reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
//===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass statically checks for common and easily-identified constructs
// which produce undefined or likely unintended behavior in LLVM IR.
//
// It is not a guarantee of correctness, in two ways. First, it isn't
// comprehensive. There are checks which could be done statically which are
// not yet implemented. Some of these are indicated by TODO comments, but
// those aren't comprehensive either. Second, many conditions cannot be
// checked statically. This pass does no dynamic instrumentation, so it
// can't check for all possible problems.
//
// Another limitation is that it assumes all code will be executed. A store
// through a null pointer in a basic block which is never reached is harmless,
// but this pass will warn about it anyway. This is the main reason why most
// of these checks live here instead of in the Verifier pass.
//
// Optimization passes may make conditions that this pass checks for more or
// less obvious. If an optimization pass appears to be introducing a warning,
// it may be that the optimization pass is merely exposing an existing
// condition in the code.
//
// This code may be run before instcombine. In many cases, instcombine checks
// for the same kinds of things and turns instructions with undefined behavior
// into unreachable (or equivalent). Because of this, this pass makes some
// effort to look through bitcasts and so on.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/Lint.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <string>

using namespace llvm;

namespace {
  namespace MemRef {
    static const unsigned Read     = 1;
    static const unsigned Write    = 2;
    static const unsigned Callee   = 4;
    static const unsigned Branchee = 8;
  } // end namespace MemRef

  class Lint : public FunctionPass, public InstVisitor<Lint> {
    friend class InstVisitor<Lint>;

    void visitFunction(Function &F);

    void visitCallSite(CallSite CS);
    void visitMemoryReference(Instruction &I, Value *Ptr,
                              uint64_t Size, unsigned Align,
                              Type *Ty, unsigned Flags);
    void visitEHBeginCatch(IntrinsicInst *II);
    void visitEHEndCatch(IntrinsicInst *II);

    void visitCallInst(CallInst &I);
    void visitInvokeInst(InvokeInst &I);
    void visitReturnInst(ReturnInst &I);
    void visitLoadInst(LoadInst &I);
    void visitStoreInst(StoreInst &I);
    void visitXor(BinaryOperator &I);
    void visitSub(BinaryOperator &I);
    void visitLShr(BinaryOperator &I);
    void visitAShr(BinaryOperator &I);
    void visitShl(BinaryOperator &I);
    void visitSDiv(BinaryOperator &I);
    void visitUDiv(BinaryOperator &I);
    void visitSRem(BinaryOperator &I);
    void visitURem(BinaryOperator &I);
    void visitAllocaInst(AllocaInst &I);
    void visitVAArgInst(VAArgInst &I);
    void visitIndirectBrInst(IndirectBrInst &I);
    void visitExtractElementInst(ExtractElementInst &I);
    void visitInsertElementInst(InsertElementInst &I);
    void visitUnreachableInst(UnreachableInst &I);

    Value *findValue(Value *V, bool OffsetOk) const;
    Value *findValueImpl(Value *V, bool OffsetOk,
                         SmallPtrSetImpl<Value *> &Visited) const;

  public:
    Module *Mod;
    const DataLayout *DL;
    AliasAnalysis *AA;
    AssumptionCache *AC;
    DominatorTree *DT;
    TargetLibraryInfo *TLI;

    std::string Messages;
    raw_string_ostream MessagesStr;

    static char ID; // Pass identification, replacement for typeid
    Lint() : FunctionPass(ID), MessagesStr(Messages) {
      initializeLintPass(*PassRegistry::getPassRegistry());
    }

    bool runOnFunction(Function &F) override;

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.setPreservesAll();
      AU.addRequired<AAResultsWrapperPass>();
      AU.addRequired<AssumptionCacheTracker>();
      AU.addRequired<TargetLibraryInfoWrapperPass>();
      AU.addRequired<DominatorTreeWrapperPass>();
    }
    void print(raw_ostream &O, const Module *M) const override {}

    void WriteValues(ArrayRef<const Value *> Vs) {
      for (const Value *V : Vs) {
        if (!V)
          continue;
        if (isa<Instruction>(V)) {
          MessagesStr << *V << '\n';
        } else {
          V->printAsOperand(MessagesStr, true, Mod);
          MessagesStr << '\n';
        }
      }
    }

    /// A check failed, so printout out the condition and the message.
    ///
    /// This provides a nice place to put a breakpoint if you want to see why
    /// something is not correct.
    void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; }

    /// A check failed (with values to print).
    ///
    /// This calls the Message-only version so that the above is easier to set
    /// a breakpoint on.
    template <typename T1, typename... Ts>
    void CheckFailed(const Twine &Message, const T1 &V1, const Ts &...Vs) {
      CheckFailed(Message);
      WriteValues({V1, Vs...});
    }
  };
} // end anonymous namespace

char Lint::ID = 0;
INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
                      false, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
                    false, true)

// Assert - We know that cond should be true, if not print an error message.
#define Assert(C, ...) \
    do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)

// Lint::run - This is the main Analysis entry point for a
// function.
//
bool Lint::runOnFunction(Function &F) {
  Mod = F.getParent();
  DL = &F.getParent()->getDataLayout();
  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
  AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
  visit(F);
  dbgs() << MessagesStr.str();
  Messages.clear();
  return false;
}

void Lint::visitFunction(Function &F) {
  // This isn't undefined behavior, it's just a little unusual, and it's a
  // fairly common mistake to neglect to name a function.
  Assert(F.hasName() || F.hasLocalLinkage(),
         "Unusual: Unnamed function with non-local linkage", &F);

  // TODO: Check for irreducible control flow.
}

void Lint::visitCallSite(CallSite CS) {
  Instruction &I = *CS.getInstruction();
  Value *Callee = CS.getCalledValue();

  visitMemoryReference(I, Callee, MemoryLocation::UnknownSize, 0, nullptr,
                       MemRef::Callee);

  if (Function *F = dyn_cast<Function>(findValue(Callee,
                                                 /*OffsetOk=*/false))) {
    Assert(CS.getCallingConv() == F->getCallingConv(),
           "Undefined behavior: Caller and callee calling convention differ",
           &I);

    FunctionType *FT = F->getFunctionType();
    unsigned NumActualArgs = CS.arg_size();

    Assert(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs
                          : FT->getNumParams() == NumActualArgs,
           "Undefined behavior: Call argument count mismatches callee "
           "argument count",
           &I);

    Assert(FT->getReturnType() == I.getType(),
           "Undefined behavior: Call return type mismatches "
           "callee return type",
           &I);

    // Check argument types (in case the callee was casted) and attributes.
    // TODO: Verify that caller and callee attributes are compatible.
    Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
    CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
    for (; AI != AE; ++AI) {
      Value *Actual = *AI;
      if (PI != PE) {
        Argument *Formal = &*PI++;
        Assert(Formal->getType() == Actual->getType(),
               "Undefined behavior: Call argument type mismatches "
               "callee parameter type",
               &I);

        // Check that noalias arguments don't alias other arguments. This is
        // not fully precise because we don't know the sizes of the dereferenced
        // memory regions.
        if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy()) {
          AttributeList PAL = CS.getAttributes();
          unsigned ArgNo = 0;
          for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE;
               ++BI, ++ArgNo) {
            // Skip ByVal arguments since they will be memcpy'd to the callee's
            // stack so we're not really passing the pointer anyway.
            if (PAL.hasParamAttribute(ArgNo, Attribute::ByVal))
              continue;
            // If both arguments are readonly, they have no dependence.
            if (Formal->onlyReadsMemory() && CS.onlyReadsMemory(ArgNo))
              continue;
            if (AI != BI && (*BI)->getType()->isPointerTy()) {
              AliasResult Result = AA->alias(*AI, *BI);
              Assert(Result != MustAlias && Result != PartialAlias,
                     "Unusual: noalias argument aliases another argument", &I);
            }
          }
        }

        // Check that an sret argument points to valid memory.
        if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
          Type *Ty =
            cast<PointerType>(Formal->getType())->getElementType();
          visitMemoryReference(I, Actual, DL->getTypeStoreSize(Ty),
                               DL->getABITypeAlignment(Ty), Ty,
                               MemRef::Read | MemRef::Write);
        }
      }
    }
  }

  if (CS.isCall()) {
    const CallInst *CI = cast<CallInst>(CS.getInstruction());
    if (CI->isTailCall()) {
      const AttributeList &PAL = CI->getAttributes();
      unsigned ArgNo = 0;
      for (Value *Arg : CS.args()) {
        // Skip ByVal arguments since they will be memcpy'd to the callee's
        // stack anyway.
        if (PAL.hasParamAttribute(ArgNo++, Attribute::ByVal))
          continue;
        Value *Obj = findValue(Arg, /*OffsetOk=*/true);
        Assert(!isa<AllocaInst>(Obj),
               "Undefined behavior: Call with \"tail\" keyword references "
               "alloca",
               &I);
      }
    }
  }


  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
    switch (II->getIntrinsicID()) {
    default: break;

    // TODO: Check more intrinsics

    case Intrinsic::memcpy: {
      MemCpyInst *MCI = cast<MemCpyInst>(&I);
      // TODO: If the size is known, use it.
      visitMemoryReference(I, MCI->getDest(), MemoryLocation::UnknownSize,
                           MCI->getDestAlignment(), nullptr, MemRef::Write);
      visitMemoryReference(I, MCI->getSource(), MemoryLocation::UnknownSize,
                           MCI->getSourceAlignment(), nullptr, MemRef::Read);

      // Check that the memcpy arguments don't overlap. The AliasAnalysis API
      // isn't expressive enough for what we really want to do. Known partial
      // overlap is not distinguished from the case where nothing is known.
      auto Size = LocationSize::unknown();
      if (const ConstantInt *Len =
              dyn_cast<ConstantInt>(findValue(MCI->getLength(),
                                              /*OffsetOk=*/false)))
        if (Len->getValue().isIntN(32))
          Size = LocationSize::precise(Len->getValue().getZExtValue());
      Assert(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
                 MustAlias,
             "Undefined behavior: memcpy source and destination overlap", &I);
      break;
    }
    case Intrinsic::memmove: {
      MemMoveInst *MMI = cast<MemMoveInst>(&I);
      // TODO: If the size is known, use it.
      visitMemoryReference(I, MMI->getDest(), MemoryLocation::UnknownSize,
                           MMI->getDestAlignment(), nullptr, MemRef::Write);
      visitMemoryReference(I, MMI->getSource(), MemoryLocation::UnknownSize,
                           MMI->getSourceAlignment(), nullptr, MemRef::Read);
      break;
    }
    case Intrinsic::memset: {
      MemSetInst *MSI = cast<MemSetInst>(&I);
      // TODO: If the size is known, use it.
      visitMemoryReference(I, MSI->getDest(), MemoryLocation::UnknownSize,
                           MSI->getDestAlignment(), nullptr, MemRef::Write);
      break;
    }

    case Intrinsic::vastart:
      Assert(I.getParent()->getParent()->isVarArg(),
             "Undefined behavior: va_start called in a non-varargs function",
             &I);

      visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
                           nullptr, MemRef::Read | MemRef::Write);
      break;
    case Intrinsic::vacopy:
      visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
                           nullptr, MemRef::Write);
      visitMemoryReference(I, CS.getArgument(1), MemoryLocation::UnknownSize, 0,
                           nullptr, MemRef::Read);
      break;
    case Intrinsic::vaend:
      visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
                           nullptr, MemRef::Read | MemRef::Write);
      break;

    case Intrinsic::stackrestore:
      // Stackrestore doesn't read or write memory, but it sets the
      // stack pointer, which the compiler may read from or write to
      // at any time, so check it for both readability and writeability.
      visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
                           nullptr, MemRef::Read | MemRef::Write);
      break;
    }
}

void Lint::visitCallInst(CallInst &I) {
  return visitCallSite(&I);
}

void Lint::visitInvokeInst(InvokeInst &I) {
  return visitCallSite(&I);
}

void Lint::visitReturnInst(ReturnInst &I) {
  Function *F = I.getParent()->getParent();
  Assert(!F->doesNotReturn(),
         "Unusual: Return statement in function with noreturn attribute", &I);

  if (Value *V = I.getReturnValue()) {
    Value *Obj = findValue(V, /*OffsetOk=*/true);
    Assert(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I);
  }
}

// TODO: Check that the reference is in bounds.
// TODO: Check readnone/readonly function attributes.
void Lint::visitMemoryReference(Instruction &I,
                                Value *Ptr, uint64_t Size, unsigned Align,
                                Type *Ty, unsigned Flags) {
  // If no memory is being referenced, it doesn't matter if the pointer
  // is valid.
  if (Size == 0)
    return;

  Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
  Assert(!isa<ConstantPointerNull>(UnderlyingObject),
         "Undefined behavior: Null pointer dereference", &I);
  Assert(!isa<UndefValue>(UnderlyingObject),
         "Undefined behavior: Undef pointer dereference", &I);
  Assert(!isa<ConstantInt>(UnderlyingObject) ||
             !cast<ConstantInt>(UnderlyingObject)->isMinusOne(),
         "Unusual: All-ones pointer dereference", &I);
  Assert(!isa<ConstantInt>(UnderlyingObject) ||
             !cast<ConstantInt>(UnderlyingObject)->isOne(),
         "Unusual: Address one pointer dereference", &I);

  if (Flags & MemRef::Write) {
    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
      Assert(!GV->isConstant(), "Undefined behavior: Write to read-only memory",
             &I);
    Assert(!isa<Function>(UnderlyingObject) &&
               !isa<BlockAddress>(UnderlyingObject),
           "Undefined behavior: Write to text section", &I);
  }
  if (Flags & MemRef::Read) {
    Assert(!isa<Function>(UnderlyingObject), "Unusual: Load from function body",
           &I);
    Assert(!isa<BlockAddress>(UnderlyingObject),
           "Undefined behavior: Load from block address", &I);
  }
  if (Flags & MemRef::Callee) {
    Assert(!isa<BlockAddress>(UnderlyingObject),
           "Undefined behavior: Call to block address", &I);
  }
  if (Flags & MemRef::Branchee) {
    Assert(!isa<Constant>(UnderlyingObject) ||
               isa<BlockAddress>(UnderlyingObject),
           "Undefined behavior: Branch to non-blockaddress", &I);
  }

  // Check for buffer overflows and misalignment.
  // Only handles memory references that read/write something simple like an
  // alloca instruction or a global variable.
  int64_t Offset = 0;
  if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, *DL)) {
    // OK, so the access is to a constant offset from Ptr.  Check that Ptr is
    // something we can handle and if so extract the size of this base object
    // along with its alignment.
    uint64_t BaseSize = MemoryLocation::UnknownSize;
    unsigned BaseAlign = 0;

    if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
      Type *ATy = AI->getAllocatedType();
      if (!AI->isArrayAllocation() && ATy->isSized())
        BaseSize = DL->getTypeAllocSize(ATy);
      BaseAlign = AI->getAlignment();
      if (BaseAlign == 0 && ATy->isSized())
        BaseAlign = DL->getABITypeAlignment(ATy);
    } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
      // If the global may be defined differently in another compilation unit
      // then don't warn about funky memory accesses.
      if (GV->hasDefinitiveInitializer()) {
        Type *GTy = GV->getValueType();
        if (GTy->isSized())
          BaseSize = DL->getTypeAllocSize(GTy);
        BaseAlign = GV->getAlignment();
        if (BaseAlign == 0 && GTy->isSized())
          BaseAlign = DL->getABITypeAlignment(GTy);
      }
    }

    // Accesses from before the start or after the end of the object are not
    // defined.
    Assert(Size == MemoryLocation::UnknownSize ||
               BaseSize == MemoryLocation::UnknownSize ||
               (Offset >= 0 && Offset + Size <= BaseSize),
           "Undefined behavior: Buffer overflow", &I);

    // Accesses that say that the memory is more aligned than it is are not
    // defined.
    if (Align == 0 && Ty && Ty->isSized())
      Align = DL->getABITypeAlignment(Ty);
    Assert(!BaseAlign || Align <= MinAlign(BaseAlign, Offset),
           "Undefined behavior: Memory reference address is misaligned", &I);
  }
}

void Lint::visitLoadInst(LoadInst &I) {
  visitMemoryReference(I, I.getPointerOperand(),
                       DL->getTypeStoreSize(I.getType()), I.getAlignment(),
                       I.getType(), MemRef::Read);
}

void Lint::visitStoreInst(StoreInst &I) {
  visitMemoryReference(I, I.getPointerOperand(),
                       DL->getTypeStoreSize(I.getOperand(0)->getType()),
                       I.getAlignment(),
                       I.getOperand(0)->getType(), MemRef::Write);
}

void Lint::visitXor(BinaryOperator &I) {
  Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
         "Undefined result: xor(undef, undef)", &I);
}

void Lint::visitSub(BinaryOperator &I) {
  Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
         "Undefined result: sub(undef, undef)", &I);
}

void Lint::visitLShr(BinaryOperator &I) {
  if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1),
                                                        /*OffsetOk=*/false)))
    Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
           "Undefined result: Shift count out of range", &I);
}

void Lint::visitAShr(BinaryOperator &I) {
  if (ConstantInt *CI =
          dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
    Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
           "Undefined result: Shift count out of range", &I);
}

void Lint::visitShl(BinaryOperator &I) {
  if (ConstantInt *CI =
          dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
    Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
           "Undefined result: Shift count out of range", &I);
}

static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT,
                   AssumptionCache *AC) {
  // Assume undef could be zero.
  if (isa<UndefValue>(V))
    return true;

  VectorType *VecTy = dyn_cast<VectorType>(V->getType());
  if (!VecTy) {
    KnownBits Known = computeKnownBits(V, DL, 0, AC, dyn_cast<Instruction>(V), DT);
    return Known.isZero();
  }

  // Per-component check doesn't work with zeroinitializer
  Constant *C = dyn_cast<Constant>(V);
  if (!C)
    return false;

  if (C->isZeroValue())
    return true;

  // For a vector, KnownZero will only be true if all values are zero, so check
  // this per component
  for (unsigned I = 0, N = VecTy->getNumElements(); I != N; ++I) {
    Constant *Elem = C->getAggregateElement(I);
    if (isa<UndefValue>(Elem))
      return true;

    KnownBits Known = computeKnownBits(Elem, DL);
    if (Known.isZero())
      return true;
  }

  return false;
}

void Lint::visitSDiv(BinaryOperator &I) {
  Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
         "Undefined behavior: Division by zero", &I);
}

void Lint::visitUDiv(BinaryOperator &I) {
  Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
         "Undefined behavior: Division by zero", &I);
}

void Lint::visitSRem(BinaryOperator &I) {
  Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
         "Undefined behavior: Division by zero", &I);
}

void Lint::visitURem(BinaryOperator &I) {
  Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
         "Undefined behavior: Division by zero", &I);
}

void Lint::visitAllocaInst(AllocaInst &I) {
  if (isa<ConstantInt>(I.getArraySize()))
    // This isn't undefined behavior, it's just an obvious pessimization.
    Assert(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
           "Pessimization: Static alloca outside of entry block", &I);

  // TODO: Check for an unusual size (MSB set?)
}

void Lint::visitVAArgInst(VAArgInst &I) {
  visitMemoryReference(I, I.getOperand(0), MemoryLocation::UnknownSize, 0,
                       nullptr, MemRef::Read | MemRef::Write);
}

void Lint::visitIndirectBrInst(IndirectBrInst &I) {
  visitMemoryReference(I, I.getAddress(), MemoryLocation::UnknownSize, 0,
                       nullptr, MemRef::Branchee);

  Assert(I.getNumDestinations() != 0,
         "Undefined behavior: indirectbr with no destinations", &I);
}

void Lint::visitExtractElementInst(ExtractElementInst &I) {
  if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
                                                        /*OffsetOk=*/false)))
    Assert(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
           "Undefined result: extractelement index out of range", &I);
}

void Lint::visitInsertElementInst(InsertElementInst &I) {
  if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(2),
                                                        /*OffsetOk=*/false)))
    Assert(CI->getValue().ult(I.getType()->getNumElements()),
           "Undefined result: insertelement index out of range", &I);
}

void Lint::visitUnreachableInst(UnreachableInst &I) {
  // This isn't undefined behavior, it's merely suspicious.
  Assert(&I == &I.getParent()->front() ||
             std::prev(I.getIterator())->mayHaveSideEffects(),
         "Unusual: unreachable immediately preceded by instruction without "
         "side effects",
         &I);
}

/// findValue - Look through bitcasts and simple memory reference patterns
/// to identify an equivalent, but more informative, value.  If OffsetOk
/// is true, look through getelementptrs with non-zero offsets too.
///
/// Most analysis passes don't require this logic, because instcombine
/// will simplify most of these kinds of things away. But it's a goal of
/// this Lint pass to be useful even on non-optimized IR.
Value *Lint::findValue(Value *V, bool OffsetOk) const {
  SmallPtrSet<Value *, 4> Visited;
  return findValueImpl(V, OffsetOk, Visited);
}

/// findValueImpl - Implementation helper for findValue.
Value *Lint::findValueImpl(Value *V, bool OffsetOk,
                           SmallPtrSetImpl<Value *> &Visited) const {
  // Detect self-referential values.
  if (!Visited.insert(V).second)
    return UndefValue::get(V->getType());

  // TODO: Look through sext or zext cast, when the result is known to
  // be interpreted as signed or unsigned, respectively.
  // TODO: Look through eliminable cast pairs.
  // TODO: Look through calls with unique return values.
  // TODO: Look through vector insert/extract/shuffle.
  V = OffsetOk ? GetUnderlyingObject(V, *DL) : V->stripPointerCasts();
  if (LoadInst *L = dyn_cast<LoadInst>(V)) {
    BasicBlock::iterator BBI = L->getIterator();
    BasicBlock *BB = L->getParent();
    SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
    for (;;) {
      if (!VisitedBlocks.insert(BB).second)
        break;
      if (Value *U =
          FindAvailableLoadedValue(L, BB, BBI, DefMaxInstsToScan, AA))
        return findValueImpl(U, OffsetOk, Visited);
      if (BBI != BB->begin()) break;
      BB = BB->getUniquePredecessor();
      if (!BB) break;
      BBI = BB->end();
    }
  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
    if (Value *W = PN->hasConstantValue())
      if (W != V)
        return findValueImpl(W, OffsetOk, Visited);
  } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
    if (CI->isNoopCast(*DL))
      return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
  } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
    if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
                                     Ex->getIndices()))
      if (W != V)
        return findValueImpl(W, OffsetOk, Visited);
  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    // Same as above, but for ConstantExpr instead of Instruction.
    if (Instruction::isCast(CE->getOpcode())) {
      if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
                               CE->getOperand(0)->getType(), CE->getType(),
                               *DL))
        return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
    } else if (CE->getOpcode() == Instruction::ExtractValue) {
      ArrayRef<unsigned> Indices = CE->getIndices();
      if (Value *W = FindInsertedValue(CE->getOperand(0), Indices))
        if (W != V)
          return findValueImpl(W, OffsetOk, Visited);
    }
  }

  // As a last resort, try SimplifyInstruction or constant folding.
  if (Instruction *Inst = dyn_cast<Instruction>(V)) {
    if (Value *W = SimplifyInstruction(Inst, {*DL, TLI, DT, AC}))
      return findValueImpl(W, OffsetOk, Visited);
  } else if (auto *C = dyn_cast<Constant>(V)) {
    if (Value *W = ConstantFoldConstant(C, *DL, TLI))
      if (W && W != V)
        return findValueImpl(W, OffsetOk, Visited);
  }

  return V;
}

//===----------------------------------------------------------------------===//
//  Implement the public interfaces to this file...
//===----------------------------------------------------------------------===//

FunctionPass *llvm::createLintPass() {
  return new Lint();
}

/// lintFunction - Check a function for errors, printing messages on stderr.
///
void llvm::lintFunction(const Function &f) {
  Function &F = const_cast<Function&>(f);
  assert(!F.isDeclaration() && "Cannot lint external functions");

  legacy::FunctionPassManager FPM(F.getParent());
  Lint *V = new Lint();
  FPM.add(V);
  FPM.run(F);
}

/// lintModule - Check a module for errors, printing messages on stderr.
///
void llvm::lintModule(const Module &M) {
  legacy::PassManager PM;
  Lint *V = new Lint();
  PM.add(V);
  PM.run(const_cast<Module&>(M));
}