reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
//===- CoroElide.cpp - Coroutine Frame Allocation Elision Pass ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This pass replaces dynamic allocation of coroutine frame with alloca and
// replaces calls to llvm.coro.resume and llvm.coro.destroy with direct calls
// to coroutine sub-functions.
//===----------------------------------------------------------------------===//

#include "CoroInternal.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/Pass.h"
#include "llvm/Support/ErrorHandling.h"

using namespace llvm;

#define DEBUG_TYPE "coro-elide"

namespace {
// Created on demand if CoroElide pass has work to do.
struct Lowerer : coro::LowererBase {
  SmallVector<CoroIdInst *, 4> CoroIds;
  SmallVector<CoroBeginInst *, 1> CoroBegins;
  SmallVector<CoroAllocInst *, 1> CoroAllocs;
  SmallVector<CoroSubFnInst *, 4> ResumeAddr;
  SmallVector<CoroSubFnInst *, 4> DestroyAddr;
  SmallVector<CoroFreeInst *, 1> CoroFrees;

  Lowerer(Module &M) : LowererBase(M) {}

  void elideHeapAllocations(Function *F, Type *FrameTy, AAResults &AA);
  bool shouldElide(Function *F, DominatorTree &DT) const;
  bool processCoroId(CoroIdInst *, AAResults &AA, DominatorTree &DT);
};
} // end anonymous namespace

// Go through the list of coro.subfn.addr intrinsics and replace them with the
// provided constant.
static void replaceWithConstant(Constant *Value,
                                SmallVectorImpl<CoroSubFnInst *> &Users) {
  if (Users.empty())
    return;

  // See if we need to bitcast the constant to match the type of the intrinsic
  // being replaced. Note: All coro.subfn.addr intrinsics return the same type,
  // so we only need to examine the type of the first one in the list.
  Type *IntrTy = Users.front()->getType();
  Type *ValueTy = Value->getType();
  if (ValueTy != IntrTy) {
    // May need to tweak the function type to match the type expected at the
    // use site.
    assert(ValueTy->isPointerTy() && IntrTy->isPointerTy());
    Value = ConstantExpr::getBitCast(Value, IntrTy);
  }

  // Now the value type matches the type of the intrinsic. Replace them all!
  for (CoroSubFnInst *I : Users)
    replaceAndRecursivelySimplify(I, Value);
}

// See if any operand of the call instruction references the coroutine frame.
static bool operandReferences(CallInst *CI, AllocaInst *Frame, AAResults &AA) {
  for (Value *Op : CI->operand_values())
    if (AA.alias(Op, Frame) != NoAlias)
      return true;
  return false;
}

// Look for any tail calls referencing the coroutine frame and remove tail
// attribute from them, since now coroutine frame resides on the stack and tail
// call implies that the function does not references anything on the stack.
static void removeTailCallAttribute(AllocaInst *Frame, AAResults &AA) {
  Function &F = *Frame->getFunction();
  for (Instruction &I : instructions(F))
    if (auto *Call = dyn_cast<CallInst>(&I))
      if (Call->isTailCall() && operandReferences(Call, Frame, AA)) {
        // FIXME: If we ever hit this check. Evaluate whether it is more
        // appropriate to retain musttail and allow the code to compile.
        if (Call->isMustTailCall())
          report_fatal_error("Call referring to the coroutine frame cannot be "
                             "marked as musttail");
        Call->setTailCall(false);
      }
}

// Given a resume function @f.resume(%f.frame* %frame), returns %f.frame type.
static Type *getFrameType(Function *Resume) {
  auto *ArgType = Resume->arg_begin()->getType();
  return cast<PointerType>(ArgType)->getElementType();
}

// Finds first non alloca instruction in the entry block of a function.
static Instruction *getFirstNonAllocaInTheEntryBlock(Function *F) {
  for (Instruction &I : F->getEntryBlock())
    if (!isa<AllocaInst>(&I))
      return &I;
  llvm_unreachable("no terminator in the entry block");
}

// To elide heap allocations we need to suppress code blocks guarded by
// llvm.coro.alloc and llvm.coro.free instructions.
void Lowerer::elideHeapAllocations(Function *F, Type *FrameTy, AAResults &AA) {
  LLVMContext &C = FrameTy->getContext();
  auto *InsertPt =
      getFirstNonAllocaInTheEntryBlock(CoroIds.front()->getFunction());

  // Replacing llvm.coro.alloc with false will suppress dynamic
  // allocation as it is expected for the frontend to generate the code that
  // looks like:
  //   id = coro.id(...)
  //   mem = coro.alloc(id) ? malloc(coro.size()) : 0;
  //   coro.begin(id, mem)
  auto *False = ConstantInt::getFalse(C);
  for (auto *CA : CoroAllocs) {
    CA->replaceAllUsesWith(False);
    CA->eraseFromParent();
  }

  // FIXME: Design how to transmit alignment information for every alloca that
  // is spilled into the coroutine frame and recreate the alignment information
  // here. Possibly we will need to do a mini SROA here and break the coroutine
  // frame into individual AllocaInst recreating the original alignment.
  const DataLayout &DL = F->getParent()->getDataLayout();
  auto *Frame = new AllocaInst(FrameTy, DL.getAllocaAddrSpace(), "", InsertPt);
  auto *FrameVoidPtr =
      new BitCastInst(Frame, Type::getInt8PtrTy(C), "vFrame", InsertPt);

  for (auto *CB : CoroBegins) {
    CB->replaceAllUsesWith(FrameVoidPtr);
    CB->eraseFromParent();
  }

  // Since now coroutine frame lives on the stack we need to make sure that
  // any tail call referencing it, must be made non-tail call.
  removeTailCallAttribute(Frame, AA);
}

bool Lowerer::shouldElide(Function *F, DominatorTree &DT) const {
  // If no CoroAllocs, we cannot suppress allocation, so elision is not
  // possible.
  if (CoroAllocs.empty())
    return false;

  // Check that for every coro.begin there is a coro.destroy directly
  // referencing the SSA value of that coro.begin along a non-exceptional path.
  // If the value escaped, then coro.destroy would have been referencing a
  // memory location storing that value and not the virtual register.

  // First gather all of the non-exceptional terminators for the function.
  SmallPtrSet<Instruction *, 8> Terminators;
  for (BasicBlock &B : *F) {
    auto *TI = B.getTerminator();
    if (TI->getNumSuccessors() == 0 && !TI->isExceptionalTerminator() &&
        !isa<UnreachableInst>(TI))
      Terminators.insert(TI);
  }

  // Filter out the coro.destroy that lie along exceptional paths.
  SmallPtrSet<CoroSubFnInst *, 4> DAs;
  for (CoroSubFnInst *DA : DestroyAddr) {
    for (Instruction *TI : Terminators) {
      if (DT.dominates(DA, TI)) {
        DAs.insert(DA);
        break;
      }
    }
  }

  // Find all the coro.begin referenced by coro.destroy along happy paths.
  SmallPtrSet<CoroBeginInst *, 8> ReferencedCoroBegins;
  for (CoroSubFnInst *DA : DAs) {
    if (auto *CB = dyn_cast<CoroBeginInst>(DA->getFrame()))
      ReferencedCoroBegins.insert(CB);
    else
      return false;
  }

  // If size of the set is the same as total number of coro.begin, that means we
  // found a coro.free or coro.destroy referencing each coro.begin, so we can
  // perform heap elision.
  return ReferencedCoroBegins.size() == CoroBegins.size();
}

bool Lowerer::processCoroId(CoroIdInst *CoroId, AAResults &AA,
                            DominatorTree &DT) {
  CoroBegins.clear();
  CoroAllocs.clear();
  CoroFrees.clear();
  ResumeAddr.clear();
  DestroyAddr.clear();

  // Collect all coro.begin and coro.allocs associated with this coro.id.
  for (User *U : CoroId->users()) {
    if (auto *CB = dyn_cast<CoroBeginInst>(U))
      CoroBegins.push_back(CB);
    else if (auto *CA = dyn_cast<CoroAllocInst>(U))
      CoroAllocs.push_back(CA);
    else if (auto *CF = dyn_cast<CoroFreeInst>(U))
      CoroFrees.push_back(CF);
  }

  // Collect all coro.subfn.addrs associated with coro.begin.
  // Note, we only devirtualize the calls if their coro.subfn.addr refers to
  // coro.begin directly. If we run into cases where this check is too
  // conservative, we can consider relaxing the check.
  for (CoroBeginInst *CB : CoroBegins) {
    for (User *U : CB->users())
      if (auto *II = dyn_cast<CoroSubFnInst>(U))
        switch (II->getIndex()) {
        case CoroSubFnInst::ResumeIndex:
          ResumeAddr.push_back(II);
          break;
        case CoroSubFnInst::DestroyIndex:
          DestroyAddr.push_back(II);
          break;
        default:
          llvm_unreachable("unexpected coro.subfn.addr constant");
        }
  }

  // PostSplit coro.id refers to an array of subfunctions in its Info
  // argument.
  ConstantArray *Resumers = CoroId->getInfo().Resumers;
  assert(Resumers && "PostSplit coro.id Info argument must refer to an array"
                     "of coroutine subfunctions");
  auto *ResumeAddrConstant =
      ConstantExpr::getExtractValue(Resumers, CoroSubFnInst::ResumeIndex);

  replaceWithConstant(ResumeAddrConstant, ResumeAddr);

  bool ShouldElide = shouldElide(CoroId->getFunction(), DT);

  auto *DestroyAddrConstant = ConstantExpr::getExtractValue(
      Resumers,
      ShouldElide ? CoroSubFnInst::CleanupIndex : CoroSubFnInst::DestroyIndex);

  replaceWithConstant(DestroyAddrConstant, DestroyAddr);

  if (ShouldElide) {
    auto *FrameTy = getFrameType(cast<Function>(ResumeAddrConstant));
    elideHeapAllocations(CoroId->getFunction(), FrameTy, AA);
    coro::replaceCoroFree(CoroId, /*Elide=*/true);
  }

  return true;
}

// See if there are any coro.subfn.addr instructions referring to coro.devirt
// trigger, if so, replace them with a direct call to devirt trigger function.
static bool replaceDevirtTrigger(Function &F) {
  SmallVector<CoroSubFnInst *, 1> DevirtAddr;
  for (auto &I : instructions(F))
    if (auto *SubFn = dyn_cast<CoroSubFnInst>(&I))
      if (SubFn->getIndex() == CoroSubFnInst::RestartTrigger)
        DevirtAddr.push_back(SubFn);

  if (DevirtAddr.empty())
    return false;

  Module &M = *F.getParent();
  Function *DevirtFn = M.getFunction(CORO_DEVIRT_TRIGGER_FN);
  assert(DevirtFn && "coro.devirt.fn not found");
  replaceWithConstant(DevirtFn, DevirtAddr);

  return true;
}

//===----------------------------------------------------------------------===//
//                              Top Level Driver
//===----------------------------------------------------------------------===//

namespace {
struct CoroElide : FunctionPass {
  static char ID;
  CoroElide() : FunctionPass(ID) {
    initializeCoroElidePass(*PassRegistry::getPassRegistry());
  }

  std::unique_ptr<Lowerer> L;

  bool doInitialization(Module &M) override {
    if (coro::declaresIntrinsics(M, {"llvm.coro.id"}))
      L = std::make_unique<Lowerer>(M);
    return false;
  }

  bool runOnFunction(Function &F) override {
    if (!L)
      return false;

    bool Changed = false;

    if (F.hasFnAttribute(CORO_PRESPLIT_ATTR))
      Changed = replaceDevirtTrigger(F);

    L->CoroIds.clear();

    // Collect all PostSplit coro.ids.
    for (auto &I : instructions(F))
      if (auto *CII = dyn_cast<CoroIdInst>(&I))
        if (CII->getInfo().isPostSplit())
          // If it is the coroutine itself, don't touch it.
          if (CII->getCoroutine() != CII->getFunction())
            L->CoroIds.push_back(CII);

    // If we did not find any coro.id, there is nothing to do.
    if (L->CoroIds.empty())
      return Changed;

    AAResults &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
    DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();

    for (auto *CII : L->CoroIds)
      Changed |= L->processCoroId(CII, AA, DT);

    return Changed;
  }
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AAResultsWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
  }
  StringRef getPassName() const override { return "Coroutine Elision"; }
};
}

char CoroElide::ID = 0;
INITIALIZE_PASS_BEGIN(
    CoroElide, "coro-elide",
    "Coroutine frame allocation elision and indirect calls replacement", false,
    false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(
    CoroElide, "coro-elide",
    "Coroutine frame allocation elision and indirect calls replacement", false,
    false)

Pass *llvm::createCoroElidePass() { return new CoroElide(); }