reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
//===- HexagonGenPredicate.cpp --------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "HexagonInstrInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/Pass.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <iterator>
#include <map>
#include <queue>
#include <set>
#include <utility>

#define DEBUG_TYPE "gen-pred"

using namespace llvm;

namespace llvm {

  void initializeHexagonGenPredicatePass(PassRegistry& Registry);
  FunctionPass *createHexagonGenPredicate();

} // end namespace llvm

namespace {

  // FIXME: Use TargetInstrInfo::RegSubRegPair
  struct RegisterSubReg {
    unsigned R, S;

    RegisterSubReg(unsigned r = 0, unsigned s = 0) : R(r), S(s) {}
    RegisterSubReg(const MachineOperand &MO) : R(MO.getReg()), S(MO.getSubReg()) {}
    RegisterSubReg(const Register &Reg) : R(Reg), S(0) {}

    bool operator== (const RegisterSubReg &Reg) const {
      return R == Reg.R && S == Reg.S;
    }

    bool operator< (const RegisterSubReg &Reg) const {
      return R < Reg.R || (R == Reg.R && S < Reg.S);
    }
  };

  struct PrintRegister {
    friend raw_ostream &operator<< (raw_ostream &OS, const PrintRegister &PR);

    PrintRegister(RegisterSubReg R, const TargetRegisterInfo &I) : Reg(R), TRI(I) {}

  private:
    RegisterSubReg Reg;
    const TargetRegisterInfo &TRI;
  };

  raw_ostream &operator<< (raw_ostream &OS, const PrintRegister &PR)
    LLVM_ATTRIBUTE_UNUSED;
  raw_ostream &operator<< (raw_ostream &OS, const PrintRegister &PR) {
    return OS << printReg(PR.Reg.R, &PR.TRI, PR.Reg.S);
  }

  class HexagonGenPredicate : public MachineFunctionPass {
  public:
    static char ID;

    HexagonGenPredicate() : MachineFunctionPass(ID) {
      initializeHexagonGenPredicatePass(*PassRegistry::getPassRegistry());
    }

    StringRef getPassName() const override {
      return "Hexagon generate predicate operations";
    }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<MachineDominatorTree>();
      AU.addPreserved<MachineDominatorTree>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    bool runOnMachineFunction(MachineFunction &MF) override;

  private:
    using VectOfInst = SetVector<MachineInstr *>;
    using SetOfReg = std::set<RegisterSubReg>;
    using RegToRegMap = std::map<RegisterSubReg, RegisterSubReg>;

    const HexagonInstrInfo *TII = nullptr;
    const HexagonRegisterInfo *TRI = nullptr;
    MachineRegisterInfo *MRI = nullptr;
    SetOfReg PredGPRs;
    VectOfInst PUsers;
    RegToRegMap G2P;

    bool isPredReg(unsigned R);
    void collectPredicateGPR(MachineFunction &MF);
    void processPredicateGPR(const RegisterSubReg &Reg);
    unsigned getPredForm(unsigned Opc);
    bool isConvertibleToPredForm(const MachineInstr *MI);
    bool isScalarCmp(unsigned Opc);
    bool isScalarPred(RegisterSubReg PredReg);
    RegisterSubReg getPredRegFor(const RegisterSubReg &Reg);
    bool convertToPredForm(MachineInstr *MI);
    bool eliminatePredCopies(MachineFunction &MF);
  };

} // end anonymous namespace

char HexagonGenPredicate::ID = 0;

INITIALIZE_PASS_BEGIN(HexagonGenPredicate, "hexagon-gen-pred",
  "Hexagon generate predicate operations", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_END(HexagonGenPredicate, "hexagon-gen-pred",
  "Hexagon generate predicate operations", false, false)

bool HexagonGenPredicate::isPredReg(unsigned R) {
  if (!Register::isVirtualRegister(R))
    return false;
  const TargetRegisterClass *RC = MRI->getRegClass(R);
  return RC == &Hexagon::PredRegsRegClass;
}

unsigned HexagonGenPredicate::getPredForm(unsigned Opc) {
  using namespace Hexagon;

  switch (Opc) {
    case A2_and:
    case A2_andp:
      return C2_and;
    case A4_andn:
    case A4_andnp:
      return C2_andn;
    case M4_and_and:
      return C4_and_and;
    case M4_and_andn:
      return C4_and_andn;
    case M4_and_or:
      return C4_and_or;

    case A2_or:
    case A2_orp:
      return C2_or;
    case A4_orn:
    case A4_ornp:
      return C2_orn;
    case M4_or_and:
      return C4_or_and;
    case M4_or_andn:
      return C4_or_andn;
    case M4_or_or:
      return C4_or_or;

    case A2_xor:
    case A2_xorp:
      return C2_xor;

    case C2_tfrrp:
      return COPY;
  }
  // The opcode corresponding to 0 is TargetOpcode::PHI. We can use 0 here
  // to denote "none", but we need to make sure that none of the valid opcodes
  // that we return will ever be 0.
  static_assert(PHI == 0, "Use different value for <none>");
  return 0;
}

bool HexagonGenPredicate::isConvertibleToPredForm(const MachineInstr *MI) {
  unsigned Opc = MI->getOpcode();
  if (getPredForm(Opc) != 0)
    return true;

  // Comparisons against 0 are also convertible. This does not apply to
  // A4_rcmpeqi or A4_rcmpneqi, since they produce values 0 or 1, which
  // may not match the value that the predicate register would have if
  // it was converted to a predicate form.
  switch (Opc) {
    case Hexagon::C2_cmpeqi:
    case Hexagon::C4_cmpneqi:
      if (MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0)
        return true;
      break;
  }
  return false;
}

void HexagonGenPredicate::collectPredicateGPR(MachineFunction &MF) {
  for (MachineFunction::iterator A = MF.begin(), Z = MF.end(); A != Z; ++A) {
    MachineBasicBlock &B = *A;
    for (MachineBasicBlock::iterator I = B.begin(), E = B.end(); I != E; ++I) {
      MachineInstr *MI = &*I;
      unsigned Opc = MI->getOpcode();
      switch (Opc) {
        case Hexagon::C2_tfrpr:
        case TargetOpcode::COPY:
          if (isPredReg(MI->getOperand(1).getReg())) {
            RegisterSubReg RD = MI->getOperand(0);
            if (Register::isVirtualRegister(RD.R))
              PredGPRs.insert(RD);
          }
          break;
      }
    }
  }
}

void HexagonGenPredicate::processPredicateGPR(const RegisterSubReg &Reg) {
  LLVM_DEBUG(dbgs() << __func__ << ": " << printReg(Reg.R, TRI, Reg.S) << "\n");
  using use_iterator = MachineRegisterInfo::use_iterator;

  use_iterator I = MRI->use_begin(Reg.R), E = MRI->use_end();
  if (I == E) {
    LLVM_DEBUG(dbgs() << "Dead reg: " << printReg(Reg.R, TRI, Reg.S) << '\n');
    MachineInstr *DefI = MRI->getVRegDef(Reg.R);
    DefI->eraseFromParent();
    return;
  }

  for (; I != E; ++I) {
    MachineInstr *UseI = I->getParent();
    if (isConvertibleToPredForm(UseI))
      PUsers.insert(UseI);
  }
}

RegisterSubReg HexagonGenPredicate::getPredRegFor(const RegisterSubReg &Reg) {
  // Create a predicate register for a given Reg. The newly created register
  // will have its value copied from Reg, so that it can be later used as
  // an operand in other instructions.
  assert(Register::isVirtualRegister(Reg.R));
  RegToRegMap::iterator F = G2P.find(Reg);
  if (F != G2P.end())
    return F->second;

  LLVM_DEBUG(dbgs() << __func__ << ": " << PrintRegister(Reg, *TRI));
  MachineInstr *DefI = MRI->getVRegDef(Reg.R);
  assert(DefI);
  unsigned Opc = DefI->getOpcode();
  if (Opc == Hexagon::C2_tfrpr || Opc == TargetOpcode::COPY) {
    assert(DefI->getOperand(0).isDef() && DefI->getOperand(1).isUse());
    RegisterSubReg PR = DefI->getOperand(1);
    G2P.insert(std::make_pair(Reg, PR));
    LLVM_DEBUG(dbgs() << " -> " << PrintRegister(PR, *TRI) << '\n');
    return PR;
  }

  MachineBasicBlock &B = *DefI->getParent();
  DebugLoc DL = DefI->getDebugLoc();
  const TargetRegisterClass *PredRC = &Hexagon::PredRegsRegClass;
  Register NewPR = MRI->createVirtualRegister(PredRC);

  // For convertible instructions, do not modify them, so that they can
  // be converted later.  Generate a copy from Reg to NewPR.
  if (isConvertibleToPredForm(DefI)) {
    MachineBasicBlock::iterator DefIt = DefI;
    BuildMI(B, std::next(DefIt), DL, TII->get(TargetOpcode::COPY), NewPR)
      .addReg(Reg.R, 0, Reg.S);
    G2P.insert(std::make_pair(Reg, RegisterSubReg(NewPR)));
    LLVM_DEBUG(dbgs() << " -> !" << PrintRegister(RegisterSubReg(NewPR), *TRI)
                      << '\n');
    return RegisterSubReg(NewPR);
  }

  llvm_unreachable("Invalid argument");
}

bool HexagonGenPredicate::isScalarCmp(unsigned Opc) {
  switch (Opc) {
    case Hexagon::C2_cmpeq:
    case Hexagon::C2_cmpgt:
    case Hexagon::C2_cmpgtu:
    case Hexagon::C2_cmpeqp:
    case Hexagon::C2_cmpgtp:
    case Hexagon::C2_cmpgtup:
    case Hexagon::C2_cmpeqi:
    case Hexagon::C2_cmpgti:
    case Hexagon::C2_cmpgtui:
    case Hexagon::C2_cmpgei:
    case Hexagon::C2_cmpgeui:
    case Hexagon::C4_cmpneqi:
    case Hexagon::C4_cmpltei:
    case Hexagon::C4_cmplteui:
    case Hexagon::C4_cmpneq:
    case Hexagon::C4_cmplte:
    case Hexagon::C4_cmplteu:
    case Hexagon::A4_cmpbeq:
    case Hexagon::A4_cmpbeqi:
    case Hexagon::A4_cmpbgtu:
    case Hexagon::A4_cmpbgtui:
    case Hexagon::A4_cmpbgt:
    case Hexagon::A4_cmpbgti:
    case Hexagon::A4_cmpheq:
    case Hexagon::A4_cmphgt:
    case Hexagon::A4_cmphgtu:
    case Hexagon::A4_cmpheqi:
    case Hexagon::A4_cmphgti:
    case Hexagon::A4_cmphgtui:
      return true;
  }
  return false;
}

bool HexagonGenPredicate::isScalarPred(RegisterSubReg PredReg) {
  std::queue<RegisterSubReg> WorkQ;
  WorkQ.push(PredReg);

  while (!WorkQ.empty()) {
    RegisterSubReg PR = WorkQ.front();
    WorkQ.pop();
    const MachineInstr *DefI = MRI->getVRegDef(PR.R);
    if (!DefI)
      return false;
    unsigned DefOpc = DefI->getOpcode();
    switch (DefOpc) {
      case TargetOpcode::COPY: {
        const TargetRegisterClass *PredRC = &Hexagon::PredRegsRegClass;
        if (MRI->getRegClass(PR.R) != PredRC)
          return false;
        // If it is a copy between two predicate registers, fall through.
        LLVM_FALLTHROUGH;
      }
      case Hexagon::C2_and:
      case Hexagon::C2_andn:
      case Hexagon::C4_and_and:
      case Hexagon::C4_and_andn:
      case Hexagon::C4_and_or:
      case Hexagon::C2_or:
      case Hexagon::C2_orn:
      case Hexagon::C4_or_and:
      case Hexagon::C4_or_andn:
      case Hexagon::C4_or_or:
      case Hexagon::C4_or_orn:
      case Hexagon::C2_xor:
        // Add operands to the queue.
        for (const MachineOperand &MO : DefI->operands())
          if (MO.isReg() && MO.isUse())
            WorkQ.push(RegisterSubReg(MO.getReg()));
        break;

      // All non-vector compares are ok, everything else is bad.
      default:
        return isScalarCmp(DefOpc);
    }
  }

  return true;
}

bool HexagonGenPredicate::convertToPredForm(MachineInstr *MI) {
  LLVM_DEBUG(dbgs() << __func__ << ": " << MI << " " << *MI);

  unsigned Opc = MI->getOpcode();
  assert(isConvertibleToPredForm(MI));
  unsigned NumOps = MI->getNumOperands();
  for (unsigned i = 0; i < NumOps; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg() || !MO.isUse())
      continue;
    RegisterSubReg Reg(MO);
    if (Reg.S && Reg.S != Hexagon::isub_lo)
      return false;
    if (!PredGPRs.count(Reg))
      return false;
  }

  MachineBasicBlock &B = *MI->getParent();
  DebugLoc DL = MI->getDebugLoc();

  unsigned NewOpc = getPredForm(Opc);
  // Special case for comparisons against 0.
  if (NewOpc == 0) {
    switch (Opc) {
      case Hexagon::C2_cmpeqi:
        NewOpc = Hexagon::C2_not;
        break;
      case Hexagon::C4_cmpneqi:
        NewOpc = TargetOpcode::COPY;
        break;
      default:
        return false;
    }

    // If it's a scalar predicate register, then all bits in it are
    // the same. Otherwise, to determine whether all bits are 0 or not
    // we would need to use any8.
    RegisterSubReg PR = getPredRegFor(MI->getOperand(1));
    if (!isScalarPred(PR))
      return false;
    // This will skip the immediate argument when creating the predicate
    // version instruction.
    NumOps = 2;
  }

  // Some sanity: check that def is in operand #0.
  MachineOperand &Op0 = MI->getOperand(0);
  assert(Op0.isDef());
  RegisterSubReg OutR(Op0);

  // Don't use getPredRegFor, since it will create an association between
  // the argument and a created predicate register (i.e. it will insert a
  // copy if a new predicate register is created).
  const TargetRegisterClass *PredRC = &Hexagon::PredRegsRegClass;
  RegisterSubReg NewPR = MRI->createVirtualRegister(PredRC);
  MachineInstrBuilder MIB = BuildMI(B, MI, DL, TII->get(NewOpc), NewPR.R);

  // Add predicate counterparts of the GPRs.
  for (unsigned i = 1; i < NumOps; ++i) {
    RegisterSubReg GPR = MI->getOperand(i);
    RegisterSubReg Pred = getPredRegFor(GPR);
    MIB.addReg(Pred.R, 0, Pred.S);
  }
  LLVM_DEBUG(dbgs() << "generated: " << *MIB);

  // Generate a copy-out: NewGPR = NewPR, and replace all uses of OutR
  // with NewGPR.
  const TargetRegisterClass *RC = MRI->getRegClass(OutR.R);
  Register NewOutR = MRI->createVirtualRegister(RC);
  BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), NewOutR)
    .addReg(NewPR.R, 0, NewPR.S);
  MRI->replaceRegWith(OutR.R, NewOutR);
  MI->eraseFromParent();

  // If the processed instruction was C2_tfrrp (i.e. Rn = Pm; Pk = Rn),
  // then the output will be a predicate register.  Do not visit the
  // users of it.
  if (!isPredReg(NewOutR)) {
    RegisterSubReg R(NewOutR);
    PredGPRs.insert(R);
    processPredicateGPR(R);
  }
  return true;
}

bool HexagonGenPredicate::eliminatePredCopies(MachineFunction &MF) {
  LLVM_DEBUG(dbgs() << __func__ << "\n");
  const TargetRegisterClass *PredRC = &Hexagon::PredRegsRegClass;
  bool Changed = false;
  VectOfInst Erase;

  // First, replace copies
  //   IntR = PredR1
  //   PredR2 = IntR
  // with
  //   PredR2 = PredR1
  // Such sequences can be generated when a copy-into-pred is generated from
  // a gpr register holding a result of a convertible instruction. After
  // the convertible instruction is converted, its predicate result will be
  // copied back into the original gpr.

  for (MachineBasicBlock &MBB : MF) {
    for (MachineInstr &MI : MBB) {
      if (MI.getOpcode() != TargetOpcode::COPY)
        continue;
      RegisterSubReg DR = MI.getOperand(0);
      RegisterSubReg SR = MI.getOperand(1);
      if (!Register::isVirtualRegister(DR.R))
        continue;
      if (!Register::isVirtualRegister(SR.R))
        continue;
      if (MRI->getRegClass(DR.R) != PredRC)
        continue;
      if (MRI->getRegClass(SR.R) != PredRC)
        continue;
      assert(!DR.S && !SR.S && "Unexpected subregister");
      MRI->replaceRegWith(DR.R, SR.R);
      Erase.insert(&MI);
      Changed = true;
    }
  }

  for (VectOfInst::iterator I = Erase.begin(), E = Erase.end(); I != E; ++I)
    (*I)->eraseFromParent();

  return Changed;
}

bool HexagonGenPredicate::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;

  TII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
  TRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
  MRI = &MF.getRegInfo();
  PredGPRs.clear();
  PUsers.clear();
  G2P.clear();

  bool Changed = false;
  collectPredicateGPR(MF);
  for (SetOfReg::iterator I = PredGPRs.begin(), E = PredGPRs.end(); I != E; ++I)
    processPredicateGPR(*I);

  bool Again;
  do {
    Again = false;
    VectOfInst Processed, Copy;

    using iterator = VectOfInst::iterator;

    Copy = PUsers;
    for (iterator I = Copy.begin(), E = Copy.end(); I != E; ++I) {
      MachineInstr *MI = *I;
      bool Done = convertToPredForm(MI);
      if (Done) {
        Processed.insert(MI);
        Again = true;
      }
    }
    Changed |= Again;

    auto Done = [Processed] (MachineInstr *MI) -> bool {
      return Processed.count(MI);
    };
    PUsers.remove_if(Done);
  } while (Again);

  Changed |= eliminatePredCopies(MF);
  return Changed;
}

FunctionPass *llvm::createHexagonGenPredicate() {
  return new HexagonGenPredicate();
}