reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
// class template regex -*- C++ -*-

// Copyright (C) 2013-2017 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/**
 *  @file bits/regex_executor.tcc
 *  This is an internal header file, included by other library headers.
 *  Do not attempt to use it directly. @headername{regex}
 */

namespace std _GLIBCXX_VISIBILITY(default)
{
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

  template<typename _BiIter, typename _Alloc, typename _TraitsT,
	   bool __dfs_mode>
    bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
    _M_search()
    {
      if (_M_search_from_first())
	return true;
      if (_M_flags & regex_constants::match_continuous)
	return false;
      _M_flags |= regex_constants::match_prev_avail;
      while (_M_begin != _M_end)
	{
	  ++_M_begin;
	  if (_M_search_from_first())
	    return true;
	}
      return false;
    }

  // The _M_main function operates in different modes, DFS mode or BFS mode,
  // indicated by template parameter __dfs_mode, and dispatches to one of the
  // _M_main_dispatch overloads.
  //
  // ------------------------------------------------------------
  //
  // DFS mode:
  //
  // It applies a Depth-First-Search (aka backtracking) on given NFA and input
  // string.
  // At the very beginning the executor stands in the start state, then it
  // tries every possible state transition in current state recursively. Some
  // state transitions consume input string, say, a single-char-matcher or a
  // back-reference matcher; some don't, like assertion or other anchor nodes.
  // When the input is exhausted and/or the current state is an accepting
  // state, the whole executor returns true.
  //
  // TODO: This approach is exponentially slow for certain input.
  //       Try to compile the NFA to a DFA.
  //
  // Time complexity: \Omega(match_length), O(2^(_M_nfa.size()))
  // Space complexity: \theta(match_results.size() + match_length)
  //
  template<typename _BiIter, typename _Alloc, typename _TraitsT,
	   bool __dfs_mode>
    bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
    _M_main_dispatch(_Match_mode __match_mode, __dfs)
    {
      _M_has_sol = false;
      *_M_states._M_get_sol_pos() = _BiIter();
      _M_cur_results = _M_results;
      _M_dfs(__match_mode, _M_states._M_start);
      return _M_has_sol;
    }

  // ------------------------------------------------------------
  //
  // BFS mode:
  //
  // Russ Cox's article (http://swtch.com/~rsc/regexp/regexp1.html)
  // explained this algorithm clearly.
  //
  // It first computes epsilon closure (states that can be achieved without
  // consuming characters) for every state that's still matching,
  // using the same DFS algorithm, but doesn't re-enter states (using
  // _M_states._M_visited to check), nor follow _S_opcode_match.
  //
  // Then apply DFS using every _S_opcode_match (in _M_states._M_match_queue)
  // as the start state.
  //
  // It significantly reduces potential duplicate states, so has a better
  // upper bound; but it requires more overhead.
  //
  // Time complexity: \Omega(match_length * match_results.size())
  //                  O(match_length * _M_nfa.size() * match_results.size())
  // Space complexity: \Omega(_M_nfa.size() + match_results.size())
  //                   O(_M_nfa.size() * match_results.size())
  template<typename _BiIter, typename _Alloc, typename _TraitsT,
	   bool __dfs_mode>
    bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
    _M_main_dispatch(_Match_mode __match_mode, __bfs)
    {
      _M_states._M_queue(_M_states._M_start, _M_results);
      bool __ret = false;
      while (1)
	{
	  _M_has_sol = false;
	  if (_M_states._M_match_queue.empty())
	    break;
	  std::fill_n(_M_states._M_visited_states.get(), _M_nfa.size(), false);
	  auto __old_queue = std::move(_M_states._M_match_queue);
	  for (auto& __task : __old_queue)
	    {
	      _M_cur_results = std::move(__task.second);
	      _M_dfs(__match_mode, __task.first);
	    }
	  if (__match_mode == _Match_mode::_Prefix)
	    __ret |= _M_has_sol;
	  if (_M_current == _M_end)
	    break;
	  ++_M_current;
	}
      if (__match_mode == _Match_mode::_Exact)
	__ret = _M_has_sol;
      _M_states._M_match_queue.clear();
      return __ret;
    }

  // Return whether now match the given sub-NFA.
  template<typename _BiIter, typename _Alloc, typename _TraitsT,
	   bool __dfs_mode>
    bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
    _M_lookahead(_StateIdT __next)
    {
      // Backreferences may refer to captured content.
      // We may want to make this faster by not copying,
      // but let's not be clever prematurely.
      _ResultsVec __what(_M_cur_results);
      _Executor __sub(_M_current, _M_end, __what, _M_re, _M_flags);
      __sub._M_states._M_start = __next;
      if (__sub._M_search_from_first())
	{
	  for (size_t __i = 0; __i < __what.size(); __i++)
	    if (__what[__i].matched)
	      _M_cur_results[__i] = __what[__i];
	  return true;
	}
      return false;
    }

  // __rep_count records how many times (__rep_count.second)
  // this node is visited under certain input iterator
  // (__rep_count.first). This prevent the executor from entering
  // infinite loop by refusing to continue when it's already been
  // visited more than twice. It's `twice` instead of `once` because
  // we need to spare one more time for potential group capture.
  template<typename _BiIter, typename _Alloc, typename _TraitsT,
    bool __dfs_mode>
    void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
    _M_rep_once_more(_Match_mode __match_mode, _StateIdT __i)
    {
      const auto& __state = _M_nfa[__i];
      auto& __rep_count = _M_rep_count[__i];
      if (__rep_count.second == 0 || __rep_count.first != _M_current)
	{
	  auto __back = __rep_count;
	  __rep_count.first = _M_current;
	  __rep_count.second = 1;
	  _M_dfs(__match_mode, __state._M_alt);
	  __rep_count = __back;
	}
      else
	{
	  if (__rep_count.second < 2)
	    {
	      __rep_count.second++;
	      _M_dfs(__match_mode, __state._M_alt);
	      __rep_count.second--;
	    }
	}
    };

  // _M_alt branch is "match once more", while _M_next is "get me out
  // of this quantifier". Executing _M_next first or _M_alt first don't
  // mean the same thing, and we need to choose the correct order under
  // given greedy mode.
  template<typename _BiIter, typename _Alloc, typename _TraitsT,
	   bool __dfs_mode>
    void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
    _M_handle_repeat(_Match_mode __match_mode, _StateIdT __i)
    {
      const auto& __state = _M_nfa[__i];

      // Greedy.
      if (!__state._M_neg)
	{
	  _M_rep_once_more(__match_mode, __i);
	  // If it's DFS executor and already accepted, we're done.
	  if (!__dfs_mode || !_M_has_sol)
	    _M_dfs(__match_mode, __state._M_next);
	}
      else // Non-greedy mode
	{
	  if (__dfs_mode)
	    {
	      // vice-versa.
	      _M_dfs(__match_mode, __state._M_next);
	      if (!_M_has_sol)
		_M_rep_once_more(__match_mode, __i);
	    }
	  else
	    {
	      // DON'T attempt anything, because there's already another
	      // state with higher priority accepted. This state cannot
	      // be better by attempting its next node.
	      if (!_M_has_sol)
		{
		  _M_dfs(__match_mode, __state._M_next);
		  // DON'T attempt anything if it's already accepted. An
		  // accepted state *must* be better than a solution that
		  // matches a non-greedy quantifier one more time.
		  if (!_M_has_sol)
		    _M_rep_once_more(__match_mode, __i);
		}
	    }
	}
    }

  template<typename _BiIter, typename _Alloc, typename _TraitsT,
	   bool __dfs_mode>
    void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
    _M_handle_subexpr_begin(_Match_mode __match_mode, _StateIdT __i)
    {
      const auto& __state = _M_nfa[__i];

      auto& __res = _M_cur_results[__state._M_subexpr];
      auto __back = __res.first;
      __res.first = _M_current;
      _M_dfs(__match_mode, __state._M_next);
      __res.first = __back;
    }

  template<typename _BiIter, typename _Alloc, typename _TraitsT,
	   bool __dfs_mode>
    void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
    _M_handle_subexpr_end(_Match_mode __match_mode, _StateIdT __i)
    {
      const auto& __state = _M_nfa[__i];

      auto& __res = _M_cur_results[__state._M_subexpr];
      auto __back = __res;
      __res.second = _M_current;
      __res.matched = true;
      _M_dfs(__match_mode, __state._M_next);
      __res = __back;
    }

  template<typename _BiIter, typename _Alloc, typename _TraitsT,
	   bool __dfs_mode>
    inline void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
    _M_handle_line_begin_assertion(_Match_mode __match_mode, _StateIdT __i)
    {
      const auto& __state = _M_nfa[__i];
      if (_M_at_begin())
	_M_dfs(__match_mode, __state._M_next);
    }

  template<typename _BiIter, typename _Alloc, typename _TraitsT,
	   bool __dfs_mode>
    inline void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
    _M_handle_line_end_assertion(_Match_mode __match_mode, _StateIdT __i)
    {
      const auto& __state = _M_nfa[__i];
      if (_M_at_end())
	_M_dfs(__match_mode, __state._M_next);
    }

  template<typename _BiIter, typename _Alloc, typename _TraitsT,
	   bool __dfs_mode>
    inline void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
    _M_handle_word_boundary(_Match_mode __match_mode, _StateIdT __i)
    {
      const auto& __state = _M_nfa[__i];
      if (_M_word_boundary() == !__state._M_neg)
	_M_dfs(__match_mode, __state._M_next);
    }

  // Here __state._M_alt offers a single start node for a sub-NFA.
  // We recursively invoke our algorithm to match the sub-NFA.
  template<typename _BiIter, typename _Alloc, typename _TraitsT,
	   bool __dfs_mode>
    void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
    _M_handle_subexpr_lookahead(_Match_mode __match_mode, _StateIdT __i)
    {
      const auto& __state = _M_nfa[__i];
      if (_M_lookahead(__state._M_alt) == !__state._M_neg)
	_M_dfs(__match_mode, __state._M_next);
    }

  template<typename _BiIter, typename _Alloc, typename _TraitsT,
	   bool __dfs_mode>
    void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
    _M_handle_match(_Match_mode __match_mode, _StateIdT __i)
    {
      const auto& __state = _M_nfa[__i];

      if (_M_current == _M_end)
	return;
      if (__dfs_mode)
	{
	  if (__state._M_matches(*_M_current))
	    {
	      ++_M_current;
	      _M_dfs(__match_mode, __state._M_next);
	      --_M_current;
	    }
	}
      else
	if (__state._M_matches(*_M_current))
	  _M_states._M_queue(__state._M_next, _M_cur_results);
    }

  // First fetch the matched result from _M_cur_results as __submatch;
  // then compare it with
  // (_M_current, _M_current + (__submatch.second - __submatch.first)).
  // If matched, keep going; else just return and try another state.
  template<typename _BiIter, typename _Alloc, typename _TraitsT,
	   bool __dfs_mode>
    void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
    _M_handle_backref(_Match_mode __match_mode, _StateIdT __i)
    {
      __glibcxx_assert(__dfs_mode);

      const auto& __state = _M_nfa[__i];
      auto& __submatch = _M_cur_results[__state._M_backref_index];
      if (!__submatch.matched)
	return;
      auto __last = _M_current;
      for (auto __tmp = __submatch.first;
	   __last != _M_end && __tmp != __submatch.second;
	   ++__tmp)
	++__last;
      if (_M_re._M_automaton->_M_traits.transform(__submatch.first,
						  __submatch.second)
	  == _M_re._M_automaton->_M_traits.transform(_M_current, __last))
	{
	  if (__last != _M_current)
	    {
	      auto __backup = _M_current;
	      _M_current = __last;
	      _M_dfs(__match_mode, __state._M_next);
	      _M_current = __backup;
	    }
	  else
	    _M_dfs(__match_mode, __state._M_next);
	}
    }

  template<typename _BiIter, typename _Alloc, typename _TraitsT,
	   bool __dfs_mode>
    void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
    _M_handle_accept(_Match_mode __match_mode, _StateIdT __i)
    {
      if (__dfs_mode)
	{
	  __glibcxx_assert(!_M_has_sol);
	  if (__match_mode == _Match_mode::_Exact)
	    _M_has_sol = _M_current == _M_end;
	  else
	    _M_has_sol = true;
	  if (_M_current == _M_begin
	      && (_M_flags & regex_constants::match_not_null))
	    _M_has_sol = false;
	  if (_M_has_sol)
	    {
	      if (_M_nfa._M_flags & regex_constants::ECMAScript)
		_M_results = _M_cur_results;
	      else // POSIX
		{
		  __glibcxx_assert(_M_states._M_get_sol_pos());
		  // Here's POSIX's logic: match the longest one. However
		  // we never know which one (lhs or rhs of "|") is longer
		  // unless we try both of them and compare the results.
		  // The member variable _M_sol_pos records the end
		  // position of the last successful match. It's better
		  // to be larger, because POSIX regex is always greedy.
		  // TODO: This could be slow.
		  if (*_M_states._M_get_sol_pos() == _BiIter()
		      || std::distance(_M_begin,
				       *_M_states._M_get_sol_pos())
			 < std::distance(_M_begin, _M_current))
		    {
		      *_M_states._M_get_sol_pos() = _M_current;
		      _M_results = _M_cur_results;
		    }
		}
	    }
	}
      else
	{
	  if (_M_current == _M_begin
	      && (_M_flags & regex_constants::match_not_null))
	    return;
	  if (__match_mode == _Match_mode::_Prefix || _M_current == _M_end)
	    if (!_M_has_sol)
	      {
		_M_has_sol = true;
		_M_results = _M_cur_results;
	      }
	}
    }

  template<typename _BiIter, typename _Alloc, typename _TraitsT,
	   bool __dfs_mode>
    void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
    _M_handle_alternative(_Match_mode __match_mode, _StateIdT __i)
    {
      const auto& __state = _M_nfa[__i];

      if (_M_nfa._M_flags & regex_constants::ECMAScript)
	{
	  // TODO: Fix BFS support. It is wrong.
	  _M_dfs(__match_mode, __state._M_alt);
	  // Pick lhs if it matches. Only try rhs if it doesn't.
	  if (!_M_has_sol)
	    _M_dfs(__match_mode, __state._M_next);
	}
      else
	{
	  // Try both and compare the result.
	  // See "case _S_opcode_accept:" handling above.
	  _M_dfs(__match_mode, __state._M_alt);
	  auto __has_sol = _M_has_sol;
	  _M_has_sol = false;
	  _M_dfs(__match_mode, __state._M_next);
	  _M_has_sol |= __has_sol;
	}
    }

  template<typename _BiIter, typename _Alloc, typename _TraitsT,
	   bool __dfs_mode>
    void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
    _M_dfs(_Match_mode __match_mode, _StateIdT __i)
    {
      if (_M_states._M_visited(__i))
	return;

      switch (_M_nfa[__i]._M_opcode())
	{
	case _S_opcode_repeat:
	  _M_handle_repeat(__match_mode, __i); break;
	case _S_opcode_subexpr_begin:
	  _M_handle_subexpr_begin(__match_mode, __i); break;
	case _S_opcode_subexpr_end:
	  _M_handle_subexpr_end(__match_mode, __i); break;
	case _S_opcode_line_begin_assertion:
	  _M_handle_line_begin_assertion(__match_mode, __i); break;
	case _S_opcode_line_end_assertion:
	  _M_handle_line_end_assertion(__match_mode, __i); break;
	case _S_opcode_word_boundary:
	  _M_handle_word_boundary(__match_mode, __i); break;
	case _S_opcode_subexpr_lookahead:
	  _M_handle_subexpr_lookahead(__match_mode, __i); break;
	case _S_opcode_match:
	  _M_handle_match(__match_mode, __i); break;
	case _S_opcode_backref:
	  _M_handle_backref(__match_mode, __i); break;
	case _S_opcode_accept:
	  _M_handle_accept(__match_mode, __i); break;
	case _S_opcode_alternative:
	  _M_handle_alternative(__match_mode, __i); break;
	default:
	  __glibcxx_assert(false);
	}
    }

  // Return whether now is at some word boundary.
  template<typename _BiIter, typename _Alloc, typename _TraitsT,
	   bool __dfs_mode>
    bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
    _M_word_boundary() const
    {
      if (_M_current == _M_begin && (_M_flags & regex_constants::match_not_bow))
	return false;
      if (_M_current == _M_end && (_M_flags & regex_constants::match_not_eow))
	return false;

      bool __left_is_word = false;
      if (_M_current != _M_begin
	  || (_M_flags & regex_constants::match_prev_avail))
	{
	  auto __prev = _M_current;
	  if (_M_is_word(*std::prev(__prev)))
	    __left_is_word = true;
	}
      bool __right_is_word =
        _M_current != _M_end && _M_is_word(*_M_current);

      return __left_is_word != __right_is_word;
    }

_GLIBCXX_END_NAMESPACE_VERSION
} // namespace __detail
} // namespace