reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
//===-- SystemZISelLowering.h - SystemZ DAG lowering interface --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that SystemZ uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
#define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H

#include "SystemZ.h"
#include "SystemZInstrInfo.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLowering.h"

namespace llvm {
namespace SystemZISD {
enum NodeType : unsigned {
  FIRST_NUMBER = ISD::BUILTIN_OP_END,

  // Return with a flag operand.  Operand 0 is the chain operand.
  RET_FLAG,

  // Calls a function.  Operand 0 is the chain operand and operand 1
  // is the target address.  The arguments start at operand 2.
  // There is an optional glue operand at the end.
  CALL,
  SIBCALL,

  // TLS calls.  Like regular calls, except operand 1 is the TLS symbol.
  // (The call target is implicitly __tls_get_offset.)
  TLS_GDCALL,
  TLS_LDCALL,

  // Wraps a TargetGlobalAddress that should be loaded using PC-relative
  // accesses (LARL).  Operand 0 is the address.
  PCREL_WRAPPER,

  // Used in cases where an offset is applied to a TargetGlobalAddress.
  // Operand 0 is the full TargetGlobalAddress and operand 1 is a
  // PCREL_WRAPPER for an anchor point.  This is used so that we can
  // cheaply refer to either the full address or the anchor point
  // as a register base.
  PCREL_OFFSET,

  // Integer absolute.
  IABS,

  // Integer comparisons.  There are three operands: the two values
  // to compare, and an integer of type SystemZICMP.
  ICMP,

  // Floating-point comparisons.  The two operands are the values to compare.
  FCMP,

  // Test under mask.  The first operand is ANDed with the second operand
  // and the condition codes are set on the result.  The third operand is
  // a boolean that is true if the condition codes need to distinguish
  // between CCMASK_TM_MIXED_MSB_0 and CCMASK_TM_MIXED_MSB_1 (which the
  // register forms do but the memory forms don't).
  TM,

  // Branches if a condition is true.  Operand 0 is the chain operand;
  // operand 1 is the 4-bit condition-code mask, with bit N in
  // big-endian order meaning "branch if CC=N"; operand 2 is the
  // target block and operand 3 is the flag operand.
  BR_CCMASK,

  // Selects between operand 0 and operand 1.  Operand 2 is the
  // mask of condition-code values for which operand 0 should be
  // chosen over operand 1; it has the same form as BR_CCMASK.
  // Operand 3 is the flag operand.
  SELECT_CCMASK,

  // Evaluates to the gap between the stack pointer and the
  // base of the dynamically-allocatable area.
  ADJDYNALLOC,

  // Count number of bits set in operand 0 per byte.
  POPCNT,

  // Wrappers around the ISD opcodes of the same name.  The output is GR128.
  // Input operands may be GR64 or GR32, depending on the instruction.
  SMUL_LOHI,
  UMUL_LOHI,
  SDIVREM,
  UDIVREM,

  // Add/subtract with overflow/carry.  These have the same operands as
  // the corresponding standard operations, except with the carry flag
  // replaced by a condition code value.
  SADDO, SSUBO, UADDO, USUBO, ADDCARRY, SUBCARRY,

  // Set the condition code from a boolean value in operand 0.
  // Operand 1 is a mask of all condition-code values that may result of this
  // operation, operand 2 is a mask of condition-code values that may result
  // if the boolean is true.
  // Note that this operation is always optimized away, we will never
  // generate any code for it.
  GET_CCMASK,

  // Use a series of MVCs to copy bytes from one memory location to another.
  // The operands are:
  // - the target address
  // - the source address
  // - the constant length
  //
  // This isn't a memory opcode because we'd need to attach two
  // MachineMemOperands rather than one.
  MVC,

  // Like MVC, but implemented as a loop that handles X*256 bytes
  // followed by straight-line code to handle the rest (if any).
  // The value of X is passed as an additional operand.
  MVC_LOOP,

  // Similar to MVC and MVC_LOOP, but for logic operations (AND, OR, XOR).
  NC,
  NC_LOOP,
  OC,
  OC_LOOP,
  XC,
  XC_LOOP,

  // Use CLC to compare two blocks of memory, with the same comments
  // as for MVC and MVC_LOOP.
  CLC,
  CLC_LOOP,

  // Use an MVST-based sequence to implement stpcpy().
  STPCPY,

  // Use a CLST-based sequence to implement strcmp().  The two input operands
  // are the addresses of the strings to compare.
  STRCMP,

  // Use an SRST-based sequence to search a block of memory.  The first
  // operand is the end address, the second is the start, and the third
  // is the character to search for.  CC is set to 1 on success and 2
  // on failure.
  SEARCH_STRING,

  // Store the CC value in bits 29 and 28 of an integer.
  IPM,

  // Compiler barrier only; generate a no-op.
  MEMBARRIER,

  // Transaction begin.  The first operand is the chain, the second
  // the TDB pointer, and the third the immediate control field.
  // Returns CC value and chain.
  TBEGIN,
  TBEGIN_NOFLOAT,

  // Transaction end.  Just the chain operand.  Returns CC value and chain.
  TEND,

  // Create a vector constant by filling byte N of the result with bit
  // 15-N of the single operand.
  BYTE_MASK,

  // Create a vector constant by replicating an element-sized RISBG-style mask.
  // The first operand specifies the starting set bit and the second operand
  // specifies the ending set bit.  Both operands count from the MSB of the
  // element.
  ROTATE_MASK,

  // Replicate a GPR scalar value into all elements of a vector.
  REPLICATE,

  // Create a vector from two i64 GPRs.
  JOIN_DWORDS,

  // Replicate one element of a vector into all elements.  The first operand
  // is the vector and the second is the index of the element to replicate.
  SPLAT,

  // Interleave elements from the high half of operand 0 and the high half
  // of operand 1.
  MERGE_HIGH,

  // Likewise for the low halves.
  MERGE_LOW,

  // Concatenate the vectors in the first two operands, shift them left
  // by the third operand, and take the first half of the result.
  SHL_DOUBLE,

  // Take one element of the first v2i64 operand and the one element of
  // the second v2i64 operand and concatenate them to form a v2i64 result.
  // The third operand is a 4-bit value of the form 0A0B, where A and B
  // are the element selectors for the first operand and second operands
  // respectively.
  PERMUTE_DWORDS,

  // Perform a general vector permute on vector operands 0 and 1.
  // Each byte of operand 2 controls the corresponding byte of the result,
  // in the same way as a byte-level VECTOR_SHUFFLE mask.
  PERMUTE,

  // Pack vector operands 0 and 1 into a single vector with half-sized elements.
  PACK,

  // Likewise, but saturate the result and set CC.  PACKS_CC does signed
  // saturation and PACKLS_CC does unsigned saturation.
  PACKS_CC,
  PACKLS_CC,

  // Unpack the first half of vector operand 0 into double-sized elements.
  // UNPACK_HIGH sign-extends and UNPACKL_HIGH zero-extends.
  UNPACK_HIGH,
  UNPACKL_HIGH,

  // Likewise for the second half.
  UNPACK_LOW,
  UNPACKL_LOW,

  // Shift each element of vector operand 0 by the number of bits specified
  // by scalar operand 1.
  VSHL_BY_SCALAR,
  VSRL_BY_SCALAR,
  VSRA_BY_SCALAR,

  // For each element of the output type, sum across all sub-elements of
  // operand 0 belonging to the corresponding element, and add in the
  // rightmost sub-element of the corresponding element of operand 1.
  VSUM,

  // Compare integer vector operands 0 and 1 to produce the usual 0/-1
  // vector result.  VICMPE is for equality, VICMPH for "signed greater than"
  // and VICMPHL for "unsigned greater than".
  VICMPE,
  VICMPH,
  VICMPHL,

  // Likewise, but also set the condition codes on the result.
  VICMPES,
  VICMPHS,
  VICMPHLS,

  // Compare floating-point vector operands 0 and 1 to preoduce the usual 0/-1
  // vector result.  VFCMPE is for "ordered and equal", VFCMPH for "ordered and
  // greater than" and VFCMPHE for "ordered and greater than or equal to".
  VFCMPE,
  VFCMPH,
  VFCMPHE,

  // Likewise, but also set the condition codes on the result.
  VFCMPES,
  VFCMPHS,
  VFCMPHES,

  // Test floating-point data class for vectors.
  VFTCI,

  // Extend the even f32 elements of vector operand 0 to produce a vector
  // of f64 elements.
  VEXTEND,

  // Round the f64 elements of vector operand 0 to f32s and store them in the
  // even elements of the result.
  VROUND,

  // AND the two vector operands together and set CC based on the result.
  VTM,

  // String operations that set CC as a side-effect.
  VFAE_CC,
  VFAEZ_CC,
  VFEE_CC,
  VFEEZ_CC,
  VFENE_CC,
  VFENEZ_CC,
  VISTR_CC,
  VSTRC_CC,
  VSTRCZ_CC,
  VSTRS_CC,
  VSTRSZ_CC,

  // Test Data Class.
  //
  // Operand 0: the value to test
  // Operand 1: the bit mask
  TDC,

  // Wrappers around the inner loop of an 8- or 16-bit ATOMIC_SWAP or
  // ATOMIC_LOAD_<op>.
  //
  // Operand 0: the address of the containing 32-bit-aligned field
  // Operand 1: the second operand of <op>, in the high bits of an i32
  //            for everything except ATOMIC_SWAPW
  // Operand 2: how many bits to rotate the i32 left to bring the first
  //            operand into the high bits
  // Operand 3: the negative of operand 2, for rotating the other way
  // Operand 4: the width of the field in bits (8 or 16)
  ATOMIC_SWAPW = ISD::FIRST_TARGET_MEMORY_OPCODE,
  ATOMIC_LOADW_ADD,
  ATOMIC_LOADW_SUB,
  ATOMIC_LOADW_AND,
  ATOMIC_LOADW_OR,
  ATOMIC_LOADW_XOR,
  ATOMIC_LOADW_NAND,
  ATOMIC_LOADW_MIN,
  ATOMIC_LOADW_MAX,
  ATOMIC_LOADW_UMIN,
  ATOMIC_LOADW_UMAX,

  // A wrapper around the inner loop of an ATOMIC_CMP_SWAP.
  //
  // Operand 0: the address of the containing 32-bit-aligned field
  // Operand 1: the compare value, in the low bits of an i32
  // Operand 2: the swap value, in the low bits of an i32
  // Operand 3: how many bits to rotate the i32 left to bring the first
  //            operand into the high bits
  // Operand 4: the negative of operand 2, for rotating the other way
  // Operand 5: the width of the field in bits (8 or 16)
  ATOMIC_CMP_SWAPW,

  // Atomic compare-and-swap returning CC value.
  // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
  ATOMIC_CMP_SWAP,

  // 128-bit atomic load.
  // Val, OUTCHAIN = ATOMIC_LOAD_128(INCHAIN, ptr)
  ATOMIC_LOAD_128,

  // 128-bit atomic store.
  // OUTCHAIN = ATOMIC_STORE_128(INCHAIN, val, ptr)
  ATOMIC_STORE_128,

  // 128-bit atomic compare-and-swap.
  // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
  ATOMIC_CMP_SWAP_128,

  // Byte swapping load/store.  Same operands as regular load/store.
  LRV, STRV,

  // Element swapping load/store.  Same operands as regular load/store.
  VLER, VSTER,

  // Prefetch from the second operand using the 4-bit control code in
  // the first operand.  The code is 1 for a load prefetch and 2 for
  // a store prefetch.
  PREFETCH
};

// Return true if OPCODE is some kind of PC-relative address.
inline bool isPCREL(unsigned Opcode) {
  return Opcode == PCREL_WRAPPER || Opcode == PCREL_OFFSET;
}
} // end namespace SystemZISD

namespace SystemZICMP {
// Describes whether an integer comparison needs to be signed or unsigned,
// or whether either type is OK.
enum {
  Any,
  UnsignedOnly,
  SignedOnly
};
} // end namespace SystemZICMP

class SystemZSubtarget;
class SystemZTargetMachine;

class SystemZTargetLowering : public TargetLowering {
public:
  explicit SystemZTargetLowering(const TargetMachine &TM,
                                 const SystemZSubtarget &STI);

  // Override TargetLowering.
  MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
    return MVT::i32;
  }
  MVT getVectorIdxTy(const DataLayout &DL) const override {
    // Only the lower 12 bits of an element index are used, so we don't
    // want to clobber the upper 32 bits of a GPR unnecessarily.
    return MVT::i32;
  }
  TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT)
    const override {
    // Widen subvectors to the full width rather than promoting integer
    // elements.  This is better because:
    //
    // (a) it means that we can handle the ABI for passing and returning
    //     sub-128 vectors without having to handle them as legal types.
    //
    // (b) we don't have instructions to extend on load and truncate on store,
    //     so promoting the integers is less efficient.
    //
    // (c) there are no multiplication instructions for the widest integer
    //     type (v2i64).
    if (VT.getScalarSizeInBits() % 8 == 0)
      return TypeWidenVector;
    return TargetLoweringBase::getPreferredVectorAction(VT);
  }
  bool isCheapToSpeculateCtlz() const override { return true; }
  EVT getSetCCResultType(const DataLayout &DL, LLVMContext &,
                         EVT) const override;
  bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
  bool isFPImmLegal(const APFloat &Imm, EVT VT,
                    bool ForCodeSize) const override;
  bool isLegalICmpImmediate(int64_t Imm) const override;
  bool isLegalAddImmediate(int64_t Imm) const override;
  bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty,
                             unsigned AS,
                             Instruction *I = nullptr) const override;
  bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS,
                                      unsigned Align,
                                      MachineMemOperand::Flags Flags,
                                      bool *Fast) const override;
  bool isTruncateFree(Type *, Type *) const override;
  bool isTruncateFree(EVT, EVT) const override;
  const char *getTargetNodeName(unsigned Opcode) const override;
  std::pair<unsigned, const TargetRegisterClass *>
  getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
                               StringRef Constraint, MVT VT) const override;
  TargetLowering::ConstraintType
  getConstraintType(StringRef Constraint) const override;
  TargetLowering::ConstraintWeight
    getSingleConstraintMatchWeight(AsmOperandInfo &info,
                                   const char *constraint) const override;
  void LowerAsmOperandForConstraint(SDValue Op,
                                    std::string &Constraint,
                                    std::vector<SDValue> &Ops,
                                    SelectionDAG &DAG) const override;

  unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
    if (ConstraintCode.size() == 1) {
      switch(ConstraintCode[0]) {
      default:
        break;
      case 'o':
        return InlineAsm::Constraint_o;
      case 'Q':
        return InlineAsm::Constraint_Q;
      case 'R':
        return InlineAsm::Constraint_R;
      case 'S':
        return InlineAsm::Constraint_S;
      case 'T':
        return InlineAsm::Constraint_T;
      }
    }
    return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
  }

  /// If a physical register, this returns the register that receives the
  /// exception address on entry to an EH pad.
  unsigned
  getExceptionPointerRegister(const Constant *PersonalityFn) const override {
    return SystemZ::R6D;
  }

  /// If a physical register, this returns the register that receives the
  /// exception typeid on entry to a landing pad.
  unsigned
  getExceptionSelectorRegister(const Constant *PersonalityFn) const override {
    return SystemZ::R7D;
  }

  /// Override to support customized stack guard loading.
  bool useLoadStackGuardNode() const override {
    return true;
  }
  void insertSSPDeclarations(Module &M) const override {
  }

  MachineBasicBlock *
  EmitInstrWithCustomInserter(MachineInstr &MI,
                              MachineBasicBlock *BB) const override;
  SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
  void LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results,
                             SelectionDAG &DAG) const override;
  void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
                          SelectionDAG &DAG) const override;
  const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
  bool allowTruncateForTailCall(Type *, Type *) const override;
  bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
  SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv,
                               bool isVarArg,
                               const SmallVectorImpl<ISD::InputArg> &Ins,
                               const SDLoc &DL, SelectionDAG &DAG,
                               SmallVectorImpl<SDValue> &InVals) const override;
  SDValue LowerCall(CallLoweringInfo &CLI,
                    SmallVectorImpl<SDValue> &InVals) const override;

  bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
                      bool isVarArg,
                      const SmallVectorImpl<ISD::OutputArg> &Outs,
                      LLVMContext &Context) const override;
  SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
                      const SmallVectorImpl<ISD::OutputArg> &Outs,
                      const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
                      SelectionDAG &DAG) const override;
  SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;

  /// Determine which of the bits specified in Mask are known to be either
  /// zero or one and return them in the KnownZero/KnownOne bitsets.
  void computeKnownBitsForTargetNode(const SDValue Op,
                                     KnownBits &Known,
                                     const APInt &DemandedElts,
                                     const SelectionDAG &DAG,
                                     unsigned Depth = 0) const override;

  /// Determine the number of bits in the operation that are sign bits.
  unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
                                           const APInt &DemandedElts,
                                           const SelectionDAG &DAG,
                                           unsigned Depth) const override;

  ISD::NodeType getExtendForAtomicOps() const override {
    return ISD::ANY_EXTEND;
  }

  bool supportSwiftError() const override {
    return true;
  }

private:
  const SystemZSubtarget &Subtarget;

  // Implement LowerOperation for individual opcodes.
  SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
                       const SDLoc &DL, EVT VT,
                       SDValue CmpOp0, SDValue CmpOp1) const;
  SDValue lowerVectorSETCC(SelectionDAG &DAG, const SDLoc &DL,
                           EVT VT, ISD::CondCode CC,
                           SDValue CmpOp0, SDValue CmpOp1) const;
  SDValue lowerSETCC(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerGlobalAddress(GlobalAddressSDNode *Node,
                             SelectionDAG &DAG) const;
  SDValue lowerTLSGetOffset(GlobalAddressSDNode *Node,
                            SelectionDAG &DAG, unsigned Opcode,
                            SDValue GOTOffset) const;
  SDValue lowerThreadPointer(const SDLoc &DL, SelectionDAG &DAG) const;
  SDValue lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
                                SelectionDAG &DAG) const;
  SDValue lowerBlockAddress(BlockAddressSDNode *Node,
                            SelectionDAG &DAG) const;
  SDValue lowerJumpTable(JumpTableSDNode *JT, SelectionDAG &DAG) const;
  SDValue lowerConstantPool(ConstantPoolSDNode *CP, SelectionDAG &DAG) const;
  SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerVASTART(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerSDIVREM(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerUDIVREM(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerXALUO(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerOR(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerCTPOP(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerATOMIC_LOAD_OP(SDValue Op, SelectionDAG &DAG,
                              unsigned Opcode) const;
  SDValue lowerATOMIC_LOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
  bool isVectorElementLoad(SDValue Op) const;
  SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
                      SmallVectorImpl<SDValue> &Elems) const;
  SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
  SDValue lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
                                 unsigned UnpackHigh) const;
  SDValue lowerShift(SDValue Op, SelectionDAG &DAG, unsigned ByScalar) const;

  bool canTreatAsByteVector(EVT VT) const;
  SDValue combineExtract(const SDLoc &DL, EVT ElemVT, EVT VecVT, SDValue OrigOp,
                         unsigned Index, DAGCombinerInfo &DCI,
                         bool Force) const;
  SDValue combineTruncateExtract(const SDLoc &DL, EVT TruncVT, SDValue Op,
                                 DAGCombinerInfo &DCI) const;
  SDValue combineZERO_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
  SDValue combineSIGN_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
  SDValue combineSIGN_EXTEND_INREG(SDNode *N, DAGCombinerInfo &DCI) const;
  SDValue combineMERGE(SDNode *N, DAGCombinerInfo &DCI) const;
  bool canLoadStoreByteSwapped(EVT VT) const;
  SDValue combineLOAD(SDNode *N, DAGCombinerInfo &DCI) const;
  SDValue combineSTORE(SDNode *N, DAGCombinerInfo &DCI) const;
  SDValue combineVECTOR_SHUFFLE(SDNode *N, DAGCombinerInfo &DCI) const;
  SDValue combineEXTRACT_VECTOR_ELT(SDNode *N, DAGCombinerInfo &DCI) const;
  SDValue combineJOIN_DWORDS(SDNode *N, DAGCombinerInfo &DCI) const;
  SDValue combineFP_ROUND(SDNode *N, DAGCombinerInfo &DCI) const;
  SDValue combineFP_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
  SDValue combineBSWAP(SDNode *N, DAGCombinerInfo &DCI) const;
  SDValue combineBR_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
  SDValue combineSELECT_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
  SDValue combineGET_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
  SDValue combineIntDIVREM(SDNode *N, DAGCombinerInfo &DCI) const;

  SDValue unwrapAddress(SDValue N) const override;

  // If the last instruction before MBBI in MBB was some form of COMPARE,
  // try to replace it with a COMPARE AND BRANCH just before MBBI.
  // CCMask and Target are the BRC-like operands for the branch.
  // Return true if the change was made.
  bool convertPrevCompareToBranch(MachineBasicBlock *MBB,
                                  MachineBasicBlock::iterator MBBI,
                                  unsigned CCMask,
                                  MachineBasicBlock *Target) const;

  // Implement EmitInstrWithCustomInserter for individual operation types.
  MachineBasicBlock *emitSelect(MachineInstr &MI, MachineBasicBlock *BB) const;
  MachineBasicBlock *emitCondStore(MachineInstr &MI, MachineBasicBlock *BB,
                                   unsigned StoreOpcode, unsigned STOCOpcode,
                                   bool Invert) const;
  MachineBasicBlock *emitPair128(MachineInstr &MI,
                                 MachineBasicBlock *MBB) const;
  MachineBasicBlock *emitExt128(MachineInstr &MI, MachineBasicBlock *MBB,
                                bool ClearEven) const;
  MachineBasicBlock *emitAtomicLoadBinary(MachineInstr &MI,
                                          MachineBasicBlock *BB,
                                          unsigned BinOpcode, unsigned BitSize,
                                          bool Invert = false) const;
  MachineBasicBlock *emitAtomicLoadMinMax(MachineInstr &MI,
                                          MachineBasicBlock *MBB,
                                          unsigned CompareOpcode,
                                          unsigned KeepOldMask,
                                          unsigned BitSize) const;
  MachineBasicBlock *emitAtomicCmpSwapW(MachineInstr &MI,
                                        MachineBasicBlock *BB) const;
  MachineBasicBlock *emitMemMemWrapper(MachineInstr &MI, MachineBasicBlock *BB,
                                       unsigned Opcode) const;
  MachineBasicBlock *emitStringWrapper(MachineInstr &MI, MachineBasicBlock *BB,
                                       unsigned Opcode) const;
  MachineBasicBlock *emitTransactionBegin(MachineInstr &MI,
                                          MachineBasicBlock *MBB,
                                          unsigned Opcode, bool NoFloat) const;
  MachineBasicBlock *emitLoadAndTestCmp0(MachineInstr &MI,
                                         MachineBasicBlock *MBB,
                                         unsigned Opcode) const;

  MachineMemOperand::Flags getMMOFlags(const Instruction &I) const override;
  const TargetRegisterClass *getRepRegClassFor(MVT VT) const override;
};

struct SystemZVectorConstantInfo {
private:
  APInt IntBits;             // The 128 bits as an integer.
  APInt SplatBits;           // Smallest splat value.
  APInt SplatUndef;          // Bits correspoding to undef operands of the BVN.
  unsigned SplatBitSize = 0;
  bool isFP128 = false;

public:
  unsigned Opcode = 0;
  SmallVector<unsigned, 2> OpVals;
  MVT VecVT;
  SystemZVectorConstantInfo(APFloat FPImm);
  SystemZVectorConstantInfo(BuildVectorSDNode *BVN);
  bool isVectorConstantLegal(const SystemZSubtarget &Subtarget);
};

} // end namespace llvm

#endif