffer Buffer;
static typename std::aligned_storage<sizeof(ThreadDataAllocator),
                                     alignof(ThreadDataAllocator)>::type
    ThreadDataAllocatorStorage;
static typename std::aligned_storage<sizeof(ThreadDataArray),
                                     alignof(ThreadDataArray)>::type
    ThreadDataArrayStorage;

static ThreadDataAllocator *TDAllocator = nullptr;
static ThreadDataArray *TDArray = nullptr;

using ProfileBufferArray = Array<ProfileBuffer>;
using ProfileBufferArrayAllocator = typename ProfileBufferArray::AllocatorType;

// These need to be global aligned storage to avoid dynamic initialization. We
// need these to be aligned to allow us to placement new objects into the
// storage, and have pointers to those objects be appropriately aligned.
static typename std::aligned_storage<sizeof(ProfileBufferArray)>::type
    ProfileBuffersStorage;
static typename std::aligned_storage<sizeof(ProfileBufferArrayAllocator)>::type
    ProfileBufferArrayAllocatorStorage;

static ProfileBufferArrayAllocator *ProfileBuffersAllocator = nullptr;
static ProfileBufferArray *ProfileBuffers = nullptr;

// Use a global flag to determine whether the collector implementation has been
// initialized.
static atomic_uint8_t CollectorInitialized{0};

} // namespace

void post(BufferQueue *Q, FunctionCallTrie &&T,
          FunctionCallTrie::Allocators &&A,
          FunctionCallTrie::Allocators::Buffers &&B,
          tid_t TId) XRAY_NEVER_INSTRUMENT {
  DCHECK_NE(Q, nullptr);

  // Bail out early if the collector has not been initialized.
  if (!atomic_load(&CollectorInitialized, memory_order_acquire)) {
    T.~FunctionCallTrie();
    A.~Allocators();
    Q->releaseBuffer(B.NodeBuffer);
    Q->releaseBuffer(B.RootsBuffer);
    Q->releaseBuffer(B.ShadowStackBuffer);
    Q->releaseBuffer(B.NodeIdPairBuffer);
    B.~Buffers();
    return;
  }

  {
    SpinMutexLock Lock(&GlobalMutex);
    DCHECK_NE(TDAllocator, nullptr);
    DCHECK_NE(TDArray, nullptr);

    if (TDArray->AppendEmplace(Q, std::move(B), std::move(A), std::move(T),
                               TId) == nullptr) {
      // If we fail to add the data to the array, we should destroy the objects
      // handed us.
      T.~FunctionCallTrie();
      A.~Allocators();
      Q->releaseBuffer(B.NodeBuffer);
      Q->releaseBuffer(B.RootsBuffer);
      Q->releaseBuffer(B.ShadowStackBuffer);
      Q->releaseBuffer(B.NodeIdPairBuffer);
      B.~Buffers();
    }
  }
}

// A PathArray represents the function id's representing a stack trace. In this
// context a path is almost always represented from the leaf function in a call
// stack to a root of the call trie.
using PathArray = Array<int32_t>;

struct ProfileRecord {
  using PathAllocator = typename PathArray::AllocatorType;

  // The Path in this record is the function id's from the leaf to the root of
  // the function call stack as represented from a FunctionCallTrie.
  PathArray Path;
  const FunctionCallTrie::Node *Node;
};

namespace {

using ProfileRecordArray = Array<ProfileRecord>;

// Walk a depth-first traversal of each root of the FunctionCallTrie to generate
// the path(s) and the data associated with the path.
static void
populateRecords(ProfileRecordArray &PRs, ProfileRecord::PathAllocator &PA,
                const FunctionCallTrie &Trie) XRAY_NEVER_INSTRUMENT {
  using StackArray = Array<const FunctionCallTrie::Node *>;
  using StackAllocator = typename StackArray::AllocatorType;
  StackAllocator StackAlloc(profilingFlags()->stack_allocator_max);
  StackArray DFSStack(StackAlloc);
  for (const auto *R : Trie.getRoots()) {
    DFSStack.Append(R);
    while (!DFSStack.empty()) {
      auto *Node = DFSStack.back();
      DFSStack.trim(1);
      if (Node == nullptr)
        continue;
      auto Record = PRs.AppendEmplace(PathArray{PA}, Node);
      if (Record == nullptr)
        return;
      DCHECK_NE(Record, nullptr);

      // Traverse the Node's parents and as we're doing so, get the FIds in
      // the order they appear.
      for (auto N = Node; N != nullptr; N = N->Parent)
        Record->Path.Append(N->FId);
      DCHECK(!Record->Path.empty());

      for (const auto C : Node->Callees)
        DFSStack.Append(C.NodePtr);
    }
  }
}

static void serializeRecords(ProfileBuffer *Buffer, const BlockHeader &Header,
                             const ProfileRecordArray &ProfileRecords)
    XRAY_NEVER_INSTRUMENT {
  auto NextPtr = static_cast<uint8_t *>(
                     internal_memcpy(Buffer->Data, &Header, sizeof(Header))) +
                 sizeof(Header);
  for (const auto &Record : ProfileRecords) {
    // List of IDs follow:
    for (const auto FId : Record.Path)
      NextPtr =
          static_cast<uint8_t *>(internal_memcpy(NextPtr, &FId, sizeof(FId))) +
          sizeof(FId);

    // Add the sentinel here.
    constexpr int32_t SentinelFId = 0;
    NextPtr = static_cast<uint8_t *>(
                  internal_memset(NextPtr, SentinelFId, sizeof(SentinelFId))) +
              sizeof(SentinelFId);

    // Add the node data here.
    NextPtr =
        static_cast<uint8_t *>(internal_memcpy(
            NextPtr, &Record.Node->CallCount, sizeof(Record.Node->CallCount))) +
        sizeof(Record.Node->CallCount);
    NextPtr = static_cast<uint8_t *>(
                  internal_memcpy(NextPtr, &Record.Node->CumulativeLocalTime,
                                  sizeof(Record.Node->CumulativeLocalTime))) +
              sizeof(Record.Node->CumulativeLocalTime);
  }

  DCHECK_EQ(NextPtr - static_cast<uint8_t *>(Buffer->Data), Buffer->Size);
}

} // namespace

void serialize() XRAY_NEVER_INSTRUMENT {
  if (!atomic_load(&CollectorInitialized, memory_order_acquire))
    return;

  SpinMutexLock Lock(&GlobalMutex);

  // Clear out the global ProfileBuffers, if it's not empty.
  for (auto &B : *ProfileBuffers)
    deallocateBuffer(reinterpret_cast<unsigned char *>(B.Data), B.Size);
  ProfileBuffers->trim(ProfileBuffers->size());

  DCHECK_NE(TDArray, nullptr);
  if (TDArray->empty())
    return;

  // Then repopulate the global ProfileBuffers.
  u32 I = 0;
  auto MaxSize = profilingFlags()->global_allocator_max;
  auto ProfileArena = allocateBuffer(MaxSize);
  if (ProfileArena == nullptr)
    return;

  auto ProfileArenaCleanup = at_scope_exit(
      [&]() XRAY_NEVER_INSTRUMENT { deallocateBuffer(ProfileArena, MaxSize); });

  auto PathArena = allocateBuffer(profilingFlags()->global_allocator_max);
  if (PathArena == nullptr)
    return;

  auto PathArenaCleanup = at_scope_exit(
      [&]() XRAY_NEVER_INSTRUMENT { deallocateBuffer(PathArena, MaxSize); });

  for (const auto &ThreadTrie : *TDArray) {
    using ProfileRecordAllocator = typename ProfileRecordArray::AllocatorType;
    ProfileRecordAllocator PRAlloc(ProfileArena,
                                   profilingFlags()->global_allocator_max);
    ProfileRecord::PathAllocator PathAlloc(
        PathArena, profilingFlags()->global_allocator_max);
    ProfileRecordArray ProfileRecords(PRAlloc);

    // First, we want to compute the amount of space we're going to need. We'll
    // use a local allocator and an __xray::Array<...> to store the intermediary
    // data, then compute the size as we're going along. Then we'll allocate the
    // contiguous space to contain the thread buffer data.
    if (ThreadTrie.FCT.getRoots().empty())
      continue;

    populateRecords(ProfileRecords, PathAlloc, ThreadTrie.FCT);
    DCHECK(!ThreadTrie.FCT.getRoots().empty());
    DCHECK(!ProfileRecords.empty());

    // Go through each record, to compute the sizes.
    //
    // header size = block size (4 bytes)
    //   + block number (4 bytes)
    //   + thread id (8 bytes)
    // record size = path ids (4 bytes * number of ids + sentinel 4 bytes)
    //   + call count (8 bytes)
    //   + local time (8 bytes)
    //   + end of record (8 bytes)
    u32 CumulativeSizes = 0;
    for (const auto &Record : ProfileRecords)
      CumulativeSizes += 20 + (4 * Record.Path.size());

    BlockHeader Header{16 + CumulativeSizes, I++, ThreadTrie.TId};
    auto B = ProfileBuffers->Append({});
    B->Size = sizeof(Header) + CumulativeSizes;
    B->Data = allocateBuffer(B->Size);
    DCHECK_NE(B->Data, nullptr);
    serializeRecords(B, Header, ProfileRecords);
  }
}

void reset() XRAY_NEVER_INSTRUMENT {
  atomic_store(&CollectorInitialized, 0, memory_order_release);
  SpinMutexLock Lock(&GlobalMutex);

  if (ProfileBuffers != nullptr) {
    // Clear out the profile buffers that have been serialized.
    for (auto &B : *ProfileBuffers)
      deallocateBuffer(reinterpret_cast<uint8_t *>(B.Data), B.Size);
    ProfileBuffers->trim(ProfileBuffers->size());
    ProfileBuffers = nullptr;
  }

  if (TDArray != nullptr) {
    // Release the resources as required.
    for (auto &TD : *TDArray) {
      TD.BQ->releaseBuffer(TD.Buffers.NodeBuffer);
      TD.BQ->releaseBuffer(TD.Buffers.RootsBuffer);
      TD.BQ->releaseBuffer(TD.Buffers.ShadowStackBuffer);
      TD.BQ->releaseBuffer(TD.Buffers.NodeIdPairBuffer);
    }
    // We don't bother destroying the array here because we've already
    // potentially freed the backing store for the array. Instead we're going to
    // reset the pointer to nullptr, and re-use the storage later instead
    // (placement-new'ing into the storage as-is).
    TDArray = nullptr;
  }

  if (TDAllocator != nullptr) {
    TDAllocator->~Allocator();
    TDAllocator = nullptr;
  }

  if (Buffer.Data != nullptr) {
    BQ->releaseBuffer(Buffer);
  }

  if (BQ == nullptr) {
    bool Success = false;
    new (&BufferQueueStorage)
        BufferQueue(profilingFlags()->global_allocator_max, 1, Success);
    if (!Success)
      return;
    BQ = reinterpret_cast<BufferQueue *>(&BufferQueueStorage);
  } else {
    BQ->finalize();

    if (BQ->init(profilingFlags()->global_allocator_max, 1) !=
        BufferQueue::ErrorCode::Ok)
      return;
  }

  if (BQ->getBuffer(Buffer) != BufferQueue::ErrorCode::Ok)
    return;

  new (&ProfileBufferArrayAllocatorStorage)
      ProfileBufferArrayAllocator(profilingFlags()->global_allocator_max);
  ProfileBuffersAllocator = reinterpret_cast<ProfileBufferArrayAllocator *>(
      &ProfileBufferArrayAllocatorStorage);

  new (&ProfileBuffersStorage) ProfileBufferArray(*ProfileBuffersAllocator);
  ProfileBuffers =
      reinterpret_cast<ProfileBufferArray *>(&ProfileBuffersStorage);

  new (&ThreadDataAllocatorStorage)
      ThreadDataAllocator(Buffer.Data, Buffer.Size);
  TDAllocator =
      reinterpret_cast<ThreadDataAllocator *>(&ThreadDataAllocatorStorage);
  new (&ThreadDataArrayStorage) ThreadDataArray(*TDAllocator);
  TDArray = reinterpret_cast<ThreadDataArray *>(&ThreadDataArrayStorage);

  atomic_store(&CollectorInitialized, 1, memory_order_release);
}

XRayBuffer nextBuffer(XRayBuffer B) XRAY_NEVER_INSTRUMENT {
  SpinMutexLock Lock(&GlobalMutex);

  if (ProfileBuffers == nullptr || ProfileBuffers->size() == 0)
    return {nullptr, 0};

  static pthread_once_t Once = PTHREAD_ONCE_INIT;
  static typename std::aligned_storage<sizeof(XRayProfilingFileHeader)>::type
      FileHeaderStorage;
  pthread_once(
      &Once, +[]() XRAY_NEVER_INSTRUMENT {
        new (&FileHeaderStorage) XRayProfilingFileHeader{};
      });

  if (UNLIKELY(B.Data == nullptr)) {
    // The first buffer should always contain the file header information.
    auto &FileHeader =
        *reinterpret_cast<XRayProfilingFileHeader *>(&FileHeaderStorage);
    FileHeader.Timestamp = NanoTime();
    FileHeader.PID = internal_getpid();
    return {&FileHeaderStorage, sizeof(XRayProfilingFileHeader)};
  }

  if (UNLIKELY(B.Data == &FileHeaderStorage))
    return {(*ProfileBuffers)[0].Data, (*ProfileBuffers)[0].Size};

  BlockHeader Header;
  internal_memcpy(&Header, B.Data, sizeof(BlockHeader));
  auto NextBlock = Header.BlockNum + 1;
  if (NextBlock < ProfileBuffers->size())
    return {(*ProfileBuffers)[NextBlock].Data,
            (*ProfileBuffers)[NextBlock].Size};
  return {nullptr, 0};
}

} // namespace profileCollectorService
} // namespace __xray