reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
//===- AArch64LegalizerInfo.cpp ----------------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the Machinelegalizer class for
/// AArch64.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//

#include "AArch64LegalizerInfo.h"
#include "AArch64Subtarget.h"
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"

#define DEBUG_TYPE "aarch64-legalinfo"

using namespace llvm;
using namespace LegalizeActions;
using namespace LegalizeMutations;
using namespace LegalityPredicates;

AArch64LegalizerInfo::AArch64LegalizerInfo(const AArch64Subtarget &ST) {
  using namespace TargetOpcode;
  const LLT p0 = LLT::pointer(0, 64);
  const LLT s1 = LLT::scalar(1);
  const LLT s8 = LLT::scalar(8);
  const LLT s16 = LLT::scalar(16);
  const LLT s32 = LLT::scalar(32);
  const LLT s64 = LLT::scalar(64);
  const LLT s128 = LLT::scalar(128);
  const LLT s256 = LLT::scalar(256);
  const LLT s512 = LLT::scalar(512);
  const LLT v16s8 = LLT::vector(16, 8);
  const LLT v8s8 = LLT::vector(8, 8);
  const LLT v4s8 = LLT::vector(4, 8);
  const LLT v8s16 = LLT::vector(8, 16);
  const LLT v4s16 = LLT::vector(4, 16);
  const LLT v2s16 = LLT::vector(2, 16);
  const LLT v2s32 = LLT::vector(2, 32);
  const LLT v4s32 = LLT::vector(4, 32);
  const LLT v2s64 = LLT::vector(2, 64);
  const LLT v2p0 = LLT::vector(2, p0);

  // FIXME: support subtargets which have neon/fp-armv8 disabled.
  if (!ST.hasNEON() || !ST.hasFPARMv8()) {
    computeTables();
    return;
  }

  getActionDefinitionsBuilder(G_IMPLICIT_DEF)
    .legalFor({p0, s1, s8, s16, s32, s64, v4s32, v2s64})
    .clampScalar(0, s1, s64)
    .widenScalarToNextPow2(0, 8)
    .fewerElementsIf(
      [=](const LegalityQuery &Query) {
        return Query.Types[0].isVector() &&
          (Query.Types[0].getElementType() != s64 ||
           Query.Types[0].getNumElements() != 2);
      },
      [=](const LegalityQuery &Query) {
        LLT EltTy = Query.Types[0].getElementType();
        if (EltTy == s64)
          return std::make_pair(0, LLT::vector(2, 64));
        return std::make_pair(0, EltTy);
      });

  getActionDefinitionsBuilder(G_PHI)
      .legalFor({p0, s16, s32, s64, v2s32, v4s32, v2s64})
      .clampScalar(0, s16, s64)
      .widenScalarToNextPow2(0);

  getActionDefinitionsBuilder(G_BSWAP)
      .legalFor({s32, s64, v4s32, v2s32, v2s64})
      .clampScalar(0, s32, s64)
      .widenScalarToNextPow2(0);

  getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR})
      .legalFor({s32, s64, v2s32, v4s32, v2s64, v8s16, v16s8})
      .clampScalar(0, s32, s64)
      .widenScalarToNextPow2(0)
      .clampNumElements(0, v2s32, v4s32)
      .clampNumElements(0, v2s64, v2s64)
      .moreElementsToNextPow2(0);

  getActionDefinitionsBuilder(G_SHL)
    .legalFor({{s32, s32}, {s64, s64},
               {v2s32, v2s32}, {v4s32, v4s32}, {v2s64, v2s64}})
    .clampScalar(1, s32, s64)
    .clampScalar(0, s32, s64)
    .widenScalarToNextPow2(0)
    .clampNumElements(0, v2s32, v4s32)
    .clampNumElements(0, v2s64, v2s64)
    .moreElementsToNextPow2(0)
    .minScalarSameAs(1, 0);

  getActionDefinitionsBuilder(G_GEP)
      .legalFor({{p0, s64}})
      .clampScalar(1, s64, s64);

  getActionDefinitionsBuilder(G_PTR_MASK).legalFor({p0});

  getActionDefinitionsBuilder({G_SDIV, G_UDIV})
      .legalFor({s32, s64})
      .libcallFor({s128})
      .clampScalar(0, s32, s64)
      .widenScalarToNextPow2(0)
      .scalarize(0);

  getActionDefinitionsBuilder({G_LSHR, G_ASHR})
      .customIf([=](const LegalityQuery &Query) {
        const auto &SrcTy = Query.Types[0];
        const auto &AmtTy = Query.Types[1];
        return !SrcTy.isVector() && SrcTy.getSizeInBits() == 32 &&
               AmtTy.getSizeInBits() == 32;
      })
      .legalFor({{s32, s32},
                 {s32, s64},
                 {s64, s64},
                 {v2s32, v2s32},
                 {v4s32, v4s32},
                 {v2s64, v2s64}})
      .clampScalar(1, s32, s64)
      .clampScalar(0, s32, s64)
      .minScalarSameAs(1, 0);

  getActionDefinitionsBuilder({G_SREM, G_UREM})
      .lowerFor({s1, s8, s16, s32, s64});

  getActionDefinitionsBuilder({G_SMULO, G_UMULO})
      .lowerFor({{s64, s1}});

  getActionDefinitionsBuilder({G_SMULH, G_UMULH}).legalFor({s32, s64});

  getActionDefinitionsBuilder({G_UADDE, G_USUBE, G_SADDO, G_SSUBO, G_UADDO})
      .legalFor({{s32, s1}, {s64, s1}});

  getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FNEG})
    .legalFor({s32, s64, v2s64, v4s32, v2s32});

  getActionDefinitionsBuilder(G_FREM).libcallFor({s32, s64});

  getActionDefinitionsBuilder({G_FCEIL, G_FABS, G_FSQRT, G_FFLOOR, G_FRINT,
                               G_FMA, G_INTRINSIC_TRUNC, G_INTRINSIC_ROUND,
                               G_FNEARBYINT})
      // If we don't have full FP16 support, then scalarize the elements of
      // vectors containing fp16 types.
      .fewerElementsIf(
          [=, &ST](const LegalityQuery &Query) {
            const auto &Ty = Query.Types[0];
            return Ty.isVector() && Ty.getElementType() == s16 &&
                   !ST.hasFullFP16();
          },
          [=](const LegalityQuery &Query) { return std::make_pair(0, s16); })
      // If we don't have full FP16 support, then widen s16 to s32 if we
      // encounter it.
      .widenScalarIf(
          [=, &ST](const LegalityQuery &Query) {
            return Query.Types[0] == s16 && !ST.hasFullFP16();
          },
          [=](const LegalityQuery &Query) { return std::make_pair(0, s32); })
      .legalFor({s16, s32, s64, v2s32, v4s32, v2s64, v2s16, v4s16, v8s16});

  getActionDefinitionsBuilder(
      {G_FCOS, G_FSIN, G_FLOG10, G_FLOG, G_FLOG2, G_FEXP, G_FEXP2, G_FPOW})
      // We need a call for these, so we always need to scalarize.
      .scalarize(0)
      // Regardless of FP16 support, widen 16-bit elements to 32-bits.
      .minScalar(0, s32)
      .libcallFor({s32, s64, v2s32, v4s32, v2s64});

  getActionDefinitionsBuilder(G_INSERT)
      .unsupportedIf([=](const LegalityQuery &Query) {
        return Query.Types[0].getSizeInBits() <= Query.Types[1].getSizeInBits();
      })
      .legalIf([=](const LegalityQuery &Query) {
        const LLT &Ty0 = Query.Types[0];
        const LLT &Ty1 = Query.Types[1];
        if (Ty0 != s32 && Ty0 != s64 && Ty0 != p0)
          return false;
        return isPowerOf2_32(Ty1.getSizeInBits()) &&
               (Ty1.getSizeInBits() == 1 || Ty1.getSizeInBits() >= 8);
      })
      .clampScalar(0, s32, s64)
      .widenScalarToNextPow2(0)
      .maxScalarIf(typeInSet(0, {s32}), 1, s16)
      .maxScalarIf(typeInSet(0, {s64}), 1, s32)
      .widenScalarToNextPow2(1);

  getActionDefinitionsBuilder(G_EXTRACT)
      .unsupportedIf([=](const LegalityQuery &Query) {
        return Query.Types[0].getSizeInBits() >= Query.Types[1].getSizeInBits();
      })
      .legalIf([=](const LegalityQuery &Query) {
        const LLT &Ty0 = Query.Types[0];
        const LLT &Ty1 = Query.Types[1];
        if (Ty1 != s32 && Ty1 != s64 && Ty1 != s128)
          return false;
        if (Ty1 == p0)
          return true;
        return isPowerOf2_32(Ty0.getSizeInBits()) &&
               (Ty0.getSizeInBits() == 1 || Ty0.getSizeInBits() >= 8);
      })
      .clampScalar(1, s32, s128)
      .widenScalarToNextPow2(1)
      .maxScalarIf(typeInSet(1, {s32}), 0, s16)
      .maxScalarIf(typeInSet(1, {s64}), 0, s32)
      .widenScalarToNextPow2(0);

  getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD})
      .legalForTypesWithMemDesc({{s32, p0, 8, 8},
                                 {s32, p0, 16, 8},
                                 {s32, p0, 32, 8},
                                 {s64, p0, 8, 2},
                                 {s64, p0, 16, 2},
                                 {s64, p0, 32, 4},
                                 {s64, p0, 64, 8},
                                 {p0, p0, 64, 8},
                                 {v2s32, p0, 64, 8}})
      .clampScalar(0, s32, s64)
      .widenScalarToNextPow2(0)
      // TODO: We could support sum-of-pow2's but the lowering code doesn't know
      //       how to do that yet.
      .unsupportedIfMemSizeNotPow2()
      // Lower anything left over into G_*EXT and G_LOAD
      .lower();

  auto IsPtrVecPred = [=](const LegalityQuery &Query) {
    const LLT &ValTy = Query.Types[0];
    if (!ValTy.isVector())
      return false;
    const LLT EltTy = ValTy.getElementType();
    return EltTy.isPointer() && EltTy.getAddressSpace() == 0;
  };

  getActionDefinitionsBuilder(G_LOAD)
      .legalForTypesWithMemDesc({{s8, p0, 8, 8},
                                 {s16, p0, 16, 8},
                                 {s32, p0, 32, 8},
                                 {s64, p0, 64, 8},
                                 {p0, p0, 64, 8},
                                 {s128, p0, 128, 8},
                                 {v8s8, p0, 64, 8},
                                 {v16s8, p0, 128, 8},
                                 {v4s16, p0, 64, 8},
                                 {v8s16, p0, 128, 8},
                                 {v2s32, p0, 64, 8},
                                 {v4s32, p0, 128, 8},
                                 {v2s64, p0, 128, 8}})
      // These extends are also legal
      .legalForTypesWithMemDesc({{s32, p0, 8, 8},
                                 {s32, p0, 16, 8}})
      .clampScalar(0, s8, s64)
      .lowerIfMemSizeNotPow2()
      // Lower any any-extending loads left into G_ANYEXT and G_LOAD
      .lowerIf([=](const LegalityQuery &Query) {
        return Query.Types[0].getSizeInBits() != Query.MMODescrs[0].SizeInBits;
      })
      .widenScalarToNextPow2(0)
      .clampMaxNumElements(0, s32, 2)
      .clampMaxNumElements(0, s64, 1)
      .customIf(IsPtrVecPred);

  getActionDefinitionsBuilder(G_STORE)
      .legalForTypesWithMemDesc({{s8, p0, 8, 8},
                                 {s16, p0, 16, 8},
                                 {s32, p0, 8, 8},
                                 {s32, p0, 16, 8},
                                 {s32, p0, 32, 8},
                                 {s64, p0, 64, 8},
                                 {p0, p0, 64, 8},
                                 {s128, p0, 128, 8},
                                 {v16s8, p0, 128, 8},
                                 {v4s16, p0, 64, 8},
                                 {v8s16, p0, 128, 8},
                                 {v2s32, p0, 64, 8},
                                 {v4s32, p0, 128, 8},
                                 {v2s64, p0, 128, 8}})
      .clampScalar(0, s8, s64)
      .lowerIfMemSizeNotPow2()
      .lowerIf([=](const LegalityQuery &Query) {
        return Query.Types[0].isScalar() &&
               Query.Types[0].getSizeInBits() != Query.MMODescrs[0].SizeInBits;
      })
      .clampMaxNumElements(0, s32, 2)
      .clampMaxNumElements(0, s64, 1)
      .customIf(IsPtrVecPred);

  // Constants
  getActionDefinitionsBuilder(G_CONSTANT)
    .legalFor({p0, s8, s16, s32, s64})
      .clampScalar(0, s8, s64)
      .widenScalarToNextPow2(0);
  getActionDefinitionsBuilder(G_FCONSTANT)
      .legalFor({s32, s64})
      .clampScalar(0, s32, s64);

  getActionDefinitionsBuilder(G_ICMP)
      .legalFor({{s32, s32},
                 {s32, s64},
                 {s32, p0},
                 {v4s32, v4s32},
                 {v2s32, v2s32},
                 {v2s64, v2s64},
                 {v2s64, v2p0},
                 {v4s16, v4s16},
                 {v8s16, v8s16},
                 {v8s8, v8s8},
                 {v16s8, v16s8}})
      .clampScalar(1, s32, s64)
      .clampScalar(0, s32, s32)
      .minScalarEltSameAsIf(
          [=](const LegalityQuery &Query) {
            const LLT &Ty = Query.Types[0];
            const LLT &SrcTy = Query.Types[1];
            return Ty.isVector() && !SrcTy.getElementType().isPointer() &&
                   Ty.getElementType() != SrcTy.getElementType();
          },
          0, 1)
      .minScalarOrEltIf(
          [=](const LegalityQuery &Query) { return Query.Types[1] == v2s16; },
          1, s32)
      .minScalarOrEltIf(
          [=](const LegalityQuery &Query) { return Query.Types[1] == v2p0; }, 0,
          s64)
      .widenScalarOrEltToNextPow2(1);

  getActionDefinitionsBuilder(G_FCMP)
      .legalFor({{s32, s32}, {s32, s64}})
      .clampScalar(0, s32, s32)
      .clampScalar(1, s32, s64)
      .widenScalarToNextPow2(1);

  // Extensions
  auto ExtLegalFunc = [=](const LegalityQuery &Query) {
    unsigned DstSize = Query.Types[0].getSizeInBits();

    if (DstSize == 128 && !Query.Types[0].isVector())
      return false; // Extending to a scalar s128 needs narrowing.
    
    // Make sure that we have something that will fit in a register, and
    // make sure it's a power of 2.
    if (DstSize < 8 || DstSize > 128 || !isPowerOf2_32(DstSize))
      return false;

    const LLT &SrcTy = Query.Types[1];

    // Special case for s1.
    if (SrcTy == s1)
      return true;

    // Make sure we fit in a register otherwise. Don't bother checking that
    // the source type is below 128 bits. We shouldn't be allowing anything
    // through which is wider than the destination in the first place.
    unsigned SrcSize = SrcTy.getSizeInBits();
    if (SrcSize < 8 || !isPowerOf2_32(SrcSize))
      return false;

    return true;
  };
  getActionDefinitionsBuilder({G_ZEXT, G_SEXT, G_ANYEXT})
      .legalIf(ExtLegalFunc)
      .clampScalar(0, s64, s64); // Just for s128, others are handled above.

  getActionDefinitionsBuilder(G_TRUNC).alwaysLegal();

  getActionDefinitionsBuilder(G_SEXT_INREG).lower();

  // FP conversions
  getActionDefinitionsBuilder(G_FPTRUNC).legalFor(
      {{s16, s32}, {s16, s64}, {s32, s64}, {v4s16, v4s32}, {v2s32, v2s64}});
  getActionDefinitionsBuilder(G_FPEXT).legalFor(
      {{s32, s16}, {s64, s16}, {s64, s32}, {v4s32, v4s16}, {v2s64, v2s32}});

  // Conversions
  getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
      .legalForCartesianProduct({s32, s64, v2s64, v4s32, v2s32})
      .clampScalar(0, s32, s64)
      .widenScalarToNextPow2(0)
      .clampScalar(1, s32, s64)
      .widenScalarToNextPow2(1);

  getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
      .legalForCartesianProduct({s32, s64, v2s64, v4s32, v2s32})
      .clampScalar(1, s32, s64)
      .widenScalarToNextPow2(1)
      .clampScalar(0, s32, s64)
      .widenScalarToNextPow2(0);

  // Control-flow
  getActionDefinitionsBuilder(G_BRCOND).legalFor({s1, s8, s16, s32});
  getActionDefinitionsBuilder(G_BRINDIRECT).legalFor({p0});

  // Select
  // FIXME: We can probably do a bit better than just scalarizing vector
  // selects.
  getActionDefinitionsBuilder(G_SELECT)
      .legalFor({{s32, s1}, {s64, s1}, {p0, s1}})
      .clampScalar(0, s32, s64)
      .widenScalarToNextPow2(0)
      .scalarize(0);

  // Pointer-handling
  getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0});
  getActionDefinitionsBuilder(G_GLOBAL_VALUE).legalFor({p0});

  getActionDefinitionsBuilder(G_PTRTOINT)
      .legalForCartesianProduct({s1, s8, s16, s32, s64}, {p0})
      .maxScalar(0, s64)
      .widenScalarToNextPow2(0, /*Min*/ 8);

  getActionDefinitionsBuilder(G_INTTOPTR)
      .unsupportedIf([&](const LegalityQuery &Query) {
        return Query.Types[0].getSizeInBits() != Query.Types[1].getSizeInBits();
      })
      .legalFor({{p0, s64}});

  // Casts for 32 and 64-bit width type are just copies.
  // Same for 128-bit width type, except they are on the FPR bank.
  getActionDefinitionsBuilder(G_BITCAST)
      // FIXME: This is wrong since G_BITCAST is not allowed to change the
      // number of bits but it's what the previous code described and fixing
      // it breaks tests.
      .legalForCartesianProduct({s1, s8, s16, s32, s64, s128, v16s8, v8s8, v4s8,
                                 v8s16, v4s16, v2s16, v4s32, v2s32, v2s64,
                                 v2p0});

  getActionDefinitionsBuilder(G_VASTART).legalFor({p0});

  // va_list must be a pointer, but most sized types are pretty easy to handle
  // as the destination.
  getActionDefinitionsBuilder(G_VAARG)
      .customForCartesianProduct({s8, s16, s32, s64, p0}, {p0})
      .clampScalar(0, s8, s64)
      .widenScalarToNextPow2(0, /*Min*/ 8);

  if (ST.hasLSE()) {
    getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG_WITH_SUCCESS)
        .lowerIf(all(
            typeInSet(0, {s8, s16, s32, s64}), typeIs(1, s1), typeIs(2, p0),
            atomicOrderingAtLeastOrStrongerThan(0, AtomicOrdering::Monotonic)));

    getActionDefinitionsBuilder(
        {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB, G_ATOMICRMW_AND,
         G_ATOMICRMW_OR, G_ATOMICRMW_XOR, G_ATOMICRMW_MIN, G_ATOMICRMW_MAX,
         G_ATOMICRMW_UMIN, G_ATOMICRMW_UMAX, G_ATOMIC_CMPXCHG})
        .legalIf(all(
            typeInSet(0, {s8, s16, s32, s64}), typeIs(1, p0),
            atomicOrderingAtLeastOrStrongerThan(0, AtomicOrdering::Monotonic)));
  }

  getActionDefinitionsBuilder(G_BLOCK_ADDR).legalFor({p0});

  // Merge/Unmerge
  for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
    unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
    unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;

    auto notValidElt = [](const LegalityQuery &Query, unsigned TypeIdx) {
      const LLT &Ty = Query.Types[TypeIdx];
      if (Ty.isVector()) {
        const LLT &EltTy = Ty.getElementType();
        if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 64)
          return true;
        if (!isPowerOf2_32(EltTy.getSizeInBits()))
          return true;
      }
      return false;
    };

    // FIXME: This rule is horrible, but specifies the same as what we had
    // before with the particularly strange definitions removed (e.g.
    // s8 = G_MERGE_VALUES s32, s32).
    // Part of the complexity comes from these ops being extremely flexible. For
    // example, you can build/decompose vectors with it, concatenate vectors,
    // etc. and in addition to this you can also bitcast with it at the same
    // time. We've been considering breaking it up into multiple ops to make it
    // more manageable throughout the backend.
    getActionDefinitionsBuilder(Op)
        // Break up vectors with weird elements into scalars
        .fewerElementsIf(
            [=](const LegalityQuery &Query) { return notValidElt(Query, 0); },
            scalarize(0))
        .fewerElementsIf(
            [=](const LegalityQuery &Query) { return notValidElt(Query, 1); },
            scalarize(1))
        // Clamp the big scalar to s8-s512 and make it either a power of 2, 192,
        // or 384.
        .clampScalar(BigTyIdx, s8, s512)
        .widenScalarIf(
            [=](const LegalityQuery &Query) {
              const LLT &Ty = Query.Types[BigTyIdx];
              return !isPowerOf2_32(Ty.getSizeInBits()) &&
                     Ty.getSizeInBits() % 64 != 0;
            },
            [=](const LegalityQuery &Query) {
              // Pick the next power of 2, or a multiple of 64 over 128.
              // Whichever is smaller.
              const LLT &Ty = Query.Types[BigTyIdx];
              unsigned NewSizeInBits = 1
                                       << Log2_32_Ceil(Ty.getSizeInBits() + 1);
              if (NewSizeInBits >= 256) {
                unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1);
                if (RoundedTo < NewSizeInBits)
                  NewSizeInBits = RoundedTo;
              }
              return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits));
            })
        // Clamp the little scalar to s8-s256 and make it a power of 2. It's not
        // worth considering the multiples of 64 since 2*192 and 2*384 are not
        // valid.
        .clampScalar(LitTyIdx, s8, s256)
        .widenScalarToNextPow2(LitTyIdx, /*Min*/ 8)
        // So at this point, we have s8, s16, s32, s64, s128, s192, s256, s384,
        // s512, <X x s8>, <X x s16>, <X x s32>, or <X x s64>.
        // At this point it's simple enough to accept the legal types.
        .legalIf([=](const LegalityQuery &Query) {
          const LLT &BigTy = Query.Types[BigTyIdx];
          const LLT &LitTy = Query.Types[LitTyIdx];
          if (BigTy.isVector() && BigTy.getSizeInBits() < 32)
            return false;
          if (LitTy.isVector() && LitTy.getSizeInBits() < 32)
            return false;
          return BigTy.getSizeInBits() % LitTy.getSizeInBits() == 0;
        })
        // Any vectors left are the wrong size. Scalarize them.
      .scalarize(0)
      .scalarize(1);
  }

  getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT)
      .unsupportedIf([=](const LegalityQuery &Query) {
        const LLT &EltTy = Query.Types[1].getElementType();
        return Query.Types[0] != EltTy;
      })
      .minScalar(2, s64)
      .legalIf([=](const LegalityQuery &Query) {
        const LLT &VecTy = Query.Types[1];
        return VecTy == v2s16 || VecTy == v4s16 || VecTy == v8s16 ||
               VecTy == v4s32 || VecTy == v2s64 || VecTy == v2s32;
      });

  getActionDefinitionsBuilder(G_INSERT_VECTOR_ELT)
      .legalIf([=](const LegalityQuery &Query) {
        const LLT &VecTy = Query.Types[0];
        // TODO: Support s8 and s16
        return VecTy == v2s32 || VecTy == v4s32 || VecTy == v2s64;
      });

  getActionDefinitionsBuilder(G_BUILD_VECTOR)
      .legalFor({{v4s16, s16},
                 {v8s16, s16},
                 {v2s32, s32},
                 {v4s32, s32},
                 {v2p0, p0},
                 {v2s64, s64}})
      .clampNumElements(0, v4s32, v4s32)
      .clampNumElements(0, v2s64, v2s64)

      // Deal with larger scalar types, which will be implicitly truncated.
      .legalIf([=](const LegalityQuery &Query) {
        return Query.Types[0].getScalarSizeInBits() <
               Query.Types[1].getSizeInBits();
      })
      .minScalarSameAs(1, 0);

  getActionDefinitionsBuilder(G_CTLZ).legalForCartesianProduct(
      {s32, s64, v8s8, v16s8, v4s16, v8s16, v2s32, v4s32})
      .scalarize(1);

  getActionDefinitionsBuilder(G_SHUFFLE_VECTOR)
      .legalIf([=](const LegalityQuery &Query) {
        const LLT &DstTy = Query.Types[0];
        const LLT &SrcTy = Query.Types[1];
        // For now just support the TBL2 variant which needs the source vectors
        // to be the same size as the dest.
        if (DstTy != SrcTy)
          return false;
        for (auto &Ty : {v2s32, v4s32, v2s64}) {
          if (DstTy == Ty)
            return true;
        }
        return false;
      })
      // G_SHUFFLE_VECTOR can have scalar sources (from 1 x s vectors), we
      // just want those lowered into G_BUILD_VECTOR
      .lowerIf([=](const LegalityQuery &Query) {
        return !Query.Types[1].isVector();
      })
      .clampNumElements(0, v4s32, v4s32)
      .clampNumElements(0, v2s64, v2s64);

  getActionDefinitionsBuilder(G_CONCAT_VECTORS)
      .legalFor({{v4s32, v2s32}, {v8s16, v4s16}});

  getActionDefinitionsBuilder(G_JUMP_TABLE)
    .legalFor({{p0}, {s64}});

  getActionDefinitionsBuilder(G_BRJT).legalIf([=](const LegalityQuery &Query) {
    return Query.Types[0] == p0 && Query.Types[1] == s64;
  });

  getActionDefinitionsBuilder(G_DYN_STACKALLOC).lower();

  computeTables();
  verify(*ST.getInstrInfo());
}

bool AArch64LegalizerInfo::legalizeCustom(MachineInstr &MI,
                                          MachineRegisterInfo &MRI,
                                          MachineIRBuilder &MIRBuilder,
                                          GISelChangeObserver &Observer) const {
  switch (MI.getOpcode()) {
  default:
    // No idea what to do.
    return false;
  case TargetOpcode::G_VAARG:
    return legalizeVaArg(MI, MRI, MIRBuilder);
  case TargetOpcode::G_LOAD:
  case TargetOpcode::G_STORE:
    return legalizeLoadStore(MI, MRI, MIRBuilder, Observer);
  case TargetOpcode::G_SHL:
  case TargetOpcode::G_ASHR:
  case TargetOpcode::G_LSHR:
    return legalizeShlAshrLshr(MI, MRI, MIRBuilder, Observer);
  }

  llvm_unreachable("expected switch to return");
}

bool AArch64LegalizerInfo::legalizeIntrinsic(
    MachineInstr &MI, MachineRegisterInfo &MRI,
    MachineIRBuilder &MIRBuilder) const {
  switch (MI.getIntrinsicID()) {
  case Intrinsic::memcpy:
  case Intrinsic::memset:
  case Intrinsic::memmove:
    if (createMemLibcall(MIRBuilder, MRI, MI) ==
        LegalizerHelper::UnableToLegalize)
      return false;
    MI.eraseFromParent();
    return true;
  default:
    break;
  }
  return true;
}

bool AArch64LegalizerInfo::legalizeShlAshrLshr(
    MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder,
    GISelChangeObserver &Observer) const {
  assert(MI.getOpcode() == TargetOpcode::G_ASHR ||
         MI.getOpcode() == TargetOpcode::G_LSHR ||
         MI.getOpcode() == TargetOpcode::G_SHL);
  // If the shift amount is a G_CONSTANT, promote it to a 64 bit type so the
  // imported patterns can select it later. Either way, it will be legal.
  Register AmtReg = MI.getOperand(2).getReg();
  auto *CstMI = MRI.getVRegDef(AmtReg);
  assert(CstMI && "expected to find a vreg def");
  if (CstMI->getOpcode() != TargetOpcode::G_CONSTANT)
    return true;
  // Check the shift amount is in range for an immediate form.
  unsigned Amount = CstMI->getOperand(1).getCImm()->getZExtValue();
  if (Amount > 31)
    return true; // This will have to remain a register variant.
  assert(MRI.getType(AmtReg).getSizeInBits() == 32);
  MIRBuilder.setInstr(MI);
  auto ExtCst = MIRBuilder.buildZExt(LLT::scalar(64), AmtReg);
  MI.getOperand(2).setReg(ExtCst.getReg(0));
  return true;
}

bool AArch64LegalizerInfo::legalizeLoadStore(
    MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder,
    GISelChangeObserver &Observer) const {
  assert(MI.getOpcode() == TargetOpcode::G_STORE ||
         MI.getOpcode() == TargetOpcode::G_LOAD);
  // Here we just try to handle vector loads/stores where our value type might
  // have pointer elements, which the SelectionDAG importer can't handle. To
  // allow the existing patterns for s64 to fire for p0, we just try to bitcast
  // the value to use s64 types.

  // Custom legalization requires the instruction, if not deleted, must be fully
  // legalized. In order to allow further legalization of the inst, we create
  // a new instruction and erase the existing one.

  Register ValReg = MI.getOperand(0).getReg();
  const LLT ValTy = MRI.getType(ValReg);

  if (!ValTy.isVector() || !ValTy.getElementType().isPointer() ||
      ValTy.getElementType().getAddressSpace() != 0) {
    LLVM_DEBUG(dbgs() << "Tried to do custom legalization on wrong load/store");
    return false;
  }

  MIRBuilder.setInstr(MI);
  unsigned PtrSize = ValTy.getElementType().getSizeInBits();
  const LLT NewTy = LLT::vector(ValTy.getNumElements(), PtrSize);
  auto &MMO = **MI.memoperands_begin();
  if (MI.getOpcode() == TargetOpcode::G_STORE) {
    auto Bitcast = MIRBuilder.buildBitcast({NewTy}, {ValReg});
    MIRBuilder.buildStore(Bitcast.getReg(0), MI.getOperand(1).getReg(), MMO);
  } else {
    Register NewReg = MRI.createGenericVirtualRegister(NewTy);
    auto NewLoad = MIRBuilder.buildLoad(NewReg, MI.getOperand(1).getReg(), MMO);
    MIRBuilder.buildBitcast({ValReg}, {NewLoad});
  }
  MI.eraseFromParent();
  return true;
}

bool AArch64LegalizerInfo::legalizeVaArg(MachineInstr &MI,
                                         MachineRegisterInfo &MRI,
                                         MachineIRBuilder &MIRBuilder) const {
  MIRBuilder.setInstr(MI);
  MachineFunction &MF = MIRBuilder.getMF();
  unsigned Align = MI.getOperand(2).getImm();
  Register Dst = MI.getOperand(0).getReg();
  Register ListPtr = MI.getOperand(1).getReg();

  LLT PtrTy = MRI.getType(ListPtr);
  LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());

  const unsigned PtrSize = PtrTy.getSizeInBits() / 8;
  Register List = MRI.createGenericVirtualRegister(PtrTy);
  MIRBuilder.buildLoad(
      List, ListPtr,
      *MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad,
                               PtrSize, /* Align = */ PtrSize));

  Register DstPtr;
  if (Align > PtrSize) {
    // Realign the list to the actual required alignment.
    auto AlignMinus1 = MIRBuilder.buildConstant(IntPtrTy, Align - 1);

    auto ListTmp = MIRBuilder.buildGEP(PtrTy, List, AlignMinus1.getReg(0));

    DstPtr = MRI.createGenericVirtualRegister(PtrTy);
    MIRBuilder.buildPtrMask(DstPtr, ListTmp, Log2_64(Align));
  } else
    DstPtr = List;

  uint64_t ValSize = MRI.getType(Dst).getSizeInBits() / 8;
  MIRBuilder.buildLoad(
      Dst, DstPtr,
      *MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad,
                               ValSize, std::max(Align, PtrSize)));

  auto Size = MIRBuilder.buildConstant(IntPtrTy, alignTo(ValSize, PtrSize));

  auto NewList = MIRBuilder.buildGEP(PtrTy, DstPtr, Size.getReg(0));

  MIRBuilder.buildStore(
      NewList, ListPtr,
      *MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOStore,
                               PtrSize, /* Align = */ PtrSize));

  MI.eraseFromParent();
  return true;
}