reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
//===- llvm/Support/Unix/Program.cpp -----------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Unix specific portion of the Program class.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
//=== WARNING: Implementation here must contain only generic UNIX code that
//===          is guaranteed to work on *all* UNIX variants.
//===----------------------------------------------------------------------===//

#include "Unix.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Config/config.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/raw_ostream.h"
#if HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#if HAVE_SYS_RESOURCE_H
#include <sys/resource.h>
#endif
#if HAVE_SIGNAL_H
#include <signal.h>
#endif
#if HAVE_FCNTL_H
#include <fcntl.h>
#endif
#if HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_POSIX_SPAWN
#include <spawn.h>

#if defined(__APPLE__)
#include <TargetConditionals.h>
#endif

#if defined(__APPLE__) && !(defined(TARGET_OS_IPHONE) && TARGET_OS_IPHONE)
#define USE_NSGETENVIRON 1
#else
#define USE_NSGETENVIRON 0
#endif

#if !USE_NSGETENVIRON
  extern char **environ;
#else
#include <crt_externs.h> // _NSGetEnviron
#endif
#endif

namespace llvm {

using namespace sys;

ProcessInfo::ProcessInfo() : Pid(0), ReturnCode(0) {}

ErrorOr<std::string> sys::findProgramByName(StringRef Name,
                                            ArrayRef<StringRef> Paths) {
  assert(!Name.empty() && "Must have a name!");
  // Use the given path verbatim if it contains any slashes; this matches
  // the behavior of sh(1) and friends.
  if (Name.find('/') != StringRef::npos)
    return std::string(Name);

  SmallVector<StringRef, 16> EnvironmentPaths;
  if (Paths.empty())
    if (const char *PathEnv = std::getenv("PATH")) {
      SplitString(PathEnv, EnvironmentPaths, ":");
      Paths = EnvironmentPaths;
    }

  for (auto Path : Paths) {
    if (Path.empty())
      continue;

    // Check to see if this first directory contains the executable...
    SmallString<128> FilePath(Path);
    sys::path::append(FilePath, Name);
    if (sys::fs::can_execute(FilePath.c_str()))
      return std::string(FilePath.str()); // Found the executable!
  }
  return errc::no_such_file_or_directory;
}

static bool RedirectIO(Optional<StringRef> Path, int FD, std::string* ErrMsg) {
  if (!Path) // Noop
    return false;
  std::string File;
  if (Path->empty())
    // Redirect empty paths to /dev/null
    File = "/dev/null";
  else
    File = *Path;

  // Open the file
  int InFD = open(File.c_str(), FD == 0 ? O_RDONLY : O_WRONLY|O_CREAT, 0666);
  if (InFD == -1) {
    MakeErrMsg(ErrMsg, "Cannot open file '" + File + "' for "
              + (FD == 0 ? "input" : "output"));
    return true;
  }

  // Install it as the requested FD
  if (dup2(InFD, FD) == -1) {
    MakeErrMsg(ErrMsg, "Cannot dup2");
    close(InFD);
    return true;
  }
  close(InFD);      // Close the original FD
  return false;
}

#ifdef HAVE_POSIX_SPAWN
static bool RedirectIO_PS(const std::string *Path, int FD, std::string *ErrMsg,
                          posix_spawn_file_actions_t *FileActions) {
  if (!Path) // Noop
    return false;
  const char *File;
  if (Path->empty())
    // Redirect empty paths to /dev/null
    File = "/dev/null";
  else
    File = Path->c_str();

  if (int Err = posix_spawn_file_actions_addopen(
          FileActions, FD, File,
          FD == 0 ? O_RDONLY : O_WRONLY | O_CREAT, 0666))
    return MakeErrMsg(ErrMsg, "Cannot posix_spawn_file_actions_addopen", Err);
  return false;
}
#endif

static void TimeOutHandler(int Sig) {
}

static void SetMemoryLimits(unsigned size) {
#if HAVE_SYS_RESOURCE_H && HAVE_GETRLIMIT && HAVE_SETRLIMIT
  struct rlimit r;
  __typeof__ (r.rlim_cur) limit = (__typeof__ (r.rlim_cur)) (size) * 1048576;

  // Heap size
  getrlimit (RLIMIT_DATA, &r);
  r.rlim_cur = limit;
  setrlimit (RLIMIT_DATA, &r);
#ifdef RLIMIT_RSS
  // Resident set size.
  getrlimit (RLIMIT_RSS, &r);
  r.rlim_cur = limit;
  setrlimit (RLIMIT_RSS, &r);
#endif
#endif
}

}

static std::vector<const char *>
toNullTerminatedCStringArray(ArrayRef<StringRef> Strings, StringSaver &Saver) {
  std::vector<const char *> Result;
  for (StringRef S : Strings)
    Result.push_back(Saver.save(S).data());
  Result.push_back(nullptr);
  return Result;
}

static bool Execute(ProcessInfo &PI, StringRef Program,
                    ArrayRef<StringRef> Args, Optional<ArrayRef<StringRef>> Env,
                    ArrayRef<Optional<StringRef>> Redirects,
                    unsigned MemoryLimit, std::string *ErrMsg) {
  if (!llvm::sys::fs::exists(Program)) {
    if (ErrMsg)
      *ErrMsg = std::string("Executable \"") + Program.str() +
                std::string("\" doesn't exist!");
    return false;
  }

  BumpPtrAllocator Allocator;
  StringSaver Saver(Allocator);
  std::vector<const char *> ArgVector, EnvVector;
  const char **Argv = nullptr;
  const char **Envp = nullptr;
  ArgVector = toNullTerminatedCStringArray(Args, Saver);
  Argv = ArgVector.data();
  if (Env) {
    EnvVector = toNullTerminatedCStringArray(*Env, Saver);
    Envp = EnvVector.data();
  }

  // If this OS has posix_spawn and there is no memory limit being implied, use
  // posix_spawn.  It is more efficient than fork/exec.
#ifdef HAVE_POSIX_SPAWN
  if (MemoryLimit == 0) {
    posix_spawn_file_actions_t FileActionsStore;
    posix_spawn_file_actions_t *FileActions = nullptr;

    // If we call posix_spawn_file_actions_addopen we have to make sure the
    // c strings we pass to it stay alive until the call to posix_spawn,
    // so we copy any StringRefs into this variable.
    std::string RedirectsStorage[3];

    if (!Redirects.empty()) {
      assert(Redirects.size() == 3);
      std::string *RedirectsStr[3] = {nullptr, nullptr, nullptr};
      for (int I = 0; I < 3; ++I) {
        if (Redirects[I]) {
          RedirectsStorage[I] = *Redirects[I];
          RedirectsStr[I] = &RedirectsStorage[I];
        }
      }

      FileActions = &FileActionsStore;
      posix_spawn_file_actions_init(FileActions);

      // Redirect stdin/stdout.
      if (RedirectIO_PS(RedirectsStr[0], 0, ErrMsg, FileActions) ||
          RedirectIO_PS(RedirectsStr[1], 1, ErrMsg, FileActions))
        return false;
      if (!Redirects[1] || !Redirects[2] || *Redirects[1] != *Redirects[2]) {
        // Just redirect stderr
        if (RedirectIO_PS(RedirectsStr[2], 2, ErrMsg, FileActions))
          return false;
      } else {
        // If stdout and stderr should go to the same place, redirect stderr
        // to the FD already open for stdout.
        if (int Err = posix_spawn_file_actions_adddup2(FileActions, 1, 2))
          return !MakeErrMsg(ErrMsg, "Can't redirect stderr to stdout", Err);
      }
    }

    if (!Envp)
#if !USE_NSGETENVIRON
      Envp = const_cast<const char **>(environ);
#else
      // environ is missing in dylibs.
      Envp = const_cast<const char **>(*_NSGetEnviron());
#endif

    constexpr int maxRetries = 8;
    int retries = 0;
    pid_t PID;
    int Err;
    do {
      PID = 0; // Make Valgrind happy.
      Err = posix_spawn(&PID, Program.str().c_str(), FileActions,
                        /*attrp*/ nullptr, const_cast<char **>(Argv),
                        const_cast<char **>(Envp));
    } while (Err == EINTR && ++retries < maxRetries);

    if (FileActions)
      posix_spawn_file_actions_destroy(FileActions);

    if (Err)
     return !MakeErrMsg(ErrMsg, "posix_spawn failed", Err);

    PI.Pid = PID;
    PI.Process = PID;

    return true;
  }
#endif

  // Create a child process.
  int child = fork();
  switch (child) {
    // An error occurred:  Return to the caller.
    case -1:
      MakeErrMsg(ErrMsg, "Couldn't fork");
      return false;

    // Child process: Execute the program.
    case 0: {
      // Redirect file descriptors...
      if (!Redirects.empty()) {
        // Redirect stdin
        if (RedirectIO(Redirects[0], 0, ErrMsg)) { return false; }
        // Redirect stdout
        if (RedirectIO(Redirects[1], 1, ErrMsg)) { return false; }
        if (Redirects[1] && Redirects[2] && *Redirects[1] == *Redirects[2]) {
          // If stdout and stderr should go to the same place, redirect stderr
          // to the FD already open for stdout.
          if (-1 == dup2(1,2)) {
            MakeErrMsg(ErrMsg, "Can't redirect stderr to stdout");
            return false;
          }
        } else {
          // Just redirect stderr
          if (RedirectIO(Redirects[2], 2, ErrMsg)) { return false; }
        }
      }

      // Set memory limits
      if (MemoryLimit!=0) {
        SetMemoryLimits(MemoryLimit);
      }

      // Execute!
      std::string PathStr = Program;
      if (Envp != nullptr)
        execve(PathStr.c_str(), const_cast<char **>(Argv),
               const_cast<char **>(Envp));
      else
        execv(PathStr.c_str(), const_cast<char **>(Argv));
      // If the execve() failed, we should exit. Follow Unix protocol and
      // return 127 if the executable was not found, and 126 otherwise.
      // Use _exit rather than exit so that atexit functions and static
      // object destructors cloned from the parent process aren't
      // redundantly run, and so that any data buffered in stdio buffers
      // cloned from the parent aren't redundantly written out.
      _exit(errno == ENOENT ? 127 : 126);
    }

    // Parent process: Break out of the switch to do our processing.
    default:
      break;
  }

  PI.Pid = child;
  PI.Process = child;

  return true;
}

namespace llvm {

ProcessInfo sys::Wait(const ProcessInfo &PI, unsigned SecondsToWait,
                      bool WaitUntilTerminates, std::string *ErrMsg) {
  struct sigaction Act, Old;
  assert(PI.Pid && "invalid pid to wait on, process not started?");

  int WaitPidOptions = 0;
  pid_t ChildPid = PI.Pid;
  if (WaitUntilTerminates) {
    SecondsToWait = 0;
  } else if (SecondsToWait) {
    // Install a timeout handler.  The handler itself does nothing, but the
    // simple fact of having a handler at all causes the wait below to return
    // with EINTR, unlike if we used SIG_IGN.
    memset(&Act, 0, sizeof(Act));
    Act.sa_handler = TimeOutHandler;
    sigemptyset(&Act.sa_mask);
    sigaction(SIGALRM, &Act, &Old);
    alarm(SecondsToWait);
  } else if (SecondsToWait == 0)
    WaitPidOptions = WNOHANG;

  // Parent process: Wait for the child process to terminate.
  int status;
  ProcessInfo WaitResult;

  do {
    WaitResult.Pid = waitpid(ChildPid, &status, WaitPidOptions);
  } while (WaitUntilTerminates && WaitResult.Pid == -1 && errno == EINTR);

  if (WaitResult.Pid != PI.Pid) {
    if (WaitResult.Pid == 0) {
      // Non-blocking wait.
      return WaitResult;
    } else {
      if (SecondsToWait && errno == EINTR) {
        // Kill the child.
        kill(PI.Pid, SIGKILL);

        // Turn off the alarm and restore the signal handler
        alarm(0);
        sigaction(SIGALRM, &Old, nullptr);

        // Wait for child to die
        if (wait(&status) != ChildPid)
          MakeErrMsg(ErrMsg, "Child timed out but wouldn't die");
        else
          MakeErrMsg(ErrMsg, "Child timed out", 0);

        WaitResult.ReturnCode = -2; // Timeout detected
        return WaitResult;
      } else if (errno != EINTR) {
        MakeErrMsg(ErrMsg, "Error waiting for child process");
        WaitResult.ReturnCode = -1;
        return WaitResult;
      }
    }
  }

  // We exited normally without timeout, so turn off the timer.
  if (SecondsToWait && !WaitUntilTerminates) {
    alarm(0);
    sigaction(SIGALRM, &Old, nullptr);
  }

  // Return the proper exit status. Detect error conditions
  // so we can return -1 for them and set ErrMsg informatively.
  int result = 0;
  if (WIFEXITED(status)) {
    result = WEXITSTATUS(status);
    WaitResult.ReturnCode = result;

    if (result == 127) {
      if (ErrMsg)
        *ErrMsg = llvm::sys::StrError(ENOENT);
      WaitResult.ReturnCode = -1;
      return WaitResult;
    }
    if (result == 126) {
      if (ErrMsg)
        *ErrMsg = "Program could not be executed";
      WaitResult.ReturnCode = -1;
      return WaitResult;
    }
  } else if (WIFSIGNALED(status)) {
    if (ErrMsg) {
      *ErrMsg = strsignal(WTERMSIG(status));
#ifdef WCOREDUMP
      if (WCOREDUMP(status))
        *ErrMsg += " (core dumped)";
#endif
    }
    // Return a special value to indicate that the process received an unhandled
    // signal during execution as opposed to failing to execute.
    WaitResult.ReturnCode = -2;
  }
  return WaitResult;
}

std::error_code sys::ChangeStdinToBinary() {
  // Do nothing, as Unix doesn't differentiate between text and binary.
  return std::error_code();
}

std::error_code sys::ChangeStdoutToBinary() {
  // Do nothing, as Unix doesn't differentiate between text and binary.
  return std::error_code();
}

std::error_code
llvm::sys::writeFileWithEncoding(StringRef FileName, StringRef Contents,
                                 WindowsEncodingMethod Encoding /*unused*/) {
  std::error_code EC;
  llvm::raw_fd_ostream OS(FileName, EC, llvm::sys::fs::OpenFlags::OF_Text);

  if (EC)
    return EC;

  OS << Contents;

  if (OS.has_error())
    return make_error_code(errc::io_error);

  return EC;
}

bool llvm::sys::commandLineFitsWithinSystemLimits(StringRef Program,
                                                  ArrayRef<StringRef> Args) {
  static long ArgMax = sysconf(_SC_ARG_MAX);
  // POSIX requires that _POSIX_ARG_MAX is 4096, which is the lowest possible
  // value for ARG_MAX on a POSIX compliant system.
  static long ArgMin = _POSIX_ARG_MAX;

  // This the same baseline used by xargs.
  long EffectiveArgMax = 128 * 1024;

  if (EffectiveArgMax > ArgMax)
    EffectiveArgMax = ArgMax;
  else if (EffectiveArgMax < ArgMin)
    EffectiveArgMax = ArgMin;

  // System says no practical limit.
  if (ArgMax == -1)
    return true;

  // Conservatively account for space required by environment variables.
  long HalfArgMax = EffectiveArgMax / 2;

  size_t ArgLength = Program.size() + 1;
  for (StringRef Arg : Args) {
    // Ensure that we do not exceed the MAX_ARG_STRLEN constant on Linux, which
    // does not have a constant unlike what the man pages would have you
    // believe. Since this limit is pretty high, perform the check
    // unconditionally rather than trying to be aggressive and limiting it to
    // Linux only.
    if (Arg.size() >= (32 * 4096))
      return false;

    ArgLength += Arg.size() + 1;
    if (ArgLength > size_t(HalfArgMax)) {
      return false;
    }
  }

  return true;
}
}