reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
//===- llvm/CodeGen/GlobalISel/LegalizerInfo.h ------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// Interface for Targets to specify which operations they can successfully
/// select and how the others should be expanded most efficiently.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H
#define LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include <cassert>
#include <cstdint>
#include <tuple>
#include <unordered_map>
#include <utility>

namespace llvm {

extern cl::opt<bool> DisableGISelLegalityCheck;

class MachineInstr;
class MachineIRBuilder;
class MachineRegisterInfo;
class MCInstrInfo;
class GISelChangeObserver;

namespace LegalizeActions {
enum LegalizeAction : std::uint8_t {
  /// The operation is expected to be selectable directly by the target, and
  /// no transformation is necessary.
  Legal,

  /// The operation should be synthesized from multiple instructions acting on
  /// a narrower scalar base-type. For example a 64-bit add might be
  /// implemented in terms of 32-bit add-with-carry.
  NarrowScalar,

  /// The operation should be implemented in terms of a wider scalar
  /// base-type. For example a <2 x s8> add could be implemented as a <2
  /// x s32> add (ignoring the high bits).
  WidenScalar,

  /// The (vector) operation should be implemented by splitting it into
  /// sub-vectors where the operation is legal. For example a <8 x s64> add
  /// might be implemented as 4 separate <2 x s64> adds.
  FewerElements,

  /// The (vector) operation should be implemented by widening the input
  /// vector and ignoring the lanes added by doing so. For example <2 x i8> is
  /// rarely legal, but you might perform an <8 x i8> and then only look at
  /// the first two results.
  MoreElements,

  /// The operation itself must be expressed in terms of simpler actions on
  /// this target. E.g. a SREM replaced by an SDIV and subtraction.
  Lower,

  /// The operation should be implemented as a call to some kind of runtime
  /// support library. For example this usually happens on machines that don't
  /// support floating-point operations natively.
  Libcall,

  /// The target wants to do something special with this combination of
  /// operand and type. A callback will be issued when it is needed.
  Custom,

  /// This operation is completely unsupported on the target. A programming
  /// error has occurred.
  Unsupported,

  /// Sentinel value for when no action was found in the specified table.
  NotFound,

  /// Fall back onto the old rules.
  /// TODO: Remove this once we've migrated
  UseLegacyRules,
};
} // end namespace LegalizeActions
raw_ostream &operator<<(raw_ostream &OS, LegalizeActions::LegalizeAction Action);

using LegalizeActions::LegalizeAction;

/// Legalization is decided based on an instruction's opcode, which type slot
/// we're considering, and what the existing type is. These aspects are gathered
/// together for convenience in the InstrAspect class.
struct InstrAspect {
  unsigned Opcode;
  unsigned Idx = 0;
  LLT Type;

  InstrAspect(unsigned Opcode, LLT Type) : Opcode(Opcode), Type(Type) {}
  InstrAspect(unsigned Opcode, unsigned Idx, LLT Type)
      : Opcode(Opcode), Idx(Idx), Type(Type) {}

  bool operator==(const InstrAspect &RHS) const {
    return Opcode == RHS.Opcode && Idx == RHS.Idx && Type == RHS.Type;
  }
};

/// The LegalityQuery object bundles together all the information that's needed
/// to decide whether a given operation is legal or not.
/// For efficiency, it doesn't make a copy of Types so care must be taken not
/// to free it before using the query.
struct LegalityQuery {
  unsigned Opcode;
  ArrayRef<LLT> Types;

  struct MemDesc {
    uint64_t SizeInBits;
    uint64_t AlignInBits;
    AtomicOrdering Ordering;
  };

  /// Operations which require memory can use this to place requirements on the
  /// memory type for each MMO.
  ArrayRef<MemDesc> MMODescrs;

  constexpr LegalityQuery(unsigned Opcode, const ArrayRef<LLT> Types,
                          const ArrayRef<MemDesc> MMODescrs)
      : Opcode(Opcode), Types(Types), MMODescrs(MMODescrs) {}
  constexpr LegalityQuery(unsigned Opcode, const ArrayRef<LLT> Types)
      : LegalityQuery(Opcode, Types, {}) {}

  raw_ostream &print(raw_ostream &OS) const;
};

/// The result of a query. It either indicates a final answer of Legal or
/// Unsupported or describes an action that must be taken to make an operation
/// more legal.
struct LegalizeActionStep {
  /// The action to take or the final answer.
  LegalizeAction Action;
  /// If describing an action, the type index to change. Otherwise zero.
  unsigned TypeIdx;
  /// If describing an action, the new type for TypeIdx. Otherwise LLT{}.
  LLT NewType;

  LegalizeActionStep(LegalizeAction Action, unsigned TypeIdx,
                     const LLT &NewType)
      : Action(Action), TypeIdx(TypeIdx), NewType(NewType) {}

  bool operator==(const LegalizeActionStep &RHS) const {
    return std::tie(Action, TypeIdx, NewType) ==
        std::tie(RHS.Action, RHS.TypeIdx, RHS.NewType);
  }
};

using LegalityPredicate = std::function<bool (const LegalityQuery &)>;
using LegalizeMutation =
    std::function<std::pair<unsigned, LLT>(const LegalityQuery &)>;

namespace LegalityPredicates {
struct TypePairAndMemDesc {
  LLT Type0;
  LLT Type1;
  uint64_t MemSize;
  uint64_t Align;

  bool operator==(const TypePairAndMemDesc &Other) const {
    return Type0 == Other.Type0 && Type1 == Other.Type1 &&
           Align == Other.Align &&
           MemSize == Other.MemSize;
  }

  /// \returns true if this memory access is legal with for the acecss described
  /// by \p Other (The alignment is sufficient for the size and result type).
  bool isCompatible(const TypePairAndMemDesc &Other) const {
    return Type0 == Other.Type0 && Type1 == Other.Type1 &&
           Align >= Other.Align &&
           MemSize == Other.MemSize;
  }
};

/// True iff P0 and P1 are true.
template<typename Predicate>
Predicate all(Predicate P0, Predicate P1) {
  return [=](const LegalityQuery &Query) {
    return P0(Query) && P1(Query);
  };
}
/// True iff all given predicates are true.
template<typename Predicate, typename... Args>
Predicate all(Predicate P0, Predicate P1, Args... args) {
  return all(all(P0, P1), args...);
}
/// True iff the given type index is the specified types.
LegalityPredicate typeIs(unsigned TypeIdx, LLT TypesInit);
/// True iff the given type index is one of the specified types.
LegalityPredicate typeInSet(unsigned TypeIdx,
                            std::initializer_list<LLT> TypesInit);
/// True iff the given types for the given pair of type indexes is one of the
/// specified type pairs.
LegalityPredicate
typePairInSet(unsigned TypeIdx0, unsigned TypeIdx1,
              std::initializer_list<std::pair<LLT, LLT>> TypesInit);
/// True iff the given types for the given pair of type indexes is one of the
/// specified type pairs.
LegalityPredicate typePairAndMemDescInSet(
    unsigned TypeIdx0, unsigned TypeIdx1, unsigned MMOIdx,
    std::initializer_list<TypePairAndMemDesc> TypesAndMemDescInit);
/// True iff the specified type index is a scalar.
LegalityPredicate isScalar(unsigned TypeIdx);
/// True iff the specified type index is a vector.
LegalityPredicate isVector(unsigned TypeIdx);
/// True iff the specified type index is a pointer (with any address space).
LegalityPredicate isPointer(unsigned TypeIdx);
/// True iff the specified type index is a pointer with the specified address
/// space.
LegalityPredicate isPointer(unsigned TypeIdx, unsigned AddrSpace);

/// True iff the specified type index is a scalar that's narrower than the given
/// size.
LegalityPredicate narrowerThan(unsigned TypeIdx, unsigned Size);

/// True iff the specified type index is a scalar that's wider than the given
/// size.
LegalityPredicate widerThan(unsigned TypeIdx, unsigned Size);

/// True iff the specified type index is a scalar or vector with an element type
/// that's narrower than the given size.
LegalityPredicate scalarOrEltNarrowerThan(unsigned TypeIdx, unsigned Size);

/// True iff the specified type index is a scalar or a vector with an element
/// type that's wider than the given size.
LegalityPredicate scalarOrEltWiderThan(unsigned TypeIdx, unsigned Size);

/// True iff the specified type index is a scalar whose size is not a power of
/// 2.
LegalityPredicate sizeNotPow2(unsigned TypeIdx);

/// True iff the specified type index is a scalar or vector whose element size
/// is not a power of 2.
LegalityPredicate scalarOrEltSizeNotPow2(unsigned TypeIdx);

/// True iff the specified type indices are both the same bit size.
LegalityPredicate sameSize(unsigned TypeIdx0, unsigned TypeIdx1);
/// True iff the specified MMO index has a size that is not a power of 2
LegalityPredicate memSizeInBytesNotPow2(unsigned MMOIdx);
/// True iff the specified type index is a vector whose element count is not a
/// power of 2.
LegalityPredicate numElementsNotPow2(unsigned TypeIdx);
/// True iff the specified MMO index has at an atomic ordering of at Ordering or
/// stronger.
LegalityPredicate atomicOrderingAtLeastOrStrongerThan(unsigned MMOIdx,
                                                      AtomicOrdering Ordering);
} // end namespace LegalityPredicates

namespace LegalizeMutations {
/// Select this specific type for the given type index.
LegalizeMutation changeTo(unsigned TypeIdx, LLT Ty);

/// Keep the same type as the given type index.
LegalizeMutation changeTo(unsigned TypeIdx, unsigned FromTypeIdx);

/// Keep the same scalar or element type as the given type index.
LegalizeMutation changeElementTo(unsigned TypeIdx, unsigned FromTypeIdx);

/// Keep the same scalar or element type as the given type.
LegalizeMutation changeElementTo(unsigned TypeIdx, LLT Ty);

/// Widen the scalar type or vector element type for the given type index to the
/// next power of 2.
LegalizeMutation widenScalarOrEltToNextPow2(unsigned TypeIdx, unsigned Min = 0);

/// Add more elements to the type for the given type index to the next power of
/// 2.
LegalizeMutation moreElementsToNextPow2(unsigned TypeIdx, unsigned Min = 0);
/// Break up the vector type for the given type index into the element type.
LegalizeMutation scalarize(unsigned TypeIdx);
} // end namespace LegalizeMutations

/// A single rule in a legalizer info ruleset.
/// The specified action is chosen when the predicate is true. Where appropriate
/// for the action (e.g. for WidenScalar) the new type is selected using the
/// given mutator.
class LegalizeRule {
  LegalityPredicate Predicate;
  LegalizeAction Action;
  LegalizeMutation Mutation;

public:
  LegalizeRule(LegalityPredicate Predicate, LegalizeAction Action,
               LegalizeMutation Mutation = nullptr)
      : Predicate(Predicate), Action(Action), Mutation(Mutation) {}

  /// Test whether the LegalityQuery matches.
  bool match(const LegalityQuery &Query) const {
    return Predicate(Query);
  }

  LegalizeAction getAction() const { return Action; }

  /// Determine the change to make.
  std::pair<unsigned, LLT> determineMutation(const LegalityQuery &Query) const {
    if (Mutation)
      return Mutation(Query);
    return std::make_pair(0, LLT{});
  }
};

class LegalizeRuleSet {
  /// When non-zero, the opcode we are an alias of
  unsigned AliasOf;
  /// If true, there is another opcode that aliases this one
  bool IsAliasedByAnother;
  SmallVector<LegalizeRule, 2> Rules;

#ifndef NDEBUG
  /// If bit I is set, this rule set contains a rule that may handle (predicate
  /// or perform an action upon (or both)) the type index I. The uncertainty
  /// comes from free-form rules executing user-provided lambda functions. We
  /// conservatively assume such rules do the right thing and cover all type
  /// indices. The bitset is intentionally 1 bit wider than it absolutely needs
  /// to be to distinguish such cases from the cases where all type indices are
  /// individually handled.
  SmallBitVector TypeIdxsCovered{MCOI::OPERAND_LAST_GENERIC -
                                 MCOI::OPERAND_FIRST_GENERIC + 2};
  SmallBitVector ImmIdxsCovered{MCOI::OPERAND_LAST_GENERIC_IMM -
                                MCOI::OPERAND_FIRST_GENERIC_IMM + 2};
#endif

  unsigned typeIdx(unsigned TypeIdx) {
    assert(TypeIdx <=
               (MCOI::OPERAND_LAST_GENERIC - MCOI::OPERAND_FIRST_GENERIC) &&
           "Type Index is out of bounds");
#ifndef NDEBUG
    TypeIdxsCovered.set(TypeIdx);
#endif
    return TypeIdx;
  }

  unsigned immIdx(unsigned ImmIdx) {
    assert(ImmIdx <= (MCOI::OPERAND_LAST_GENERIC_IMM -
                      MCOI::OPERAND_FIRST_GENERIC_IMM) &&
           "Imm Index is out of bounds");
#ifndef NDEBUG
    ImmIdxsCovered.set(ImmIdx);
#endif
    return ImmIdx;
  }

  void markAllIdxsAsCovered() {
#ifndef NDEBUG
    TypeIdxsCovered.set();
    ImmIdxsCovered.set();
#endif
  }

  void add(const LegalizeRule &Rule) {
    assert(AliasOf == 0 &&
           "RuleSet is aliased, change the representative opcode instead");
    Rules.push_back(Rule);
  }

  static bool always(const LegalityQuery &) { return true; }

  /// Use the given action when the predicate is true.
  /// Action should not be an action that requires mutation.
  LegalizeRuleSet &actionIf(LegalizeAction Action,
                            LegalityPredicate Predicate) {
    add({Predicate, Action});
    return *this;
  }
  /// Use the given action when the predicate is true.
  /// Action should be an action that requires mutation.
  LegalizeRuleSet &actionIf(LegalizeAction Action, LegalityPredicate Predicate,
                            LegalizeMutation Mutation) {
    add({Predicate, Action, Mutation});
    return *this;
  }
  /// Use the given action when type index 0 is any type in the given list.
  /// Action should not be an action that requires mutation.
  LegalizeRuleSet &actionFor(LegalizeAction Action,
                             std::initializer_list<LLT> Types) {
    using namespace LegalityPredicates;
    return actionIf(Action, typeInSet(typeIdx(0), Types));
  }
  /// Use the given action when type index 0 is any type in the given list.
  /// Action should be an action that requires mutation.
  LegalizeRuleSet &actionFor(LegalizeAction Action,
                             std::initializer_list<LLT> Types,
                             LegalizeMutation Mutation) {
    using namespace LegalityPredicates;
    return actionIf(Action, typeInSet(typeIdx(0), Types), Mutation);
  }
  /// Use the given action when type indexes 0 and 1 is any type pair in the
  /// given list.
  /// Action should not be an action that requires mutation.
  LegalizeRuleSet &actionFor(LegalizeAction Action,
                             std::initializer_list<std::pair<LLT, LLT>> Types) {
    using namespace LegalityPredicates;
    return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types));
  }
  /// Use the given action when type indexes 0 and 1 is any type pair in the
  /// given list.
  /// Action should be an action that requires mutation.
  LegalizeRuleSet &actionFor(LegalizeAction Action,
                             std::initializer_list<std::pair<LLT, LLT>> Types,
                             LegalizeMutation Mutation) {
    using namespace LegalityPredicates;
    return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types),
                    Mutation);
  }
  /// Use the given action when type index 0 is any type in the given list and
  /// imm index 0 is anything. Action should not be an action that requires
  /// mutation.
  LegalizeRuleSet &actionForTypeWithAnyImm(LegalizeAction Action,
                                           std::initializer_list<LLT> Types) {
    using namespace LegalityPredicates;
    immIdx(0); // Inform verifier imm idx 0 is handled.
    return actionIf(Action, typeInSet(typeIdx(0), Types));
  }
  /// Use the given action when type indexes 0 and 1 are both in the given list.
  /// That is, the type pair is in the cartesian product of the list.
  /// Action should not be an action that requires mutation.
  LegalizeRuleSet &actionForCartesianProduct(LegalizeAction Action,
                                             std::initializer_list<LLT> Types) {
    using namespace LegalityPredicates;
    return actionIf(Action, all(typeInSet(typeIdx(0), Types),
                                typeInSet(typeIdx(1), Types)));
  }
  /// Use the given action when type indexes 0 and 1 are both in their
  /// respective lists.
  /// That is, the type pair is in the cartesian product of the lists
  /// Action should not be an action that requires mutation.
  LegalizeRuleSet &
  actionForCartesianProduct(LegalizeAction Action,
                            std::initializer_list<LLT> Types0,
                            std::initializer_list<LLT> Types1) {
    using namespace LegalityPredicates;
    return actionIf(Action, all(typeInSet(typeIdx(0), Types0),
                                typeInSet(typeIdx(1), Types1)));
  }
  /// Use the given action when type indexes 0, 1, and 2 are all in their
  /// respective lists.
  /// That is, the type triple is in the cartesian product of the lists
  /// Action should not be an action that requires mutation.
  LegalizeRuleSet &actionForCartesianProduct(
      LegalizeAction Action, std::initializer_list<LLT> Types0,
      std::initializer_list<LLT> Types1, std::initializer_list<LLT> Types2) {
    using namespace LegalityPredicates;
    return actionIf(Action, all(typeInSet(typeIdx(0), Types0),
                                all(typeInSet(typeIdx(1), Types1),
                                    typeInSet(typeIdx(2), Types2))));
  }

public:
  LegalizeRuleSet() : AliasOf(0), IsAliasedByAnother(false), Rules() {}

  bool isAliasedByAnother() { return IsAliasedByAnother; }
  void setIsAliasedByAnother() { IsAliasedByAnother = true; }
  void aliasTo(unsigned Opcode) {
    assert((AliasOf == 0 || AliasOf == Opcode) &&
           "Opcode is already aliased to another opcode");
    assert(Rules.empty() && "Aliasing will discard rules");
    AliasOf = Opcode;
  }
  unsigned getAlias() const { return AliasOf; }

  /// The instruction is legal if predicate is true.
  LegalizeRuleSet &legalIf(LegalityPredicate Predicate) {
    // We have no choice but conservatively assume that the free-form
    // user-provided Predicate properly handles all type indices:
    markAllIdxsAsCovered();
    return actionIf(LegalizeAction::Legal, Predicate);
  }
  /// The instruction is legal when type index 0 is any type in the given list.
  LegalizeRuleSet &legalFor(std::initializer_list<LLT> Types) {
    return actionFor(LegalizeAction::Legal, Types);
  }
  /// The instruction is legal when type indexes 0 and 1 is any type pair in the
  /// given list.
  LegalizeRuleSet &legalFor(std::initializer_list<std::pair<LLT, LLT>> Types) {
    return actionFor(LegalizeAction::Legal, Types);
  }
  /// The instruction is legal when type index 0 is any type in the given list
  /// and imm index 0 is anything.
  LegalizeRuleSet &legalForTypeWithAnyImm(std::initializer_list<LLT> Types) {
    markAllIdxsAsCovered();
    return actionForTypeWithAnyImm(LegalizeAction::Legal, Types);
  }
  /// The instruction is legal when type indexes 0 and 1 along with the memory
  /// size and minimum alignment is any type and size tuple in the given list.
  LegalizeRuleSet &legalForTypesWithMemDesc(
      std::initializer_list<LegalityPredicates::TypePairAndMemDesc>
          TypesAndMemDesc) {
    return actionIf(LegalizeAction::Legal,
                    LegalityPredicates::typePairAndMemDescInSet(
                        typeIdx(0), typeIdx(1), /*MMOIdx*/ 0, TypesAndMemDesc));
  }
  /// The instruction is legal when type indexes 0 and 1 are both in the given
  /// list. That is, the type pair is in the cartesian product of the list.
  LegalizeRuleSet &legalForCartesianProduct(std::initializer_list<LLT> Types) {
    return actionForCartesianProduct(LegalizeAction::Legal, Types);
  }
  /// The instruction is legal when type indexes 0 and 1 are both their
  /// respective lists.
  LegalizeRuleSet &legalForCartesianProduct(std::initializer_list<LLT> Types0,
                                            std::initializer_list<LLT> Types1) {
    return actionForCartesianProduct(LegalizeAction::Legal, Types0, Types1);
  }
  /// The instruction is legal when type indexes 0, 1, and 2 are both their
  /// respective lists.
  LegalizeRuleSet &legalForCartesianProduct(std::initializer_list<LLT> Types0,
                                            std::initializer_list<LLT> Types1,
                                            std::initializer_list<LLT> Types2) {
    return actionForCartesianProduct(LegalizeAction::Legal, Types0, Types1,
                                     Types2);
  }

  LegalizeRuleSet &alwaysLegal() {
    using namespace LegalizeMutations;
    markAllIdxsAsCovered();
    return actionIf(LegalizeAction::Legal, always);
  }

  /// The instruction is lowered.
  LegalizeRuleSet &lower() {
    using namespace LegalizeMutations;
    // We have no choice but conservatively assume that predicate-less lowering
    // properly handles all type indices by design:
    markAllIdxsAsCovered();
    return actionIf(LegalizeAction::Lower, always);
  }
  /// The instruction is lowered if predicate is true. Keep type index 0 as the
  /// same type.
  LegalizeRuleSet &lowerIf(LegalityPredicate Predicate) {
    using namespace LegalizeMutations;
    // We have no choice but conservatively assume that lowering with a
    // free-form user provided Predicate properly handles all type indices:
    markAllIdxsAsCovered();
    return actionIf(LegalizeAction::Lower, Predicate);
  }
  /// The instruction is lowered if predicate is true.
  LegalizeRuleSet &lowerIf(LegalityPredicate Predicate,
                           LegalizeMutation Mutation) {
    // We have no choice but conservatively assume that lowering with a
    // free-form user provided Predicate properly handles all type indices:
    markAllIdxsAsCovered();
    return actionIf(LegalizeAction::Lower, Predicate, Mutation);
  }
  /// The instruction is lowered when type index 0 is any type in the given
  /// list. Keep type index 0 as the same type.
  LegalizeRuleSet &lowerFor(std::initializer_list<LLT> Types) {
    return actionFor(LegalizeAction::Lower, Types,
                     LegalizeMutations::changeTo(0, 0));
  }
  /// The instruction is lowered when type index 0 is any type in the given
  /// list.
  LegalizeRuleSet &lowerFor(std::initializer_list<LLT> Types,
                            LegalizeMutation Mutation) {
    return actionFor(LegalizeAction::Lower, Types, Mutation);
  }
  /// The instruction is lowered when type indexes 0 and 1 is any type pair in
  /// the given list. Keep type index 0 as the same type.
  LegalizeRuleSet &lowerFor(std::initializer_list<std::pair<LLT, LLT>> Types) {
    return actionFor(LegalizeAction::Lower, Types,
                     LegalizeMutations::changeTo(0, 0));
  }
  /// The instruction is lowered when type indexes 0 and 1 is any type pair in
  /// the given list.
  LegalizeRuleSet &lowerFor(std::initializer_list<std::pair<LLT, LLT>> Types,
                            LegalizeMutation Mutation) {
    return actionFor(LegalizeAction::Lower, Types, Mutation);
  }
  /// The instruction is lowered when type indexes 0 and 1 are both in their
  /// respective lists.
  LegalizeRuleSet &lowerForCartesianProduct(std::initializer_list<LLT> Types0,
                                            std::initializer_list<LLT> Types1) {
    using namespace LegalityPredicates;
    return actionForCartesianProduct(LegalizeAction::Lower, Types0, Types1);
  }
  /// The instruction is lowered when when type indexes 0, 1, and 2 are all in
  /// their respective lists.
  LegalizeRuleSet &lowerForCartesianProduct(std::initializer_list<LLT> Types0,
                                            std::initializer_list<LLT> Types1,
                                            std::initializer_list<LLT> Types2) {
    using namespace LegalityPredicates;
    return actionForCartesianProduct(LegalizeAction::Lower, Types0, Types1,
                                     Types2);
  }

  /// Like legalIf, but for the Libcall action.
  LegalizeRuleSet &libcallIf(LegalityPredicate Predicate) {
    // We have no choice but conservatively assume that a libcall with a
    // free-form user provided Predicate properly handles all type indices:
    markAllIdxsAsCovered();
    return actionIf(LegalizeAction::Libcall, Predicate);
  }
  LegalizeRuleSet &libcallFor(std::initializer_list<LLT> Types) {
    return actionFor(LegalizeAction::Libcall, Types);
  }
  LegalizeRuleSet &
  libcallFor(std::initializer_list<std::pair<LLT, LLT>> Types) {
    return actionFor(LegalizeAction::Libcall, Types);
  }
  LegalizeRuleSet &
  libcallForCartesianProduct(std::initializer_list<LLT> Types) {
    return actionForCartesianProduct(LegalizeAction::Libcall, Types);
  }
  LegalizeRuleSet &
  libcallForCartesianProduct(std::initializer_list<LLT> Types0,
                             std::initializer_list<LLT> Types1) {
    return actionForCartesianProduct(LegalizeAction::Libcall, Types0, Types1);
  }

  /// Widen the scalar to the one selected by the mutation if the predicate is
  /// true.
  LegalizeRuleSet &widenScalarIf(LegalityPredicate Predicate,
                                 LegalizeMutation Mutation) {
    // We have no choice but conservatively assume that an action with a
    // free-form user provided Predicate properly handles all type indices:
    markAllIdxsAsCovered();
    return actionIf(LegalizeAction::WidenScalar, Predicate, Mutation);
  }
  /// Narrow the scalar to the one selected by the mutation if the predicate is
  /// true.
  LegalizeRuleSet &narrowScalarIf(LegalityPredicate Predicate,
                                  LegalizeMutation Mutation) {
    // We have no choice but conservatively assume that an action with a
    // free-form user provided Predicate properly handles all type indices:
    markAllIdxsAsCovered();
    return actionIf(LegalizeAction::NarrowScalar, Predicate, Mutation);
  }

  /// Add more elements to reach the type selected by the mutation if the
  /// predicate is true.
  LegalizeRuleSet &moreElementsIf(LegalityPredicate Predicate,
                                  LegalizeMutation Mutation) {
    // We have no choice but conservatively assume that an action with a
    // free-form user provided Predicate properly handles all type indices:
    markAllIdxsAsCovered();
    return actionIf(LegalizeAction::MoreElements, Predicate, Mutation);
  }
  /// Remove elements to reach the type selected by the mutation if the
  /// predicate is true.
  LegalizeRuleSet &fewerElementsIf(LegalityPredicate Predicate,
                                   LegalizeMutation Mutation) {
    // We have no choice but conservatively assume that an action with a
    // free-form user provided Predicate properly handles all type indices:
    markAllIdxsAsCovered();
    return actionIf(LegalizeAction::FewerElements, Predicate, Mutation);
  }

  /// The instruction is unsupported.
  LegalizeRuleSet &unsupported() {
    return actionIf(LegalizeAction::Unsupported, always);
  }
  LegalizeRuleSet &unsupportedIf(LegalityPredicate Predicate) {
    return actionIf(LegalizeAction::Unsupported, Predicate);
  }
  LegalizeRuleSet &unsupportedIfMemSizeNotPow2() {
    return actionIf(LegalizeAction::Unsupported,
                    LegalityPredicates::memSizeInBytesNotPow2(0));
  }
  LegalizeRuleSet &lowerIfMemSizeNotPow2() {
    return actionIf(LegalizeAction::Lower,
                    LegalityPredicates::memSizeInBytesNotPow2(0));
  }

  LegalizeRuleSet &customIf(LegalityPredicate Predicate) {
    // We have no choice but conservatively assume that a custom action with a
    // free-form user provided Predicate properly handles all type indices:
    markAllIdxsAsCovered();
    return actionIf(LegalizeAction::Custom, Predicate);
  }
  LegalizeRuleSet &customFor(std::initializer_list<LLT> Types) {
    return actionFor(LegalizeAction::Custom, Types);
  }

  /// The instruction is custom when type indexes 0 and 1 is any type pair in the
  /// given list.
  LegalizeRuleSet &customFor(std::initializer_list<std::pair<LLT, LLT>> Types) {
    return actionFor(LegalizeAction::Custom, Types);
  }

  LegalizeRuleSet &customForCartesianProduct(std::initializer_list<LLT> Types) {
    return actionForCartesianProduct(LegalizeAction::Custom, Types);
  }
  LegalizeRuleSet &
  customForCartesianProduct(std::initializer_list<LLT> Types0,
                            std::initializer_list<LLT> Types1) {
    return actionForCartesianProduct(LegalizeAction::Custom, Types0, Types1);
  }

  /// Unconditionally custom lower.
  LegalizeRuleSet &custom() {
    return customIf(always);
  }

  /// Widen the scalar to the next power of two that is at least MinSize.
  /// No effect if the type is not a scalar or is a power of two.
  LegalizeRuleSet &widenScalarToNextPow2(unsigned TypeIdx,
                                         unsigned MinSize = 0) {
    using namespace LegalityPredicates;
    return actionIf(
        LegalizeAction::WidenScalar, sizeNotPow2(typeIdx(TypeIdx)),
        LegalizeMutations::widenScalarOrEltToNextPow2(TypeIdx, MinSize));
  }

  /// Widen the scalar or vector element type to the next power of two that is
  /// at least MinSize.  No effect if the scalar size is a power of two.
  LegalizeRuleSet &widenScalarOrEltToNextPow2(unsigned TypeIdx,
                                              unsigned MinSize = 0) {
    using namespace LegalityPredicates;
    return actionIf(
        LegalizeAction::WidenScalar, scalarOrEltSizeNotPow2(typeIdx(TypeIdx)),
        LegalizeMutations::widenScalarOrEltToNextPow2(TypeIdx, MinSize));
  }

  LegalizeRuleSet &narrowScalar(unsigned TypeIdx, LegalizeMutation Mutation) {
    using namespace LegalityPredicates;
    return actionIf(LegalizeAction::NarrowScalar, isScalar(typeIdx(TypeIdx)),
                    Mutation);
  }

  LegalizeRuleSet &scalarize(unsigned TypeIdx) {
    using namespace LegalityPredicates;
    return actionIf(LegalizeAction::FewerElements, isVector(typeIdx(TypeIdx)),
                    LegalizeMutations::scalarize(TypeIdx));
  }

  /// Ensure the scalar or element is at least as wide as Ty.
  LegalizeRuleSet &minScalarOrElt(unsigned TypeIdx, const LLT &Ty) {
    using namespace LegalityPredicates;
    using namespace LegalizeMutations;
    return actionIf(LegalizeAction::WidenScalar,
                    scalarOrEltNarrowerThan(TypeIdx, Ty.getScalarSizeInBits()),
                    changeElementTo(typeIdx(TypeIdx), Ty));
  }

  /// Ensure the scalar or element is at least as wide as Ty.
  LegalizeRuleSet &minScalarOrEltIf(LegalityPredicate Predicate,
                                    unsigned TypeIdx, const LLT &Ty) {
    using namespace LegalityPredicates;
    using namespace LegalizeMutations;
    return actionIf(LegalizeAction::WidenScalar,
                    all(Predicate, scalarOrEltNarrowerThan(
                                       TypeIdx, Ty.getScalarSizeInBits())),
                    changeElementTo(typeIdx(TypeIdx), Ty));
  }

  /// Ensure the scalar is at least as wide as Ty.
  LegalizeRuleSet &minScalar(unsigned TypeIdx, const LLT &Ty) {
    using namespace LegalityPredicates;
    using namespace LegalizeMutations;
    return actionIf(LegalizeAction::WidenScalar,
                    narrowerThan(TypeIdx, Ty.getSizeInBits()),
                    changeTo(typeIdx(TypeIdx), Ty));
  }

  /// Ensure the scalar is at most as wide as Ty.
  LegalizeRuleSet &maxScalarOrElt(unsigned TypeIdx, const LLT &Ty) {
    using namespace LegalityPredicates;
    using namespace LegalizeMutations;
    return actionIf(LegalizeAction::NarrowScalar,
                    scalarOrEltWiderThan(TypeIdx, Ty.getScalarSizeInBits()),
                    changeElementTo(typeIdx(TypeIdx), Ty));
  }

  /// Ensure the scalar is at most as wide as Ty.
  LegalizeRuleSet &maxScalar(unsigned TypeIdx, const LLT &Ty) {
    using namespace LegalityPredicates;
    using namespace LegalizeMutations;
    return actionIf(LegalizeAction::NarrowScalar,
                    widerThan(TypeIdx, Ty.getSizeInBits()),
                    changeTo(typeIdx(TypeIdx), Ty));
  }

  /// Conditionally limit the maximum size of the scalar.
  /// For example, when the maximum size of one type depends on the size of
  /// another such as extracting N bits from an M bit container.
  LegalizeRuleSet &maxScalarIf(LegalityPredicate Predicate, unsigned TypeIdx,
                               const LLT &Ty) {
    using namespace LegalityPredicates;
    using namespace LegalizeMutations;
    return actionIf(
        LegalizeAction::NarrowScalar,
        [=](const LegalityQuery &Query) {
          return widerThan(TypeIdx, Ty.getSizeInBits()) && Predicate(Query);
        },
        changeElementTo(typeIdx(TypeIdx), Ty));
  }

  /// Limit the range of scalar sizes to MinTy and MaxTy.
  LegalizeRuleSet &clampScalar(unsigned TypeIdx, const LLT &MinTy,
                               const LLT &MaxTy) {
    assert(MinTy.isScalar() && MaxTy.isScalar() && "Expected scalar types");
    return minScalar(TypeIdx, MinTy).maxScalar(TypeIdx, MaxTy);
  }

  /// Limit the range of scalar sizes to MinTy and MaxTy.
  LegalizeRuleSet &clampScalarOrElt(unsigned TypeIdx, const LLT &MinTy,
                                    const LLT &MaxTy) {
    return minScalarOrElt(TypeIdx, MinTy).maxScalarOrElt(TypeIdx, MaxTy);
  }

  /// Widen the scalar to match the size of another.
  LegalizeRuleSet &minScalarSameAs(unsigned TypeIdx, unsigned LargeTypeIdx) {
    typeIdx(TypeIdx);
    return widenScalarIf(
        [=](const LegalityQuery &Query) {
          return Query.Types[LargeTypeIdx].getScalarSizeInBits() >
                 Query.Types[TypeIdx].getSizeInBits();
        },
        [=](const LegalityQuery &Query) {
          LLT T = Query.Types[LargeTypeIdx];
          return std::make_pair(TypeIdx,
                                T.isVector() ? T.getElementType() : T);
        });
  }

  /// Conditionally widen the scalar or elt to match the size of another.
  LegalizeRuleSet &minScalarEltSameAsIf(LegalityPredicate Predicate,
                                   unsigned TypeIdx, unsigned LargeTypeIdx) {
    typeIdx(TypeIdx);
    return widenScalarIf(
        [=](const LegalityQuery &Query) {
          return Query.Types[LargeTypeIdx].getScalarSizeInBits() >
                     Query.Types[TypeIdx].getScalarSizeInBits() &&
                 Predicate(Query);
        },
        [=](const LegalityQuery &Query) {
          LLT T = Query.Types[LargeTypeIdx];
          return std::make_pair(TypeIdx, T);
        });
  }

  /// Add more elements to the vector to reach the next power of two.
  /// No effect if the type is not a vector or the element count is a power of
  /// two.
  LegalizeRuleSet &moreElementsToNextPow2(unsigned TypeIdx) {
    using namespace LegalityPredicates;
    return actionIf(LegalizeAction::MoreElements,
                    numElementsNotPow2(typeIdx(TypeIdx)),
                    LegalizeMutations::moreElementsToNextPow2(TypeIdx));
  }

  /// Limit the number of elements in EltTy vectors to at least MinElements.
  LegalizeRuleSet &clampMinNumElements(unsigned TypeIdx, const LLT &EltTy,
                                       unsigned MinElements) {
    // Mark the type index as covered:
    typeIdx(TypeIdx);
    return actionIf(
        LegalizeAction::MoreElements,
        [=](const LegalityQuery &Query) {
          LLT VecTy = Query.Types[TypeIdx];
          return VecTy.isVector() && VecTy.getElementType() == EltTy &&
                 VecTy.getNumElements() < MinElements;
        },
        [=](const LegalityQuery &Query) {
          LLT VecTy = Query.Types[TypeIdx];
          return std::make_pair(
              TypeIdx, LLT::vector(MinElements, VecTy.getElementType()));
        });
  }
  /// Limit the number of elements in EltTy vectors to at most MaxElements.
  LegalizeRuleSet &clampMaxNumElements(unsigned TypeIdx, const LLT &EltTy,
                                       unsigned MaxElements) {
    // Mark the type index as covered:
    typeIdx(TypeIdx);
    return actionIf(
        LegalizeAction::FewerElements,
        [=](const LegalityQuery &Query) {
          LLT VecTy = Query.Types[TypeIdx];
          return VecTy.isVector() && VecTy.getElementType() == EltTy &&
                 VecTy.getNumElements() > MaxElements;
        },
        [=](const LegalityQuery &Query) {
          LLT VecTy = Query.Types[TypeIdx];
          LLT NewTy = LLT::scalarOrVector(MaxElements, VecTy.getElementType());
          return std::make_pair(TypeIdx, NewTy);
        });
  }
  /// Limit the number of elements for the given vectors to at least MinTy's
  /// number of elements and at most MaxTy's number of elements.
  ///
  /// No effect if the type is not a vector or does not have the same element
  /// type as the constraints.
  /// The element type of MinTy and MaxTy must match.
  LegalizeRuleSet &clampNumElements(unsigned TypeIdx, const LLT &MinTy,
                                    const LLT &MaxTy) {
    assert(MinTy.getElementType() == MaxTy.getElementType() &&
           "Expected element types to agree");

    const LLT &EltTy = MinTy.getElementType();
    return clampMinNumElements(TypeIdx, EltTy, MinTy.getNumElements())
        .clampMaxNumElements(TypeIdx, EltTy, MaxTy.getNumElements());
  }

  /// Fallback on the previous implementation. This should only be used while
  /// porting a rule.
  LegalizeRuleSet &fallback() {
    add({always, LegalizeAction::UseLegacyRules});
    return *this;
  }

  /// Check if there is no type index which is obviously not handled by the
  /// LegalizeRuleSet in any way at all.
  /// \pre Type indices of the opcode form a dense [0, \p NumTypeIdxs) set.
  bool verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const;
  /// Check if there is no imm index which is obviously not handled by the
  /// LegalizeRuleSet in any way at all.
  /// \pre Type indices of the opcode form a dense [0, \p NumTypeIdxs) set.
  bool verifyImmIdxsCoverage(unsigned NumImmIdxs) const;

  /// Apply the ruleset to the given LegalityQuery.
  LegalizeActionStep apply(const LegalityQuery &Query) const;
};

class LegalizerInfo {
public:
  LegalizerInfo();
  virtual ~LegalizerInfo() = default;

  unsigned getOpcodeIdxForOpcode(unsigned Opcode) const;
  unsigned getActionDefinitionsIdx(unsigned Opcode) const;

  /// Compute any ancillary tables needed to quickly decide how an operation
  /// should be handled. This must be called after all "set*Action"methods but
  /// before any query is made or incorrect results may be returned.
  void computeTables();

  /// Perform simple self-diagnostic and assert if there is anything obviously
  /// wrong with the actions set up.
  void verify(const MCInstrInfo &MII) const;

  static bool needsLegalizingToDifferentSize(const LegalizeAction Action) {
    using namespace LegalizeActions;
    switch (Action) {
    case NarrowScalar:
    case WidenScalar:
    case FewerElements:
    case MoreElements:
    case Unsupported:
      return true;
    default:
      return false;
    }
  }

  using SizeAndAction = std::pair<uint16_t, LegalizeAction>;
  using SizeAndActionsVec = std::vector<SizeAndAction>;
  using SizeChangeStrategy =
      std::function<SizeAndActionsVec(const SizeAndActionsVec &v)>;

  /// More friendly way to set an action for common types that have an LLT
  /// representation.
  /// The LegalizeAction must be one for which NeedsLegalizingToDifferentSize
  /// returns false.
  void setAction(const InstrAspect &Aspect, LegalizeAction Action) {
    assert(!needsLegalizingToDifferentSize(Action));
    TablesInitialized = false;
    const unsigned OpcodeIdx = Aspect.Opcode - FirstOp;
    if (SpecifiedActions[OpcodeIdx].size() <= Aspect.Idx)
      SpecifiedActions[OpcodeIdx].resize(Aspect.Idx + 1);
    SpecifiedActions[OpcodeIdx][Aspect.Idx][Aspect.Type] = Action;
  }

  /// The setAction calls record the non-size-changing legalization actions
  /// to take on specificly-sized types. The SizeChangeStrategy defines what
  /// to do when the size of the type needs to be changed to reach a legally
  /// sized type (i.e., one that was defined through a setAction call).
  /// e.g.
  /// setAction ({G_ADD, 0, LLT::scalar(32)}, Legal);
  /// setLegalizeScalarToDifferentSizeStrategy(
  ///   G_ADD, 0, widenToLargerTypesAndNarrowToLargest);
  /// will end up defining getAction({G_ADD, 0, T}) to return the following
  /// actions for different scalar types T:
  ///  LLT::scalar(1)..LLT::scalar(31): {WidenScalar, 0, LLT::scalar(32)}
  ///  LLT::scalar(32):                 {Legal, 0, LLT::scalar(32)}
  ///  LLT::scalar(33)..:               {NarrowScalar, 0, LLT::scalar(32)}
  ///
  /// If no SizeChangeAction gets defined, through this function,
  /// the default is unsupportedForDifferentSizes.
  void setLegalizeScalarToDifferentSizeStrategy(const unsigned Opcode,
                                                const unsigned TypeIdx,
                                                SizeChangeStrategy S) {
    const unsigned OpcodeIdx = Opcode - FirstOp;
    if (ScalarSizeChangeStrategies[OpcodeIdx].size() <= TypeIdx)
      ScalarSizeChangeStrategies[OpcodeIdx].resize(TypeIdx + 1);
    ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] = S;
  }

  /// See also setLegalizeScalarToDifferentSizeStrategy.
  /// This function allows to set the SizeChangeStrategy for vector elements.
  void setLegalizeVectorElementToDifferentSizeStrategy(const unsigned Opcode,
                                                       const unsigned TypeIdx,
                                                       SizeChangeStrategy S) {
    const unsigned OpcodeIdx = Opcode - FirstOp;
    if (VectorElementSizeChangeStrategies[OpcodeIdx].size() <= TypeIdx)
      VectorElementSizeChangeStrategies[OpcodeIdx].resize(TypeIdx + 1);
    VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] = S;
  }

  /// A SizeChangeStrategy for the common case where legalization for a
  /// particular operation consists of only supporting a specific set of type
  /// sizes. E.g.
  ///   setAction ({G_DIV, 0, LLT::scalar(32)}, Legal);
  ///   setAction ({G_DIV, 0, LLT::scalar(64)}, Legal);
  ///   setLegalizeScalarToDifferentSizeStrategy(
  ///     G_DIV, 0, unsupportedForDifferentSizes);
  /// will result in getAction({G_DIV, 0, T}) to return Legal for s32 and s64,
  /// and Unsupported for all other scalar types T.
  static SizeAndActionsVec
  unsupportedForDifferentSizes(const SizeAndActionsVec &v) {
    using namespace LegalizeActions;
    return increaseToLargerTypesAndDecreaseToLargest(v, Unsupported,
                                                     Unsupported);
  }

  /// A SizeChangeStrategy for the common case where legalization for a
  /// particular operation consists of widening the type to a large legal type,
  /// unless there is no such type and then instead it should be narrowed to the
  /// largest legal type.
  static SizeAndActionsVec
  widenToLargerTypesAndNarrowToLargest(const SizeAndActionsVec &v) {
    using namespace LegalizeActions;
    assert(v.size() > 0 &&
           "At least one size that can be legalized towards is needed"
           " for this SizeChangeStrategy");
    return increaseToLargerTypesAndDecreaseToLargest(v, WidenScalar,
                                                     NarrowScalar);
  }

  static SizeAndActionsVec
  widenToLargerTypesUnsupportedOtherwise(const SizeAndActionsVec &v) {
    using namespace LegalizeActions;
    return increaseToLargerTypesAndDecreaseToLargest(v, WidenScalar,
                                                     Unsupported);
  }

  static SizeAndActionsVec
  narrowToSmallerAndUnsupportedIfTooSmall(const SizeAndActionsVec &v) {
    using namespace LegalizeActions;
    return decreaseToSmallerTypesAndIncreaseToSmallest(v, NarrowScalar,
                                                       Unsupported);
  }

  static SizeAndActionsVec
  narrowToSmallerAndWidenToSmallest(const SizeAndActionsVec &v) {
    using namespace LegalizeActions;
    assert(v.size() > 0 &&
           "At least one size that can be legalized towards is needed"
           " for this SizeChangeStrategy");
    return decreaseToSmallerTypesAndIncreaseToSmallest(v, NarrowScalar,
                                                       WidenScalar);
  }

  /// A SizeChangeStrategy for the common case where legalization for a
  /// particular vector operation consists of having more elements in the
  /// vector, to a type that is legal. Unless there is no such type and then
  /// instead it should be legalized towards the widest vector that's still
  /// legal. E.g.
  ///   setAction({G_ADD, LLT::vector(8, 8)}, Legal);
  ///   setAction({G_ADD, LLT::vector(16, 8)}, Legal);
  ///   setAction({G_ADD, LLT::vector(2, 32)}, Legal);
  ///   setAction({G_ADD, LLT::vector(4, 32)}, Legal);
  ///   setLegalizeVectorElementToDifferentSizeStrategy(
  ///     G_ADD, 0, moreToWiderTypesAndLessToWidest);
  /// will result in the following getAction results:
  ///   * getAction({G_ADD, LLT::vector(8,8)}) returns
  ///       (Legal, vector(8,8)).
  ///   * getAction({G_ADD, LLT::vector(9,8)}) returns
  ///       (MoreElements, vector(16,8)).
  ///   * getAction({G_ADD, LLT::vector(8,32)}) returns
  ///       (FewerElements, vector(4,32)).
  static SizeAndActionsVec
  moreToWiderTypesAndLessToWidest(const SizeAndActionsVec &v) {
    using namespace LegalizeActions;
    return increaseToLargerTypesAndDecreaseToLargest(v, MoreElements,
                                                     FewerElements);
  }

  /// Helper function to implement many typical SizeChangeStrategy functions.
  static SizeAndActionsVec
  increaseToLargerTypesAndDecreaseToLargest(const SizeAndActionsVec &v,
                                            LegalizeAction IncreaseAction,
                                            LegalizeAction DecreaseAction);
  /// Helper function to implement many typical SizeChangeStrategy functions.
  static SizeAndActionsVec
  decreaseToSmallerTypesAndIncreaseToSmallest(const SizeAndActionsVec &v,
                                              LegalizeAction DecreaseAction,
                                              LegalizeAction IncreaseAction);

  /// Get the action definitions for the given opcode. Use this to run a
  /// LegalityQuery through the definitions.
  const LegalizeRuleSet &getActionDefinitions(unsigned Opcode) const;

  /// Get the action definition builder for the given opcode. Use this to define
  /// the action definitions.
  ///
  /// It is an error to request an opcode that has already been requested by the
  /// multiple-opcode variant.
  LegalizeRuleSet &getActionDefinitionsBuilder(unsigned Opcode);

  /// Get the action definition builder for the given set of opcodes. Use this
  /// to define the action definitions for multiple opcodes at once. The first
  /// opcode given will be considered the representative opcode and will hold
  /// the definitions whereas the other opcodes will be configured to refer to
  /// the representative opcode. This lowers memory requirements and very
  /// slightly improves performance.
  ///
  /// It would be very easy to introduce unexpected side-effects as a result of
  /// this aliasing if it were permitted to request different but intersecting
  /// sets of opcodes but that is difficult to keep track of. It is therefore an
  /// error to request the same opcode twice using this API, to request an
  /// opcode that already has definitions, or to use the single-opcode API on an
  /// opcode that has already been requested by this API.
  LegalizeRuleSet &
  getActionDefinitionsBuilder(std::initializer_list<unsigned> Opcodes);
  void aliasActionDefinitions(unsigned OpcodeTo, unsigned OpcodeFrom);

  /// Determine what action should be taken to legalize the described
  /// instruction. Requires computeTables to have been called.
  ///
  /// \returns a description of the next legalization step to perform.
  LegalizeActionStep getAction(const LegalityQuery &Query) const;

  /// Determine what action should be taken to legalize the given generic
  /// instruction.
  ///
  /// \returns a description of the next legalization step to perform.
  LegalizeActionStep getAction(const MachineInstr &MI,
                               const MachineRegisterInfo &MRI) const;

  bool isLegal(const LegalityQuery &Query) const {
    return getAction(Query).Action == LegalizeAction::Legal;
  }
  bool isLegal(const MachineInstr &MI, const MachineRegisterInfo &MRI) const;
  bool isLegalOrCustom(const MachineInstr &MI,
                       const MachineRegisterInfo &MRI) const;

  virtual bool legalizeCustom(MachineInstr &MI, MachineRegisterInfo &MRI,
                              MachineIRBuilder &MIRBuilder,
                              GISelChangeObserver &Observer) const;

  /// Return true if MI is either legal or has been legalized and false
  /// if not legal.
  virtual bool legalizeIntrinsic(MachineInstr &MI, MachineRegisterInfo &MRI,
                                 MachineIRBuilder &MIRBuilder) const;

private:
  /// Determine what action should be taken to legalize the given generic
  /// instruction opcode, type-index and type. Requires computeTables to have
  /// been called.
  ///
  /// \returns a pair consisting of the kind of legalization that should be
  /// performed and the destination type.
  std::pair<LegalizeAction, LLT>
  getAspectAction(const InstrAspect &Aspect) const;

  /// The SizeAndActionsVec is a representation mapping between all natural
  /// numbers and an Action. The natural number represents the bit size of
  /// the InstrAspect. For example, for a target with native support for 32-bit
  /// and 64-bit additions, you'd express that as:
  /// setScalarAction(G_ADD, 0,
  ///           {{1, WidenScalar},  // bit sizes [ 1, 31[
  ///            {32, Legal},       // bit sizes [32, 33[
  ///            {33, WidenScalar}, // bit sizes [33, 64[
  ///            {64, Legal},       // bit sizes [64, 65[
  ///            {65, NarrowScalar} // bit sizes [65, +inf[
  ///           });
  /// It may be that only 64-bit pointers are supported on your target:
  /// setPointerAction(G_GEP, 0, LLT:pointer(1),
  ///           {{1, Unsupported},  // bit sizes [ 1, 63[
  ///            {64, Legal},       // bit sizes [64, 65[
  ///            {65, Unsupported}, // bit sizes [65, +inf[
  ///           });
  void setScalarAction(const unsigned Opcode, const unsigned TypeIndex,
                       const SizeAndActionsVec &SizeAndActions) {
    const unsigned OpcodeIdx = Opcode - FirstOp;
    SmallVector<SizeAndActionsVec, 1> &Actions = ScalarActions[OpcodeIdx];
    setActions(TypeIndex, Actions, SizeAndActions);
  }
  void setPointerAction(const unsigned Opcode, const unsigned TypeIndex,
                        const unsigned AddressSpace,
                        const SizeAndActionsVec &SizeAndActions) {
    const unsigned OpcodeIdx = Opcode - FirstOp;
    if (AddrSpace2PointerActions[OpcodeIdx].find(AddressSpace) ==
        AddrSpace2PointerActions[OpcodeIdx].end())
      AddrSpace2PointerActions[OpcodeIdx][AddressSpace] = {{}};
    SmallVector<SizeAndActionsVec, 1> &Actions =
        AddrSpace2PointerActions[OpcodeIdx].find(AddressSpace)->second;
    setActions(TypeIndex, Actions, SizeAndActions);
  }

  /// If an operation on a given vector type (say <M x iN>) isn't explicitly
  /// specified, we proceed in 2 stages. First we legalize the underlying scalar
  /// (so that there's at least one legal vector with that scalar), then we
  /// adjust the number of elements in the vector so that it is legal. The
  /// desired action in the first step is controlled by this function.
  void setScalarInVectorAction(const unsigned Opcode, const unsigned TypeIndex,
                               const SizeAndActionsVec &SizeAndActions) {
    unsigned OpcodeIdx = Opcode - FirstOp;
    SmallVector<SizeAndActionsVec, 1> &Actions =
        ScalarInVectorActions[OpcodeIdx];
    setActions(TypeIndex, Actions, SizeAndActions);
  }

  /// See also setScalarInVectorAction.
  /// This function let's you specify the number of elements in a vector that
  /// are legal for a legal element size.
  void setVectorNumElementAction(const unsigned Opcode,
                                 const unsigned TypeIndex,
                                 const unsigned ElementSize,
                                 const SizeAndActionsVec &SizeAndActions) {
    const unsigned OpcodeIdx = Opcode - FirstOp;
    if (NumElements2Actions[OpcodeIdx].find(ElementSize) ==
        NumElements2Actions[OpcodeIdx].end())
      NumElements2Actions[OpcodeIdx][ElementSize] = {{}};
    SmallVector<SizeAndActionsVec, 1> &Actions =
        NumElements2Actions[OpcodeIdx].find(ElementSize)->second;
    setActions(TypeIndex, Actions, SizeAndActions);
  }

  /// A partial SizeAndActionsVec potentially doesn't cover all bit sizes,
  /// i.e. it's OK if it doesn't start from size 1.
  static void checkPartialSizeAndActionsVector(const SizeAndActionsVec& v) {
    using namespace LegalizeActions;
#ifndef NDEBUG
    // The sizes should be in increasing order
    int prev_size = -1;
    for(auto SizeAndAction: v) {
      assert(SizeAndAction.first > prev_size);
      prev_size = SizeAndAction.first;
    }
    // - for every Widen action, there should be a larger bitsize that
    //   can be legalized towards (e.g. Legal, Lower, Libcall or Custom
    //   action).
    // - for every Narrow action, there should be a smaller bitsize that
    //   can be legalized towards.
    int SmallestNarrowIdx = -1;
    int LargestWidenIdx = -1;
    int SmallestLegalizableToSameSizeIdx = -1;
    int LargestLegalizableToSameSizeIdx = -1;
    for(size_t i=0; i<v.size(); ++i) {
      switch (v[i].second) {
        case FewerElements:
        case NarrowScalar:
          if (SmallestNarrowIdx == -1)
            SmallestNarrowIdx = i;
          break;
        case WidenScalar:
        case MoreElements:
          LargestWidenIdx = i;
          break;
        case Unsupported:
          break;
        default:
          if (SmallestLegalizableToSameSizeIdx == -1)
            SmallestLegalizableToSameSizeIdx = i;
          LargestLegalizableToSameSizeIdx = i;
      }
    }
    if (SmallestNarrowIdx != -1) {
      assert(SmallestLegalizableToSameSizeIdx != -1);
      assert(SmallestNarrowIdx > SmallestLegalizableToSameSizeIdx);
    }
    if (LargestWidenIdx != -1)
      assert(LargestWidenIdx < LargestLegalizableToSameSizeIdx);
#endif
  }

  /// A full SizeAndActionsVec must cover all bit sizes, i.e. must start with
  /// from size 1.
  static void checkFullSizeAndActionsVector(const SizeAndActionsVec& v) {
#ifndef NDEBUG
    // Data structure invariant: The first bit size must be size 1.
    assert(v.size() >= 1);
    assert(v[0].first == 1);
    checkPartialSizeAndActionsVector(v);
#endif
  }

  /// Sets actions for all bit sizes on a particular generic opcode, type
  /// index and scalar or pointer type.
  void setActions(unsigned TypeIndex,
                  SmallVector<SizeAndActionsVec, 1> &Actions,
                  const SizeAndActionsVec &SizeAndActions) {
    checkFullSizeAndActionsVector(SizeAndActions);
    if (Actions.size() <= TypeIndex)
      Actions.resize(TypeIndex + 1);
    Actions[TypeIndex] = SizeAndActions;
  }

  static SizeAndAction findAction(const SizeAndActionsVec &Vec,
                                  const uint32_t Size);

  /// Returns the next action needed to get the scalar or pointer type closer
  /// to being legal
  /// E.g. findLegalAction({G_REM, 13}) should return
  /// (WidenScalar, 32). After that, findLegalAction({G_REM, 32}) will
  /// probably be called, which should return (Lower, 32).
  /// This is assuming the setScalarAction on G_REM was something like:
  /// setScalarAction(G_REM, 0,
  ///           {{1, WidenScalar},  // bit sizes [ 1, 31[
  ///            {32, Lower},       // bit sizes [32, 33[
  ///            {33, NarrowScalar} // bit sizes [65, +inf[
  ///           });
  std::pair<LegalizeAction, LLT>
  findScalarLegalAction(const InstrAspect &Aspect) const;

  /// Returns the next action needed towards legalizing the vector type.
  std::pair<LegalizeAction, LLT>
  findVectorLegalAction(const InstrAspect &Aspect) const;

  static const int FirstOp = TargetOpcode::PRE_ISEL_GENERIC_OPCODE_START;
  static const int LastOp = TargetOpcode::PRE_ISEL_GENERIC_OPCODE_END;

  // Data structures used temporarily during construction of legality data:
  using TypeMap = DenseMap<LLT, LegalizeAction>;
  SmallVector<TypeMap, 1> SpecifiedActions[LastOp - FirstOp + 1];
  SmallVector<SizeChangeStrategy, 1>
      ScalarSizeChangeStrategies[LastOp - FirstOp + 1];
  SmallVector<SizeChangeStrategy, 1>
      VectorElementSizeChangeStrategies[LastOp - FirstOp + 1];
  bool TablesInitialized;

  // Data structures used by getAction:
  SmallVector<SizeAndActionsVec, 1> ScalarActions[LastOp - FirstOp + 1];
  SmallVector<SizeAndActionsVec, 1> ScalarInVectorActions[LastOp - FirstOp + 1];
  std::unordered_map<uint16_t, SmallVector<SizeAndActionsVec, 1>>
      AddrSpace2PointerActions[LastOp - FirstOp + 1];
  std::unordered_map<uint16_t, SmallVector<SizeAndActionsVec, 1>>
      NumElements2Actions[LastOp - FirstOp + 1];

  LegalizeRuleSet RulesForOpcode[LastOp - FirstOp + 1];
};

#ifndef NDEBUG
/// Checks that MIR is fully legal, returns an illegal instruction if it's not,
/// nullptr otherwise
const MachineInstr *machineFunctionIsIllegal(const MachineFunction &MF);
#endif

} // end namespace llvm.

#endif // LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H