reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
//===--------------------- RegisterFile.cpp ---------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file defines a register mapping file class.  This class is responsible
/// for managing hardware register files and the tracking of data dependencies
/// between registers.
///
//===----------------------------------------------------------------------===//

#include "llvm/MCA/HardwareUnits/RegisterFile.h"
#include "llvm/MCA/Instruction.h"
#include "llvm/Support/Debug.h"

#define DEBUG_TYPE "llvm-mca"

namespace llvm {
namespace mca {

RegisterFile::RegisterFile(const MCSchedModel &SM, const MCRegisterInfo &mri,
                           unsigned NumRegs)
    : MRI(mri),
      RegisterMappings(mri.getNumRegs(), {WriteRef(), RegisterRenamingInfo()}),
      ZeroRegisters(mri.getNumRegs(), false) {
  initialize(SM, NumRegs);
}

void RegisterFile::initialize(const MCSchedModel &SM, unsigned NumRegs) {
  // Create a default register file that "sees" all the machine registers
  // declared by the target. The number of physical registers in the default
  // register file is set equal to `NumRegs`. A value of zero for `NumRegs`
  // means: this register file has an unbounded number of physical registers.
  RegisterFiles.emplace_back(NumRegs);
  if (!SM.hasExtraProcessorInfo())
    return;

  // For each user defined register file, allocate a RegisterMappingTracker
  // object. The size of every register file, as well as the mapping between
  // register files and register classes is specified via tablegen.
  const MCExtraProcessorInfo &Info = SM.getExtraProcessorInfo();

  // Skip invalid register file at index 0.
  for (unsigned I = 1, E = Info.NumRegisterFiles; I < E; ++I) {
    const MCRegisterFileDesc &RF = Info.RegisterFiles[I];
    assert(RF.NumPhysRegs && "Invalid PRF with zero physical registers!");

    // The cost of a register definition is equivalent to the number of
    // physical registers that are allocated at register renaming stage.
    unsigned Length = RF.NumRegisterCostEntries;
    const MCRegisterCostEntry *FirstElt =
        &Info.RegisterCostTable[RF.RegisterCostEntryIdx];
    addRegisterFile(RF, ArrayRef<MCRegisterCostEntry>(FirstElt, Length));
  }
}

void RegisterFile::cycleStart() {
  for (RegisterMappingTracker &RMT : RegisterFiles)
    RMT.NumMoveEliminated = 0;
}

void RegisterFile::addRegisterFile(const MCRegisterFileDesc &RF,
                                   ArrayRef<MCRegisterCostEntry> Entries) {
  // A default register file is always allocated at index #0. That register file
  // is mainly used to count the total number of mappings created by all
  // register files at runtime. Users can limit the number of available physical
  // registers in register file #0 through the command line flag
  // `-register-file-size`.
  unsigned RegisterFileIndex = RegisterFiles.size();
  RegisterFiles.emplace_back(RF.NumPhysRegs, RF.MaxMovesEliminatedPerCycle,
                             RF.AllowZeroMoveEliminationOnly);

  // Special case where there is no register class identifier in the set.
  // An empty set of register classes means: this register file contains all
  // the physical registers specified by the target.
  // We optimistically assume that a register can be renamed at the cost of a
  // single physical register. The constructor of RegisterFile ensures that
  // a RegisterMapping exists for each logical register defined by the Target.
  if (Entries.empty())
    return;

  // Now update the cost of individual registers.
  for (const MCRegisterCostEntry &RCE : Entries) {
    const MCRegisterClass &RC = MRI.getRegClass(RCE.RegisterClassID);
    for (const MCPhysReg Reg : RC) {
      RegisterRenamingInfo &Entry = RegisterMappings[Reg].second;
      IndexPlusCostPairTy &IPC = Entry.IndexPlusCost;
      if (IPC.first && IPC.first != RegisterFileIndex) {
        // The only register file that is allowed to overlap is the default
        // register file at index #0. The analysis is inaccurate if register
        // files overlap.
        errs() << "warning: register " << MRI.getName(Reg)
               << " defined in multiple register files.";
      }
      IPC = std::make_pair(RegisterFileIndex, RCE.Cost);
      Entry.RenameAs = Reg;
      Entry.AllowMoveElimination = RCE.AllowMoveElimination;

      // Assume the same cost for each sub-register.
      for (MCSubRegIterator I(Reg, &MRI); I.isValid(); ++I) {
        RegisterRenamingInfo &OtherEntry = RegisterMappings[*I].second;
        if (!OtherEntry.IndexPlusCost.first &&
            (!OtherEntry.RenameAs ||
             MRI.isSuperRegister(*I, OtherEntry.RenameAs))) {
          OtherEntry.IndexPlusCost = IPC;
          OtherEntry.RenameAs = Reg;
        }
      }
    }
  }
}

void RegisterFile::allocatePhysRegs(const RegisterRenamingInfo &Entry,
                                    MutableArrayRef<unsigned> UsedPhysRegs) {
  unsigned RegisterFileIndex = Entry.IndexPlusCost.first;
  unsigned Cost = Entry.IndexPlusCost.second;
  if (RegisterFileIndex) {
    RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex];
    RMT.NumUsedPhysRegs += Cost;
    UsedPhysRegs[RegisterFileIndex] += Cost;
  }

  // Now update the default register mapping tracker.
  RegisterFiles[0].NumUsedPhysRegs += Cost;
  UsedPhysRegs[0] += Cost;
}

void RegisterFile::freePhysRegs(const RegisterRenamingInfo &Entry,
                                MutableArrayRef<unsigned> FreedPhysRegs) {
  unsigned RegisterFileIndex = Entry.IndexPlusCost.first;
  unsigned Cost = Entry.IndexPlusCost.second;
  if (RegisterFileIndex) {
    RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex];
    RMT.NumUsedPhysRegs -= Cost;
    FreedPhysRegs[RegisterFileIndex] += Cost;
  }

  // Now update the default register mapping tracker.
  RegisterFiles[0].NumUsedPhysRegs -= Cost;
  FreedPhysRegs[0] += Cost;
}

void RegisterFile::addRegisterWrite(WriteRef Write,
                                    MutableArrayRef<unsigned> UsedPhysRegs) {
  WriteState &WS = *Write.getWriteState();
  MCPhysReg RegID = WS.getRegisterID();
  assert(RegID && "Adding an invalid register definition?");

  LLVM_DEBUG({
    dbgs() << "RegisterFile: addRegisterWrite [ " << Write.getSourceIndex()
           << ", " << MRI.getName(RegID) << "]\n";
  });

  // If RenameAs is equal to RegID, then RegID is subject to register renaming
  // and false dependencies on RegID are all eliminated.

  // If RenameAs references the invalid register, then we optimistically assume
  // that it can be renamed. In the absence of tablegen descriptors for register
  // files, RenameAs is always set to the invalid register ID.  In all other
  // cases, RenameAs must be either equal to RegID, or it must reference a
  // super-register of RegID.

  // If RenameAs is a super-register of RegID, then a write to RegID has always
  // a false dependency on RenameAs. The only exception is for when the write
  // implicitly clears the upper portion of the underlying register.
  // If a write clears its super-registers, then it is renamed as `RenameAs`.
  bool IsWriteZero = WS.isWriteZero();
  bool IsEliminated = WS.isEliminated();
  bool ShouldAllocatePhysRegs = !IsWriteZero && !IsEliminated;
  const RegisterRenamingInfo &RRI = RegisterMappings[RegID].second;
  WS.setPRF(RRI.IndexPlusCost.first);

  if (RRI.RenameAs && RRI.RenameAs != RegID) {
    RegID = RRI.RenameAs;
    WriteRef &OtherWrite = RegisterMappings[RegID].first;

    if (!WS.clearsSuperRegisters()) {
      // The processor keeps the definition of `RegID` together with register
      // `RenameAs`. Since this partial write is not renamed, no physical
      // register is allocated.
      ShouldAllocatePhysRegs = false;

      WriteState *OtherWS = OtherWrite.getWriteState();
      if (OtherWS && (OtherWrite.getSourceIndex() != Write.getSourceIndex())) {
        // This partial write has a false dependency on RenameAs.
        assert(!IsEliminated && "Unexpected partial update!");
        OtherWS->addUser(OtherWrite.getSourceIndex(), &WS);
      }
    }
  }

  // Update zero registers.
  MCPhysReg ZeroRegisterID =
      WS.clearsSuperRegisters() ? RegID : WS.getRegisterID();
  if (IsWriteZero) {
    ZeroRegisters.setBit(ZeroRegisterID);
    for (MCSubRegIterator I(ZeroRegisterID, &MRI); I.isValid(); ++I)
      ZeroRegisters.setBit(*I);
  } else {
    ZeroRegisters.clearBit(ZeroRegisterID);
    for (MCSubRegIterator I(ZeroRegisterID, &MRI); I.isValid(); ++I)
      ZeroRegisters.clearBit(*I);
  }

  // If this is move has been eliminated, then the call to tryEliminateMove
  // should have already updated all the register mappings.
  if (!IsEliminated) {
    // Update the mapping for register RegID including its sub-registers.
    RegisterMappings[RegID].first = Write;
    RegisterMappings[RegID].second.AliasRegID = 0U;
    for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) {
      RegisterMappings[*I].first = Write;
      RegisterMappings[*I].second.AliasRegID = 0U;
    }

    // No physical registers are allocated for instructions that are optimized
    // in hardware. For example, zero-latency data-dependency breaking
    // instructions don't consume physical registers.
    if (ShouldAllocatePhysRegs)
      allocatePhysRegs(RegisterMappings[RegID].second, UsedPhysRegs);
  }

  if (!WS.clearsSuperRegisters())
    return;

  for (MCSuperRegIterator I(RegID, &MRI); I.isValid(); ++I) {
    if (!IsEliminated) {
      RegisterMappings[*I].first = Write;
      RegisterMappings[*I].second.AliasRegID = 0U;
    }

    if (IsWriteZero)
      ZeroRegisters.setBit(*I);
    else
      ZeroRegisters.clearBit(*I);
  }
}

void RegisterFile::removeRegisterWrite(
    const WriteState &WS, MutableArrayRef<unsigned> FreedPhysRegs) {
  // Early exit if this write was eliminated. A write eliminated at register
  // renaming stage generates an alias, and it is not added to the PRF.
  if (WS.isEliminated())
    return;

  MCPhysReg RegID = WS.getRegisterID();

  assert(RegID != 0 && "Invalidating an already invalid register?");
  assert(WS.getCyclesLeft() != UNKNOWN_CYCLES &&
         "Invalidating a write of unknown cycles!");
  assert(WS.getCyclesLeft() <= 0 && "Invalid cycles left for this write!");

  bool ShouldFreePhysRegs = !WS.isWriteZero();
  MCPhysReg RenameAs = RegisterMappings[RegID].second.RenameAs;
  if (RenameAs && RenameAs != RegID) {
    RegID = RenameAs;

    if (!WS.clearsSuperRegisters()) {
      // Keep the definition of `RegID` together with register `RenameAs`.
      ShouldFreePhysRegs = false;
    }
  }

  if (ShouldFreePhysRegs)
    freePhysRegs(RegisterMappings[RegID].second, FreedPhysRegs);

  WriteRef &WR = RegisterMappings[RegID].first;
  if (WR.getWriteState() == &WS)
    WR.invalidate();

  for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) {
    WriteRef &OtherWR = RegisterMappings[*I].first;
    if (OtherWR.getWriteState() == &WS)
      OtherWR.invalidate();
  }

  if (!WS.clearsSuperRegisters())
    return;

  for (MCSuperRegIterator I(RegID, &MRI); I.isValid(); ++I) {
    WriteRef &OtherWR = RegisterMappings[*I].first;
    if (OtherWR.getWriteState() == &WS)
      OtherWR.invalidate();
  }
}

bool RegisterFile::tryEliminateMove(WriteState &WS, ReadState &RS) {
  const RegisterMapping &RMFrom = RegisterMappings[RS.getRegisterID()];
  const RegisterMapping &RMTo = RegisterMappings[WS.getRegisterID()];

  // From and To must be owned by the same PRF.
  const RegisterRenamingInfo &RRIFrom = RMFrom.second;
  const RegisterRenamingInfo &RRITo = RMTo.second;
  unsigned RegisterFileIndex = RRIFrom.IndexPlusCost.first;
  if (RegisterFileIndex != RRITo.IndexPlusCost.first)
    return false;

  // We only allow move elimination for writes that update a full physical
  // register. On X86, move elimination is possible with 32-bit general purpose
  // registers because writes to those registers are not partial writes.  If a
  // register move is a partial write, then we conservatively assume that move
  // elimination fails, since it would either trigger a partial update, or the
  // issue of a merge opcode.
  //
  // Note that this constraint may be lifted in future.  For example, we could
  // make this model more flexible, and let users customize the set of registers
  // (i.e. register classes) that allow move elimination.
  //
  // For now, we assume that there is a strong correlation between registers
  // that allow move elimination, and how those same registers are renamed in
  // hardware.
  if (RRITo.RenameAs && RRITo.RenameAs != WS.getRegisterID()) {
    // Early exit if the PRF doesn't support move elimination for this register.
    if (!RegisterMappings[RRITo.RenameAs].second.AllowMoveElimination)
      return false;
    if (!WS.clearsSuperRegisters())
      return false;
  }

  RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex];
  if (RMT.MaxMoveEliminatedPerCycle &&
      RMT.NumMoveEliminated == RMT.MaxMoveEliminatedPerCycle)
    return false;

  bool IsZeroMove = ZeroRegisters[RS.getRegisterID()];
  if (RMT.AllowZeroMoveEliminationOnly && !IsZeroMove)
    return false;

  // Construct an alias.
  MCPhysReg AliasedReg =
      RRIFrom.RenameAs ? RRIFrom.RenameAs : RS.getRegisterID();
  MCPhysReg AliasReg = RRITo.RenameAs ? RRITo.RenameAs : WS.getRegisterID();

  const RegisterRenamingInfo &RMAlias = RegisterMappings[AliasedReg].second;
  if (RMAlias.AliasRegID)
    AliasedReg = RMAlias.AliasRegID;

  RegisterMappings[AliasReg].second.AliasRegID = AliasedReg;
  for (MCSubRegIterator I(AliasReg, &MRI); I.isValid(); ++I)
    RegisterMappings[*I].second.AliasRegID = AliasedReg;

  if (IsZeroMove) {
    WS.setWriteZero();
    RS.setReadZero();
  }
  WS.setEliminated();
  RMT.NumMoveEliminated++;

  return true;
}

void RegisterFile::collectWrites(const ReadState &RS,
                                 SmallVectorImpl<WriteRef> &Writes) const {
  MCPhysReg RegID = RS.getRegisterID();
  assert(RegID && RegID < RegisterMappings.size());
  LLVM_DEBUG(dbgs() << "RegisterFile: collecting writes for register "
                    << MRI.getName(RegID) << '\n');

  // Check if this is an alias.
  const RegisterRenamingInfo &RRI = RegisterMappings[RegID].second;
  if (RRI.AliasRegID)
    RegID = RRI.AliasRegID;

  const WriteRef &WR = RegisterMappings[RegID].first;
  if (WR.isValid())
    Writes.push_back(WR);

  // Handle potential partial register updates.
  for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) {
    const WriteRef &WR = RegisterMappings[*I].first;
    if (WR.isValid())
      Writes.push_back(WR);
  }

  // Remove duplicate entries and resize the input vector.
  if (Writes.size() > 1) {
    sort(Writes, [](const WriteRef &Lhs, const WriteRef &Rhs) {
      return Lhs.getWriteState() < Rhs.getWriteState();
    });
    auto It = std::unique(Writes.begin(), Writes.end());
    Writes.resize(std::distance(Writes.begin(), It));
  }

  LLVM_DEBUG({
    for (const WriteRef &WR : Writes) {
      const WriteState &WS = *WR.getWriteState();
      dbgs() << "[PRF] Found a dependent use of Register "
             << MRI.getName(WS.getRegisterID()) << " (defined by instruction #"
             << WR.getSourceIndex() << ")\n";
    }
  });
}

void RegisterFile::addRegisterRead(ReadState &RS,
                                   const MCSubtargetInfo &STI) const {
  MCPhysReg RegID = RS.getRegisterID();
  const RegisterRenamingInfo &RRI = RegisterMappings[RegID].second;
  RS.setPRF(RRI.IndexPlusCost.first);
  if (RS.isIndependentFromDef())
    return;

  if (ZeroRegisters[RS.getRegisterID()])
    RS.setReadZero();

  SmallVector<WriteRef, 4> DependentWrites;
  collectWrites(RS, DependentWrites);
  RS.setDependentWrites(DependentWrites.size());

  // We know that this read depends on all the writes in DependentWrites.
  // For each write, check if we have ReadAdvance information, and use it
  // to figure out in how many cycles this read becomes available.
  const ReadDescriptor &RD = RS.getDescriptor();
  const MCSchedModel &SM = STI.getSchedModel();
  const MCSchedClassDesc *SC = SM.getSchedClassDesc(RD.SchedClassID);
  for (WriteRef &WR : DependentWrites) {
    WriteState &WS = *WR.getWriteState();
    unsigned WriteResID = WS.getWriteResourceID();
    int ReadAdvance = STI.getReadAdvanceCycles(SC, RD.UseIndex, WriteResID);
    WS.addUser(WR.getSourceIndex(), &RS, ReadAdvance);
  }
}

unsigned RegisterFile::isAvailable(ArrayRef<MCPhysReg> Regs) const {
  SmallVector<unsigned, 4> NumPhysRegs(getNumRegisterFiles());

  // Find how many new mappings must be created for each register file.
  for (const MCPhysReg RegID : Regs) {
    const RegisterRenamingInfo &RRI = RegisterMappings[RegID].second;
    const IndexPlusCostPairTy &Entry = RRI.IndexPlusCost;
    if (Entry.first)
      NumPhysRegs[Entry.first] += Entry.second;
    NumPhysRegs[0] += Entry.second;
  }

  unsigned Response = 0;
  for (unsigned I = 0, E = getNumRegisterFiles(); I < E; ++I) {
    unsigned NumRegs = NumPhysRegs[I];
    if (!NumRegs)
      continue;

    const RegisterMappingTracker &RMT = RegisterFiles[I];
    if (!RMT.NumPhysRegs) {
      // The register file has an unbounded number of microarchitectural
      // registers.
      continue;
    }

    if (RMT.NumPhysRegs < NumRegs) {
      // The current register file is too small. This may occur if the number of
      // microarchitectural registers in register file #0 was changed by the
      // users via flag -reg-file-size. Alternatively, the scheduling model
      // specified a too small number of registers for this register file.
      LLVM_DEBUG(dbgs() << "Not enough registers in the register file.\n");

      // FIXME: Normalize the instruction register count to match the
      // NumPhysRegs value.  This is a highly unusual case, and is not expected
      // to occur.  This normalization is hiding an inconsistency in either the
      // scheduling model or in the value that the user might have specified
      // for NumPhysRegs.
      NumRegs = RMT.NumPhysRegs;
    }

    if (RMT.NumPhysRegs < (RMT.NumUsedPhysRegs + NumRegs))
      Response |= (1U << I);
  }

  return Response;
}

#ifndef NDEBUG
void RegisterFile::dump() const {
  for (unsigned I = 0, E = MRI.getNumRegs(); I < E; ++I) {
    const RegisterMapping &RM = RegisterMappings[I];
    const RegisterRenamingInfo &RRI = RM.second;
    if (ZeroRegisters[I]) {
      dbgs() << MRI.getName(I) << ", " << I
             << ", PRF=" << RRI.IndexPlusCost.first
             << ", Cost=" << RRI.IndexPlusCost.second
             << ", RenameAs=" << RRI.RenameAs << ", IsZero=" << ZeroRegisters[I]
             << ",";
      RM.first.dump();
      dbgs() << '\n';
    }
  }

  for (unsigned I = 0, E = getNumRegisterFiles(); I < E; ++I) {
    dbgs() << "Register File #" << I;
    const RegisterMappingTracker &RMT = RegisterFiles[I];
    dbgs() << "\n  TotalMappings:        " << RMT.NumPhysRegs
           << "\n  NumUsedMappings:      " << RMT.NumUsedPhysRegs << '\n';
  }
}
#endif

} // namespace mca
} // namespace llvm