reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
//===-- xray_segmented_array.h ---------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// Defines the implementation of a segmented array, with fixed-size segments
// backing the segments.
//
//===----------------------------------------------------------------------===//
#ifndef XRAY_SEGMENTED_ARRAY_H
#define XRAY_SEGMENTED_ARRAY_H

#include "sanitizer_common/sanitizer_allocator.h"
#include "xray_allocator.h"
#include "xray_utils.h"
#include <cassert>
#include <type_traits>
#include <utility>

namespace __xray {

/// The Array type provides an interface similar to std::vector<...> but does
/// not shrink in size. Once constructed, elements can be appended but cannot be
/// removed. The implementation is heavily dependent on the contract provided by
/// the Allocator type, in that all memory will be released when the Allocator
/// is destroyed. When an Array is destroyed, it will destroy elements in the
/// backing store but will not free the memory.
template <class T> class Array {
  struct Segment {
    Segment *Prev;
    Segment *Next;
    char Data[1];
  };

public:
  // Each segment of the array will be laid out with the following assumptions:
  //
  //   - Each segment will be on a cache-line address boundary (kCacheLineSize
  //     aligned).
  //
  //   - The elements will be accessed through an aligned pointer, dependent on
  //     the alignment of T.
  //
  //   - Each element is at least two-pointers worth from the beginning of the
  //     Segment, aligned properly, and the rest of the elements are accessed
  //     through appropriate alignment.
  //
  // We then compute the size of the segment to follow this logic:
  //
  //   - Compute the number of elements that can fit within
  //     kCacheLineSize-multiple segments, minus the size of two pointers.
  //
  //   - Request cacheline-multiple sized elements from the allocator.
  static constexpr uint64_t AlignedElementStorageSize =
      sizeof(typename std::aligned_storage<sizeof(T), alignof(T)>::type);

  static constexpr uint64_t SegmentControlBlockSize = sizeof(Segment *) * 2;

  static constexpr uint64_t SegmentSize = nearest_boundary(
      SegmentControlBlockSize + next_pow2(sizeof(T)), kCacheLineSize);

  using AllocatorType = Allocator<SegmentSize>;

  static constexpr uint64_t ElementsPerSegment =
      (SegmentSize - SegmentControlBlockSize) / next_pow2(sizeof(T));

  static_assert(ElementsPerSegment > 0,
                "Must have at least 1 element per segment.");

  static Segment SentinelSegment;

  using size_type = uint64_t;

private:
  // This Iterator models a BidirectionalIterator.
  template <class U> class Iterator {
    Segment *S = &SentinelSegment;
    uint64_t Offset = 0;
    uint64_t Size = 0;

  public:
    Iterator(Segment *IS, uint64_t Off, uint64_t S) XRAY_NEVER_INSTRUMENT
        : S(IS),
          Offset(Off),
          Size(S) {}
    Iterator(const Iterator &) NOEXCEPT XRAY_NEVER_INSTRUMENT = default;
    Iterator() NOEXCEPT XRAY_NEVER_INSTRUMENT = default;
    Iterator(Iterator &&) NOEXCEPT XRAY_NEVER_INSTRUMENT = default;
    Iterator &operator=(const Iterator &) XRAY_NEVER_INSTRUMENT = default;
    Iterator &operator=(Iterator &&) XRAY_NEVER_INSTRUMENT = default;
    ~Iterator() XRAY_NEVER_INSTRUMENT = default;

    Iterator &operator++() XRAY_NEVER_INSTRUMENT {
      if (++Offset % ElementsPerSegment || Offset == Size)
        return *this;

      // At this point, we know that Offset % N == 0, so we must advance the
      // segment pointer.
      DCHECK_EQ(Offset % ElementsPerSegment, 0);
      DCHECK_NE(Offset, Size);
      DCHECK_NE(S, &SentinelSegment);
      DCHECK_NE(S->Next, &SentinelSegment);
      S = S->Next;
      DCHECK_NE(S, &SentinelSegment);
      return *this;
    }

    Iterator &operator--() XRAY_NEVER_INSTRUMENT {
      DCHECK_NE(S, &SentinelSegment);
      DCHECK_GT(Offset, 0);

      auto PreviousOffset = Offset--;
      if (PreviousOffset != Size && PreviousOffset % ElementsPerSegment == 0) {
        DCHECK_NE(S->Prev, &SentinelSegment);
        S = S->Prev;
      }

      return *this;
    }

    Iterator operator++(int) XRAY_NEVER_INSTRUMENT {
      Iterator Copy(*this);
      ++(*this);
      return Copy;
    }

    Iterator operator--(int) XRAY_NEVER_INSTRUMENT {
      Iterator Copy(*this);
      --(*this);
      return Copy;
    }

    template <class V, class W>
    friend bool operator==(const Iterator<V> &L,
                           const Iterator<W> &R) XRAY_NEVER_INSTRUMENT {
      return L.S == R.S && L.Offset == R.Offset;
    }

    template <class V, class W>
    friend bool operator!=(const Iterator<V> &L,
                           const Iterator<W> &R) XRAY_NEVER_INSTRUMENT {
      return !(L == R);
    }

    U &operator*() const XRAY_NEVER_INSTRUMENT {
      DCHECK_NE(S, &SentinelSegment);
      auto RelOff = Offset % ElementsPerSegment;

      // We need to compute the character-aligned pointer, offset from the
      // segment's Data location to get the element in the position of Offset.
      auto Base = &S->Data;
      auto AlignedOffset = Base + (RelOff * AlignedElementStorageSize);
      return *reinterpret_cast<U *>(AlignedOffset);
    }

    U *operator->() const XRAY_NEVER_INSTRUMENT { return &(**this); }
  };

  AllocatorType *Alloc;
  Segment *Head;
  Segment *Tail;

  // Here we keep track of segments in the freelist, to allow us to re-use
  // segments when elements are trimmed off the end.
  Segment *Freelist;
  uint64_t Size;

  // ===============================
  // In the following implementation, we work through the algorithms and the
  // list operations using the following notation:
  //
  //   - pred(s) is the predecessor (previous node accessor) and succ(s) is
  //     the successor (next node accessor).
  //
  //   - S is a sentinel segment, which has the following property:
  //
  //         pred(S) == succ(S) == S
  //
  //   - @ is a loop operator, which can imply pred(s) == s if it appears on
  //     the left of s, or succ(s) == S if it appears on the right of s.
  //
  //   - sL <-> sR : means a bidirectional relation between sL and sR, which
  //     means:
  //
  //         succ(sL) == sR && pred(SR) == sL
  //
  //   - sL -> sR : implies a unidirectional relation between sL and SR,
  //     with the following properties:
  //
  //         succ(sL) == sR
  //
  //     sL <- sR : implies a unidirectional relation between sR and sL,
  //     with the following properties:
  //
  //         pred(sR) == sL
  //
  // ===============================

  Segment *NewSegment() XRAY_NEVER_INSTRUMENT {
    // We need to handle the case in which enough elements have been trimmed to
    // allow us to re-use segments we've allocated before. For this we look into
    // the Freelist, to see whether we need to actually allocate new blocks or
    // just re-use blocks we've already seen before.
    if (Freelist != &SentinelSegment) {
      // The current state of lists resemble something like this at this point:
      //
      //   Freelist: @S@<-f0->...<->fN->@S@
      //                  ^ Freelist
      //
      // We want to perform a splice of `f0` from Freelist to a temporary list,
      // which looks like:
      //
      //   Templist: @S@<-f0->@S@
      //                  ^ FreeSegment
      //
      // Our algorithm preconditions are:
      DCHECK_EQ(Freelist->Prev, &SentinelSegment);

      // Then the algorithm we implement is:
      //
      //   SFS = Freelist
      //   Freelist = succ(Freelist)
      //   if (Freelist != S)
      //     pred(Freelist) = S
      //   succ(SFS) = S
      //   pred(SFS) = S
      //
      auto *FreeSegment = Freelist;
      Freelist = Freelist->Next;

      // Note that we need to handle the case where Freelist is now pointing to
      // S, which we don't want to be overwriting.
      // TODO: Determine whether the cost of the branch is higher than the cost
      // of the blind assignment.
      if (Freelist != &SentinelSegment)
        Freelist->Prev = &SentinelSegment;

      FreeSegment->Next = &SentinelSegment;
      FreeSegment->Prev = &SentinelSegment;

      // Our postconditions are:
      DCHECK_EQ(Freelist->Prev, &SentinelSegment);
      DCHECK_NE(FreeSegment, &SentinelSegment);
      return FreeSegment;
    }

    auto SegmentBlock = Alloc->Allocate();
    if (SegmentBlock.Data == nullptr)
      return nullptr;

    // Placement-new the Segment element at the beginning of the SegmentBlock.
    new (SegmentBlock.Data) Segment{&SentinelSegment, &SentinelSegment, {0}};
    auto SB = reinterpret_cast<Segment *>(SegmentBlock.Data);
    return SB;
  }

  Segment *InitHeadAndTail() XRAY_NEVER_INSTRUMENT {
    DCHECK_EQ(Head, &SentinelSegment);
    DCHECK_EQ(Tail, &SentinelSegment);
    auto S = NewSegment();
    if (S == nullptr)
      return nullptr;
    DCHECK_EQ(S->Next, &SentinelSegment);
    DCHECK_EQ(S->Prev, &SentinelSegment);
    DCHECK_NE(S, &SentinelSegment);
    Head = S;
    Tail = S;
    DCHECK_EQ(Head, Tail);
    DCHECK_EQ(Tail->Next, &SentinelSegment);
    DCHECK_EQ(Tail->Prev, &SentinelSegment);
    return S;
  }

  Segment *AppendNewSegment() XRAY_NEVER_INSTRUMENT {
    auto S = NewSegment();
    if (S == nullptr)
      return nullptr;
    DCHECK_NE(Tail, &SentinelSegment);
    DCHECK_EQ(Tail->Next, &SentinelSegment);
    DCHECK_EQ(S->Prev, &SentinelSegment);
    DCHECK_EQ(S->Next, &SentinelSegment);
    S->Prev = Tail;
    Tail->Next = S;
    Tail = S;
    DCHECK_EQ(S, S->Prev->Next);
    DCHECK_EQ(Tail->Next, &SentinelSegment);
    return S;
  }

public:
  explicit Array(AllocatorType &A) XRAY_NEVER_INSTRUMENT
      : Alloc(&A),
        Head(&SentinelSegment),
        Tail(&SentinelSegment),
        Freelist(&SentinelSegment),
        Size(0) {}

  Array() XRAY_NEVER_INSTRUMENT : Alloc(nullptr),
                                  Head(&SentinelSegment),
                                  Tail(&SentinelSegment),
                                  Freelist(&SentinelSegment),
                                  Size(0) {}

  Array(const Array &) = delete;
  Array &operator=(const Array &) = delete;

  Array(Array &&O) XRAY_NEVER_INSTRUMENT : Alloc(O.Alloc),
                                           Head(O.Head),
                                           Tail(O.Tail),
                                           Freelist(O.Freelist),
                                           Size(O.Size) {
    O.Alloc = nullptr;
    O.Head = &SentinelSegment;
    O.Tail = &SentinelSegment;
    O.Size = 0;
    O.Freelist = &SentinelSegment;
  }

  Array &operator=(Array &&O) XRAY_NEVER_INSTRUMENT {
    Alloc = O.Alloc;
    O.Alloc = nullptr;
    Head = O.Head;
    O.Head = &SentinelSegment;
    Tail = O.Tail;
    O.Tail = &SentinelSegment;
    Freelist = O.Freelist;
    O.Freelist = &SentinelSegment;
    Size = O.Size;
    O.Size = 0;
    return *this;
  }

  ~Array() XRAY_NEVER_INSTRUMENT {
    for (auto &E : *this)
      (&E)->~T();
  }

  bool empty() const XRAY_NEVER_INSTRUMENT { return Size == 0; }

  AllocatorType &allocator() const XRAY_NEVER_INSTRUMENT {
    DCHECK_NE(Alloc, nullptr);
    return *Alloc;
  }

  uint64_t size() const XRAY_NEVER_INSTRUMENT { return Size; }

  template <class... Args>
  T *AppendEmplace(Args &&... args) XRAY_NEVER_INSTRUMENT {
    DCHECK((Size == 0 && Head == &SentinelSegment && Head == Tail) ||
           (Size != 0 && Head != &SentinelSegment && Tail != &SentinelSegment));
    if (UNLIKELY(Head == &SentinelSegment)) {
      auto R = InitHeadAndTail();
      if (R == nullptr)
        return nullptr;
    }

    DCHECK_NE(Head, &SentinelSegment);
    DCHECK_NE(Tail, &SentinelSegment);

    auto Offset = Size % ElementsPerSegment;
    if (UNLIKELY(Size != 0 && Offset == 0))
      if (AppendNewSegment() == nullptr)
        return nullptr;

    DCHECK_NE(Tail, &SentinelSegment);
    auto Base = &Tail->Data;
    auto AlignedOffset = Base + (Offset * AlignedElementStorageSize);
    DCHECK_LE(AlignedOffset + sizeof(T),
              reinterpret_cast<unsigned char *>(Base) + SegmentSize);

    // In-place construct at Position.
    new (AlignedOffset) T{std::forward<Args>(args)...};
    ++Size;
    return reinterpret_cast<T *>(AlignedOffset);
  }

  T *Append(const T &E) XRAY_NEVER_INSTRUMENT {
    // FIXME: This is a duplication of AppenEmplace with the copy semantics
    // explicitly used, as a work-around to GCC 4.8 not invoking the copy
    // constructor with the placement new with braced-init syntax.
    DCHECK((Size == 0 && Head == &SentinelSegment && Head == Tail) ||
           (Size != 0 && Head != &SentinelSegment && Tail != &SentinelSegment));
    if (UNLIKELY(Head == &SentinelSegment)) {
      auto R = InitHeadAndTail();
      if (R == nullptr)
        return nullptr;
    }

    DCHECK_NE(Head, &SentinelSegment);
    DCHECK_NE(Tail, &SentinelSegment);

    auto Offset = Size % ElementsPerSegment;
    if (UNLIKELY(Size != 0 && Offset == 0))
      if (AppendNewSegment() == nullptr)
        return nullptr;

    DCHECK_NE(Tail, &SentinelSegment);
    auto Base = &Tail->Data;
    auto AlignedOffset = Base + (Offset * AlignedElementStorageSize);
    DCHECK_LE(AlignedOffset + sizeof(T),
              reinterpret_cast<unsigned char *>(Tail) + SegmentSize);

    // In-place construct at Position.
    new (AlignedOffset) T(E);
    ++Size;
    return reinterpret_cast<T *>(AlignedOffset);
  }

  T &operator[](uint64_t Offset) const XRAY_NEVER_INSTRUMENT {
    DCHECK_LE(Offset, Size);
    // We need to traverse the array enough times to find the element at Offset.
    auto S = Head;
    while (Offset >= ElementsPerSegment) {
      S = S->Next;
      Offset -= ElementsPerSegment;
      DCHECK_NE(S, &SentinelSegment);
    }
    auto Base = &S->Data;
    auto AlignedOffset = Base + (Offset * AlignedElementStorageSize);
    auto Position = reinterpret_cast<T *>(AlignedOffset);
    return *reinterpret_cast<T *>(Position);
  }

  T &front() const XRAY_NEVER_INSTRUMENT {
    DCHECK_NE(Head, &SentinelSegment);
    DCHECK_NE(Size, 0u);
    return *begin();
  }

  T &back() const XRAY_NEVER_INSTRUMENT {
    DCHECK_NE(Tail, &SentinelSegment);
    DCHECK_NE(Size, 0u);
    auto It = end();
    --It;
    return *It;
  }

  template <class Predicate>
  T *find_element(Predicate P) const XRAY_NEVER_INSTRUMENT {
    if (empty())
      return nullptr;

    auto E = end();
    for (auto I = begin(); I != E; ++I)
      if (P(*I))
        return &(*I);

    return nullptr;
  }

  /// Remove N Elements from the end. This leaves the blocks behind, and not
  /// require allocation of new blocks for new elements added after trimming.
  void trim(uint64_t Elements) XRAY_NEVER_INSTRUMENT {
    auto OldSize = Size;
    Elements = Elements > Size ? Size : Elements;
    Size -= Elements;

    // We compute the number of segments we're going to return from the tail by
    // counting how many elements have been trimmed. Given the following:
    //
    // - Each segment has N valid positions, where N > 0
    // - The previous size > current size
    //
    // To compute the number of segments to return, we need to perform the
    // following calculations for the number of segments required given 'x'
    // elements:
    //
    //   f(x) = {
    //            x == 0          : 0
    //          , 0 < x <= N      : 1
    //          , N < x <= max    : x / N + (x % N ? 1 : 0)
    //          }
    //
    // We can simplify this down to:
    //
    //   f(x) = {
    //            x == 0          : 0,
    //          , 0 < x <= max    : x / N + (x < N || x % N ? 1 : 0)
    //          }
    //
    // And further down to:
    //
    //   f(x) = x ? x / N + (x < N || x % N ? 1 : 0) : 0
    //
    // We can then perform the following calculation `s` which counts the number
    // of segments we need to remove from the end of the data structure:
    //
    //   s(p, c) = f(p) - f(c)
    //
    // If we treat p = previous size, and c = current size, and given the
    // properties above, the possible range for s(...) is [0..max(typeof(p))/N]
    // given that typeof(p) == typeof(c).
    auto F = [](uint64_t X) {
      return X ? (X / ElementsPerSegment) +
                     (X < ElementsPerSegment || X % ElementsPerSegment ? 1 : 0)
               : 0;
    };
    auto PS = F(OldSize);
    auto CS = F(Size);
    DCHECK_GE(PS, CS);
    auto SegmentsToTrim = PS - CS;
    for (auto I = 0uL; I < SegmentsToTrim; ++I) {
      // Here we place the current tail segment to the freelist. To do this
      // appropriately, we need to perform a splice operation on two
      // bidirectional linked-lists. In particular, we have the current state of
      // the doubly-linked list of segments:
      //
      //   @S@ <- s0 <-> s1 <-> ... <-> sT -> @S@
      //
      DCHECK_NE(Head, &SentinelSegment);
      DCHECK_NE(Tail, &SentinelSegment);
      DCHECK_EQ(Tail->Next, &SentinelSegment);

      if (Freelist == &SentinelSegment) {
        // Our two lists at this point are in this configuration:
        //
        //   Freelist: (potentially) @S@
        //   Mainlist: @S@<-s0<->s1<->...<->sPT<->sT->@S@
        //                  ^ Head                ^ Tail
        //
        // The end state for us will be this configuration:
        //
        //   Freelist: @S@<-sT->@S@
        //   Mainlist: @S@<-s0<->s1<->...<->sPT->@S@
        //                  ^ Head          ^ Tail
        //
        // The first step for us is to hold a reference to the tail of Mainlist,
        // which in our notation is represented by sT. We call this our "free
        // segment" which is the segment we are placing on the Freelist.
        //
        //   sF = sT
        //
        // Then, we also hold a reference to the "pre-tail" element, which we
        // call sPT:
        //
        //   sPT = pred(sT)
        //
        // We want to splice sT into the beginning of the Freelist, which in
        // an empty Freelist means placing a segment whose predecessor and
        // successor is the sentinel segment.
        //
        // The splice operation then can be performed in the following
        // algorithm:
        //
        //   succ(sPT) = S
        //   pred(sT) = S
        //   succ(sT) = Freelist
        //   Freelist = sT
        //   Tail = sPT
        //
        auto SPT = Tail->Prev;
        SPT->Next = &SentinelSegment;
        Tail->Prev = &SentinelSegment;
        Tail->Next = Freelist;
        Freelist = Tail;
        Tail = SPT;

        // Our post-conditions here are:
        DCHECK_EQ(Tail->Next, &SentinelSegment);
        DCHECK_EQ(Freelist->Prev, &SentinelSegment);
      } else {
        // In the other case, where the Freelist is not empty, we perform the
        // following transformation instead:
        //
        // This transforms the current state:
        //
        //   Freelist: @S@<-f0->@S@
        //                  ^ Freelist
        //   Mainlist: @S@<-s0<->s1<->...<->sPT<->sT->@S@
        //                  ^ Head                ^ Tail
        //
        // Into the following:
        //
        //   Freelist: @S@<-sT<->f0->@S@
        //                  ^ Freelist
        //   Mainlist: @S@<-s0<->s1<->...<->sPT->@S@
        //                  ^ Head          ^ Tail
        //
        // The algorithm is:
        //
        //   sFH = Freelist
        //   sPT = pred(sT)
        //   pred(SFH) = sT
        //   succ(sT) = Freelist
        //   pred(sT) = S
        //   succ(sPT) = S
        //   Tail = sPT
        //   Freelist = sT
        //
        auto SFH = Freelist;
        auto SPT = Tail->Prev;
        auto ST = Tail;
        SFH->Prev = ST;
        ST->Next = Freelist;
        ST->Prev = &SentinelSegment;
        SPT->Next = &SentinelSegment;
        Tail = SPT;
        Freelist = ST;

        // Our post-conditions here are:
        DCHECK_EQ(Tail->Next, &SentinelSegment);
        DCHECK_EQ(Freelist->Prev, &SentinelSegment);
        DCHECK_EQ(Freelist->Next->Prev, Freelist);
      }
    }

    // Now in case we've spliced all the segments in the end, we ensure that the
    // main list is "empty", or both the head and tail pointing to the sentinel
    // segment.
    if (Tail == &SentinelSegment)
      Head = Tail;

    DCHECK(
        (Size == 0 && Head == &SentinelSegment && Tail == &SentinelSegment) ||
        (Size != 0 && Head != &SentinelSegment && Tail != &SentinelSegment));
    DCHECK(
        (Freelist != &SentinelSegment && Freelist->Prev == &SentinelSegment) ||
        (Freelist == &SentinelSegment && Tail->Next == &SentinelSegment));
  }

  // Provide iterators.
  Iterator<T> begin() const XRAY_NEVER_INSTRUMENT {
    return Iterator<T>(Head, 0, Size);
  }
  Iterator<T> end() const XRAY_NEVER_INSTRUMENT {
    return Iterator<T>(Tail, Size, Size);
  }
  Iterator<const T> cbegin() const XRAY_NEVER_INSTRUMENT {
    return Iterator<const T>(Head, 0, Size);
  }
  Iterator<const T> cend() const XRAY_NEVER_INSTRUMENT {
    return Iterator<const T>(Tail, Size, Size);
  }
};

// We need to have this storage definition out-of-line so that the compiler can
// ensure that storage for the SentinelSegment is defined and has a single
// address.
template <class T>
typename Array<T>::Segment Array<T>::SentinelSegment{
    &Array<T>::SentinelSegment, &Array<T>::SentinelSegment, {'\0'}};

} // namespace __xray

#endif // XRAY_SEGMENTED_ARRAY_H