reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
//===-- lib/MC/XCOFFObjectWriter.cpp - XCOFF file writer ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements XCOFF object file writer information.
//
//===----------------------------------------------------------------------===//

#include "llvm/BinaryFormat/XCOFF.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSectionXCOFF.h"
#include "llvm/MC/MCSymbolXCOFF.h"
#include "llvm/MC/MCValue.h"
#include "llvm/MC/MCXCOFFObjectWriter.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/MathExtras.h"

#include <deque>

using namespace llvm;

// An XCOFF object file has a limited set of predefined sections. The most
// important ones for us (right now) are:
// .text --> contains program code and read-only data.
// .data --> contains initialized data, function descriptors, and the TOC.
// .bss  --> contains uninitialized data.
// Each of these sections is composed of 'Control Sections'. A Control Section
// is more commonly referred to as a csect. A csect is an indivisible unit of
// code or data, and acts as a container for symbols. A csect is mapped
// into a section based on its storage-mapping class, with the exception of
// XMC_RW which gets mapped to either .data or .bss based on whether it's
// explicitly initialized or not.
//
// We don't represent the sections in the MC layer as there is nothing
// interesting about them at at that level: they carry information that is
// only relevant to the ObjectWriter, so we materialize them in this class.
namespace {

constexpr unsigned DefaultSectionAlign = 4;
constexpr int16_t MaxSectionIndex = INT16_MAX;

// Packs the csect's alignment and type into a byte.
uint8_t getEncodedType(const MCSectionXCOFF *);

// Wrapper around an MCSymbolXCOFF.
struct Symbol {
  const MCSymbolXCOFF *const MCSym;
  uint32_t SymbolTableIndex;

  XCOFF::StorageClass getStorageClass() const {
    return MCSym->getStorageClass();
  }
  StringRef getName() const { return MCSym->getName(); }
  Symbol(const MCSymbolXCOFF *MCSym) : MCSym(MCSym), SymbolTableIndex(-1) {}
};

// Wrapper for an MCSectionXCOFF.
struct ControlSection {
  const MCSectionXCOFF *const MCCsect;
  uint32_t SymbolTableIndex;
  uint32_t Address;
  uint32_t Size;

  SmallVector<Symbol, 1> Syms;
  StringRef getName() const { return MCCsect->getSectionName(); }
  ControlSection(const MCSectionXCOFF *MCSec)
      : MCCsect(MCSec), SymbolTableIndex(-1), Address(-1), Size(0) {}
};

// Type to be used for a container representing a set of csects with
// (approximately) the same storage mapping class. For example all the csects
// with a storage mapping class of `xmc_pr` will get placed into the same
// container.
struct CsectGroup {
  enum LabelDefinitionSupport : bool {
    LabelDefSupported = true,
    LabelDefUnsupported = false
  };

  const LabelDefinitionSupport SupportLabelDef;
  std::deque<ControlSection> Csects;
};

using CsectGroups = std::deque<CsectGroup *>;

// Represents the data related to a section excluding the csects that make up
// the raw data of the section. The csects are stored separately as not all
// sections contain csects, and some sections contain csects which are better
// stored separately, e.g. the .data section containing read-write, descriptor,
// TOCBase and TOC-entry csects.
struct Section {
  char Name[XCOFF::NameSize];
  // The physical/virtual address of the section. For an object file
  // these values are equivalent.
  uint32_t Address;
  uint32_t Size;
  uint32_t FileOffsetToData;
  uint32_t FileOffsetToRelocations;
  uint32_t RelocationCount;
  int32_t Flags;

  int16_t Index;

  // Virtual sections do not need storage allocated in the object file.
  const bool IsVirtual;

  // XCOFF has special section numbers for symbols:
  // -2 Specifies N_DEBUG, a special symbolic debugging symbol.
  // -1 Specifies N_ABS, an absolute symbol. The symbol has a value but is not
  // relocatable.
  //  0 Specifies N_UNDEF, an undefined external symbol.
  // Therefore, we choose -3 (N_DEBUG - 1) to represent a section index that
  // hasn't been initialized.
  static constexpr int16_t UninitializedIndex =
      XCOFF::ReservedSectionNum::N_DEBUG - 1;

  CsectGroups Groups;

  void reset() {
    Address = 0;
    Size = 0;
    FileOffsetToData = 0;
    FileOffsetToRelocations = 0;
    RelocationCount = 0;
    Index = UninitializedIndex;
    // Clear any csects we have stored.
    for (auto *Group : Groups)
      Group->Csects.clear();
  }

  Section(const char *N, XCOFF::SectionTypeFlags Flags, bool IsVirtual,
          CsectGroups Groups)
      : Address(0), Size(0), FileOffsetToData(0), FileOffsetToRelocations(0),
        RelocationCount(0), Flags(Flags), Index(UninitializedIndex),
        IsVirtual(IsVirtual), Groups(Groups) {
    strncpy(Name, N, XCOFF::NameSize);
  }
};

class XCOFFObjectWriter : public MCObjectWriter {

  uint32_t SymbolTableEntryCount = 0;
  uint32_t SymbolTableOffset = 0;
  uint16_t SectionCount = 0;

  support::endian::Writer W;
  std::unique_ptr<MCXCOFFObjectTargetWriter> TargetObjectWriter;
  StringTableBuilder Strings;

  // CsectGroups. These store the csects which make up different parts of
  // the sections. Should have one for each set of csects that get mapped into
  // the same section and get handled in a 'similar' way.
  CsectGroup ProgramCodeCsects{CsectGroup::LabelDefSupported, {}};
  CsectGroup BSSCsects{CsectGroup::LabelDefUnsupported, {}};

  // The Predefined sections.
  Section Text;
  Section BSS;

  // All the XCOFF sections, in the order they will appear in the section header
  // table.
  std::array<Section *const, 2> Sections{{&Text, &BSS}};

  CsectGroup &getCsectGroup(const MCSectionXCOFF *MCSec);

  virtual void reset() override;

  void executePostLayoutBinding(MCAssembler &, const MCAsmLayout &) override;

  void recordRelocation(MCAssembler &, const MCAsmLayout &, const MCFragment *,
                        const MCFixup &, MCValue, uint64_t &) override;

  uint64_t writeObject(MCAssembler &, const MCAsmLayout &) override;

  static bool nameShouldBeInStringTable(const StringRef &);
  void writeSymbolName(const StringRef &);
  void writeSymbolTableEntryForCsectMemberLabel(const Symbol &,
                                                const ControlSection &, int16_t,
                                                uint64_t);
  void writeSymbolTableEntryForControlSection(const ControlSection &, int16_t,
                                              XCOFF::StorageClass);
  void writeFileHeader();
  void writeSectionHeaderTable();
  void writeSections(const MCAssembler &Asm, const MCAsmLayout &Layout);
  void writeSymbolTable(const MCAsmLayout &Layout);

  // Called after all the csects and symbols have been processed by
  // `executePostLayoutBinding`, this function handles building up the majority
  // of the structures in the object file representation. Namely:
  // *) Calculates physical/virtual addresses, raw-pointer offsets, and section
  //    sizes.
  // *) Assigns symbol table indices.
  // *) Builds up the section header table by adding any non-empty sections to
  //    `Sections`.
  void assignAddressesAndIndices(const MCAsmLayout &);

  bool
  needsAuxiliaryHeader() const { /* TODO aux header support not implemented. */
    return false;
  }

  // Returns the size of the auxiliary header to be written to the object file.
  size_t auxiliaryHeaderSize() const {
    assert(!needsAuxiliaryHeader() &&
           "Auxiliary header support not implemented.");
    return 0;
  }

public:
  XCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
                    raw_pwrite_stream &OS);
};

XCOFFObjectWriter::XCOFFObjectWriter(
    std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, raw_pwrite_stream &OS)
    : W(OS, support::big), TargetObjectWriter(std::move(MOTW)),
      Strings(StringTableBuilder::XCOFF),
      Text(".text", XCOFF::STYP_TEXT, /* IsVirtual */ false,
           CsectGroups{&ProgramCodeCsects}),
      BSS(".bss", XCOFF::STYP_BSS, /* IsVirtual */ true,
          CsectGroups{&BSSCsects}) {}

void XCOFFObjectWriter::reset() {
  // Reset any sections we have written to, and empty the section header table.
  for (auto *Sec : Sections)
    Sec->reset();

  // Reset the symbol table and string table.
  SymbolTableEntryCount = 0;
  SymbolTableOffset = 0;
  SectionCount = 0;
  Strings.clear();

  MCObjectWriter::reset();
}

CsectGroup &XCOFFObjectWriter::getCsectGroup(const MCSectionXCOFF *MCSec) {
  switch (MCSec->getMappingClass()) {
  case XCOFF::XMC_PR:
    assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
           "Only an initialized csect can contain program code.");
    return ProgramCodeCsects;
  case XCOFF::XMC_RW:
    if (XCOFF::XTY_CM == MCSec->getCSectType())
      return BSSCsects;

    report_fatal_error("Unhandled mapping of read-write csect to section.");
  case XCOFF::XMC_BS:
    assert(XCOFF::XTY_CM == MCSec->getCSectType() &&
           "Mapping invalid csect. CSECT with bss storage class must be "
           "common type.");
    return BSSCsects;
  default:
    report_fatal_error("Unhandled mapping of csect to section.");
  }
}

void XCOFFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
                                                 const MCAsmLayout &Layout) {
  if (TargetObjectWriter->is64Bit())
    report_fatal_error("64-bit XCOFF object files are not supported yet.");

  // Maps the MC Section representation to its corresponding ControlSection
  // wrapper. Needed for finding the ControlSection to insert an MCSymbol into
  // from its containing MCSectionXCOFF.
  DenseMap<const MCSectionXCOFF *, ControlSection *> WrapperMap;

  for (const auto &S : Asm) {
    const auto *MCSec = cast<const MCSectionXCOFF>(&S);
    assert(WrapperMap.find(MCSec) == WrapperMap.end() &&
           "Cannot add a csect twice.");

    // If the name does not fit in the storage provided in the symbol table
    // entry, add it to the string table.
    if (nameShouldBeInStringTable(MCSec->getSectionName()))
      Strings.add(MCSec->getSectionName());

    // TODO FIXME Handle emiting the TOC base.
    if (MCSec->getMappingClass() == XCOFF::XMC_TC0)
      continue;

    CsectGroup &Group = getCsectGroup(MCSec);
    Group.Csects.emplace_back(MCSec);
    WrapperMap[MCSec] = &Group.Csects.back();
  }

  for (const MCSymbol &S : Asm.symbols()) {
    // Nothing to do for temporary symbols.
    if (S.isTemporary())
      continue;
    const MCSymbolXCOFF *XSym = cast<MCSymbolXCOFF>(&S);

    // Map the symbol into its containing csect.
    const MCSectionXCOFF *ContainingCsect = XSym->getContainingCsect();
    assert(WrapperMap.find(ContainingCsect) != WrapperMap.end() &&
           "Expected containing csect to exist in map");

    // Lookup the containing csect and add the symbol to it.
    WrapperMap[ContainingCsect]->Syms.emplace_back(XSym);

    // If the name does not fit in the storage provided in the symbol table
    // entry, add it to the string table.
    if (nameShouldBeInStringTable(XSym->getName()))
      Strings.add(XSym->getName());
    }

  Strings.finalize();
  assignAddressesAndIndices(Layout);
}

void XCOFFObjectWriter::recordRelocation(MCAssembler &, const MCAsmLayout &,
                                         const MCFragment *, const MCFixup &,
                                         MCValue, uint64_t &) {
  report_fatal_error("XCOFF relocations not supported.");
}

void XCOFFObjectWriter::writeSections(const MCAssembler &Asm,
                                      const MCAsmLayout &Layout) {
  uint32_t CurrentAddressLocation = 0;
  for (const auto *Section : Sections) {
    // Nothing to write for this Section.
    if (Section->Index == Section::UninitializedIndex || Section->IsVirtual)
      continue;

    assert(CurrentAddressLocation == Section->Address &&
           "We should have no padding between sections.");
    for (const auto *Group : Section->Groups) {
      for (const auto &Csect : Group->Csects) {
        if (uint32_t PaddingSize = Csect.Address - CurrentAddressLocation)
          W.OS.write_zeros(PaddingSize);
        Asm.writeSectionData(W.OS, Csect.MCCsect, Layout);
        CurrentAddressLocation = Csect.Address + Csect.Size;
      }
    }

    // The size of the tail padding in a section is the end virtual address of
    // the current section minus the the end virtual address of the last csect
    // in that section.
    if (uint32_t PaddingSize =
            Section->Address + Section->Size - CurrentAddressLocation)
      W.OS.write_zeros(PaddingSize);
  }
}

uint64_t XCOFFObjectWriter::writeObject(MCAssembler &Asm,
                                        const MCAsmLayout &Layout) {
  // We always emit a timestamp of 0 for reproducibility, so ensure incremental
  // linking is not enabled, in case, like with Windows COFF, such a timestamp
  // is incompatible with incremental linking of XCOFF.
  if (Asm.isIncrementalLinkerCompatible())
    report_fatal_error("Incremental linking not supported for XCOFF.");

  if (TargetObjectWriter->is64Bit())
    report_fatal_error("64-bit XCOFF object files are not supported yet.");

  uint64_t StartOffset = W.OS.tell();

  writeFileHeader();
  writeSectionHeaderTable();
  writeSections(Asm, Layout);
  // TODO writeRelocations();

  writeSymbolTable(Layout);
  // Write the string table.
  Strings.write(W.OS);

  return W.OS.tell() - StartOffset;
}

bool XCOFFObjectWriter::nameShouldBeInStringTable(const StringRef &SymbolName) {
  return SymbolName.size() > XCOFF::NameSize;
}

void XCOFFObjectWriter::writeSymbolName(const StringRef &SymbolName) {
  if (nameShouldBeInStringTable(SymbolName)) {
    W.write<int32_t>(0);
    W.write<uint32_t>(Strings.getOffset(SymbolName));
  } else {
    char Name[XCOFF::NameSize];
    std::strncpy(Name, SymbolName.data(), XCOFF::NameSize);
    ArrayRef<char> NameRef(Name, XCOFF::NameSize);
    W.write(NameRef);
  }
}

void XCOFFObjectWriter::writeSymbolTableEntryForCsectMemberLabel(
    const Symbol &SymbolRef, const ControlSection &CSectionRef,
    int16_t SectionIndex, uint64_t SymbolOffset) {
  // Name or Zeros and string table offset
  writeSymbolName(SymbolRef.getName());
  assert(SymbolOffset <= UINT32_MAX - CSectionRef.Address &&
         "Symbol address overflows.");
  W.write<uint32_t>(CSectionRef.Address + SymbolOffset);
  W.write<int16_t>(SectionIndex);
  // Basic/Derived type. See the description of the n_type field for symbol
  // table entries for a detailed description. Since we don't yet support
  // visibility, and all other bits are either optionally set or reserved, this
  // is always zero.
  // TODO FIXME How to assert a symbol's visibilty is default?
  // TODO Set the function indicator (bit 10, 0x0020) for functions
  // when debugging is enabled.
  W.write<uint16_t>(0);
  W.write<uint8_t>(SymbolRef.getStorageClass());
  // Always 1 aux entry for now.
  W.write<uint8_t>(1);

  // Now output the auxiliary entry.
  W.write<uint32_t>(CSectionRef.SymbolTableIndex);
  // Parameter typecheck hash. Not supported.
  W.write<uint32_t>(0);
  // Typecheck section number. Not supported.
  W.write<uint16_t>(0);
  // Symbol type: Label
  W.write<uint8_t>(XCOFF::XTY_LD);
  // Storage mapping class.
  W.write<uint8_t>(CSectionRef.MCCsect->getMappingClass());
  // Reserved (x_stab).
  W.write<uint32_t>(0);
  // Reserved (x_snstab).
  W.write<uint16_t>(0);
}

void XCOFFObjectWriter::writeSymbolTableEntryForControlSection(
    const ControlSection &CSectionRef, int16_t SectionIndex,
    XCOFF::StorageClass StorageClass) {
  // n_name, n_zeros, n_offset
  writeSymbolName(CSectionRef.getName());
  // n_value
  W.write<uint32_t>(CSectionRef.Address);
  // n_scnum
  W.write<int16_t>(SectionIndex);
  // Basic/Derived type. See the description of the n_type field for symbol
  // table entries for a detailed description. Since we don't yet support
  // visibility, and all other bits are either optionally set or reserved, this
  // is always zero.
  // TODO FIXME How to assert a symbol's visibilty is default?
  // TODO Set the function indicator (bit 10, 0x0020) for functions
  // when debugging is enabled.
  W.write<uint16_t>(0);
  // n_sclass
  W.write<uint8_t>(StorageClass);
  // Always 1 aux entry for now.
  W.write<uint8_t>(1);

  // Now output the auxiliary entry.
  W.write<uint32_t>(CSectionRef.Size);
  // Parameter typecheck hash. Not supported.
  W.write<uint32_t>(0);
  // Typecheck section number. Not supported.
  W.write<uint16_t>(0);
  // Symbol type.
  W.write<uint8_t>(getEncodedType(CSectionRef.MCCsect));
  // Storage mapping class.
  W.write<uint8_t>(CSectionRef.MCCsect->getMappingClass());
  // Reserved (x_stab).
  W.write<uint32_t>(0);
  // Reserved (x_snstab).
  W.write<uint16_t>(0);
}

void XCOFFObjectWriter::writeFileHeader() {
  // Magic.
  W.write<uint16_t>(0x01df);
  // Number of sections.
  W.write<uint16_t>(SectionCount);
  // Timestamp field. For reproducible output we write a 0, which represents no
  // timestamp.
  W.write<int32_t>(0);
  // Byte Offset to the start of the symbol table.
  W.write<uint32_t>(SymbolTableOffset);
  // Number of entries in the symbol table.
  W.write<int32_t>(SymbolTableEntryCount);
  // Size of the optional header.
  W.write<uint16_t>(0);
  // Flags.
  W.write<uint16_t>(0);
}

void XCOFFObjectWriter::writeSectionHeaderTable() {
  for (const auto *Sec : Sections) {
    // Nothing to write for this Section.
    if (Sec->Index == Section::UninitializedIndex)
      continue;

    // Write Name.
    ArrayRef<char> NameRef(Sec->Name, XCOFF::NameSize);
    W.write(NameRef);

    // Write the Physical Address and Virtual Address. In an object file these
    // are the same.
    W.write<uint32_t>(Sec->Address);
    W.write<uint32_t>(Sec->Address);

    W.write<uint32_t>(Sec->Size);
    W.write<uint32_t>(Sec->FileOffsetToData);

    // Relocation pointer and Lineno pointer. Not supported yet.
    W.write<uint32_t>(0);
    W.write<uint32_t>(0);

    // Relocation and line-number counts. Not supported yet.
    W.write<uint16_t>(0);
    W.write<uint16_t>(0);

    W.write<int32_t>(Sec->Flags);
  }
}

void XCOFFObjectWriter::writeSymbolTable(const MCAsmLayout &Layout) {
  for (const auto *Section : Sections) {
    // Nothing to write for this Section.
    if (Section->Index == Section::UninitializedIndex)
      continue;

    for (const auto *Group : Section->Groups) {
      if (Group->Csects.empty())
        continue;

      const bool SupportLabelDef = Group->SupportLabelDef;
      const int16_t SectionIndex = Section->Index;
      for (const auto &Csect : Group->Csects) {
        // Write out the control section first and then each symbol in it.
        writeSymbolTableEntryForControlSection(
            Csect, SectionIndex, Csect.MCCsect->getStorageClass());
        if (!SupportLabelDef) {
          assert(Csect.Syms.size() == 1 && "Csect should only contain 1 symbol "
                                           "which is its label definition.");
          continue;
        }

        for (const auto Sym : Csect.Syms)
          writeSymbolTableEntryForCsectMemberLabel(
              Sym, Csect, SectionIndex, Layout.getSymbolOffset(*(Sym.MCSym)));
      }
    }
  }
}

void XCOFFObjectWriter::assignAddressesAndIndices(const MCAsmLayout &Layout) {
  // The address corrresponds to the address of sections and symbols in the
  // object file. We place the shared address 0 immediately after the
  // section header table.
  uint32_t Address = 0;
  // Section indices are 1-based in XCOFF.
  int32_t SectionIndex = 1;
  // The first symbol table entry is for the file name. We are not emitting it
  // yet, so start at index 0.
  uint32_t SymbolTableIndex = 0;

  for (auto *Section : Sections) {
    const bool IsEmpty =
        llvm::all_of(Section->Groups, [](const CsectGroup *Group) {
          return Group->Csects.empty();
        });
    if (IsEmpty)
      continue;

    if (SectionIndex > MaxSectionIndex)
      report_fatal_error("Section index overflow!");
    Section->Index = SectionIndex++;
    SectionCount++;

    bool SectionAddressSet = false;
    for (auto *Group : Section->Groups) {
      if (Group->Csects.empty())
        continue;

      const bool SupportLabelDef = Group->SupportLabelDef;
      for (auto &Csect : Group->Csects) {
        const MCSectionXCOFF *MCSec = Csect.MCCsect;
        Csect.Address = alignTo(Address, MCSec->getAlignment());
        Csect.Size = Layout.getSectionAddressSize(MCSec);
        Address = Csect.Address + Csect.Size;
        Csect.SymbolTableIndex = SymbolTableIndex;
        // 1 main and 1 auxiliary symbol table entry for the csect.
        SymbolTableIndex += 2;

        if (!SupportLabelDef)
          continue;

        for (auto &Sym : Csect.Syms) {
          Sym.SymbolTableIndex = SymbolTableIndex;
          // 1 main and 1 auxiliary symbol table entry for each contained
          // symbol.
          SymbolTableIndex += 2;
        }
      }

      if (!SectionAddressSet) {
        Section->Address = Group->Csects.front().Address;
        SectionAddressSet = true;
      }
    }

    // Make sure the address of the next section aligned to
    // DefaultSectionAlign.
    Address = alignTo(Address, DefaultSectionAlign);
    Section->Size = Address - Section->Address;
  }

  SymbolTableEntryCount = SymbolTableIndex;

  // Calculate the RawPointer value for each section.
  uint64_t RawPointer = sizeof(XCOFF::FileHeader32) + auxiliaryHeaderSize() +
                        SectionCount * sizeof(XCOFF::SectionHeader32);
  for (auto *Sec : Sections) {
    if (Sec->Index == Section::UninitializedIndex || Sec->IsVirtual)
      continue;

    Sec->FileOffsetToData = RawPointer;
    RawPointer += Sec->Size;
  }

  // TODO Add in Relocation storage to the RawPointer Calculation.
  // TODO What to align the SymbolTable to?
  // TODO Error check that the number of symbol table entries fits in 32-bits
  // signed ...
  if (SymbolTableEntryCount)
    SymbolTableOffset = RawPointer;
}

// Takes the log base 2 of the alignment and shifts the result into the 5 most
// significant bits of a byte, then or's in the csect type into the least
// significant 3 bits.
uint8_t getEncodedType(const MCSectionXCOFF *Sec) {
  unsigned Align = Sec->getAlignment();
  assert(isPowerOf2_32(Align) && "Alignment must be a power of 2.");
  unsigned Log2Align = Log2_32(Align);
  // Result is a number in the range [0, 31] which fits in the 5 least
  // significant bits. Shift this value into the 5 most significant bits, and
  // bitwise-or in the csect type.
  uint8_t EncodedAlign = Log2Align << 3;
  return EncodedAlign | Sec->getCSectType();
}

} // end anonymous namespace

std::unique_ptr<MCObjectWriter>
llvm::createXCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
                              raw_pwrite_stream &OS) {
  return std::make_unique<XCOFFObjectWriter>(std::move(MOTW), OS);
}