reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
//===-BlockGenerators.h - Helper to generate code for statements-*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the BlockGenerator and VectorBlockGenerator classes, which
// generate sequential code and vectorized code for a polyhedral statement,
// respectively.
//
//===----------------------------------------------------------------------===//

#ifndef POLLY_BLOCK_GENERATORS_H
#define POLLY_BLOCK_GENERATORS_H

#include "polly/CodeGen/IRBuilder.h"
#include "polly/Support/ScopHelper.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "isl/isl-noexceptions.h"

namespace polly {
using namespace llvm;
class MemoryAccess;
class ScopArrayInfo;
class IslExprBuilder;

/// Generate a new basic block for a polyhedral statement.
class BlockGenerator {
public:
  typedef llvm::SmallVector<ValueMapT, 8> VectorValueMapT;

  /// Map types to resolve scalar dependences.
  ///
  ///@{
  using AllocaMapTy = DenseMap<const ScopArrayInfo *, AssertingVH<AllocaInst>>;

  /// Simple vector of instructions to store escape users.
  using EscapeUserVectorTy = SmallVector<Instruction *, 4>;

  /// Map type to resolve escaping users for scalar instructions.
  ///
  /// @see The EscapeMap member.
  using EscapeUsersAllocaMapTy =
      MapVector<Instruction *,
                std::pair<AssertingVH<Value>, EscapeUserVectorTy>>;

  ///@}

  /// Create a generator for basic blocks.
  ///
  /// @param Builder     The LLVM-IR Builder used to generate the statement. The
  ///                    code is generated at the location, the Builder points
  ///                    to.
  /// @param LI          The loop info for the current function
  /// @param SE          The scalar evolution info for the current function
  /// @param DT          The dominator tree of this function.
  /// @param ScalarMap   Map from scalars to their demoted location.
  /// @param EscapeMap   Map from scalars to their escape users and locations.
  /// @param GlobalMap   A mapping from llvm::Values used in the original scop
  ///                    region to a new set of llvm::Values. Each reference to
  ///                    an original value appearing in this mapping is replaced
  ///                    with the new value it is mapped to.
  /// @param ExprBuilder An expression builder to generate new access functions.
  /// @param StartBlock  The first basic block after the RTC.
  BlockGenerator(PollyIRBuilder &Builder, LoopInfo &LI, ScalarEvolution &SE,
                 DominatorTree &DT, AllocaMapTy &ScalarMap,
                 EscapeUsersAllocaMapTy &EscapeMap, ValueMapT &GlobalMap,
                 IslExprBuilder *ExprBuilder, BasicBlock *StartBlock);

  /// Copy the basic block.
  ///
  /// This copies the entire basic block and updates references to old values
  /// with references to new values, as defined by GlobalMap.
  ///
  /// @param Stmt        The block statement to code generate.
  /// @param LTS         A map from old loops to new induction variables as
  ///                    SCEVs.
  /// @param NewAccesses A map from memory access ids to new ast expressions,
  ///                    which may contain new access expressions for certain
  ///                    memory accesses.
  void copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
                isl_id_to_ast_expr *NewAccesses);

  /// Remove a ScopArrayInfo's allocation from the ScalarMap.
  ///
  /// This function allows to remove values from the ScalarMap. This is useful
  /// if the corresponding alloca instruction will be deleted (or moved into
  /// another module), as without removing these values the underlying
  /// AssertingVH will trigger due to us still keeping reference to this
  /// scalar.
  ///
  /// @param Array The array for which the alloca was generated.
  void freeScalarAlloc(ScopArrayInfo *Array) { ScalarMap.erase(Array); }

  /// Return the alloca for @p Access.
  ///
  /// If no alloca was mapped for @p Access a new one is created.
  ///
  /// @param Access    The memory access for which to generate the alloca.
  ///
  /// @returns The alloca for @p Access or a replacement value taken from
  ///          GlobalMap.
  Value *getOrCreateAlloca(const MemoryAccess &Access);

  /// Return the alloca for @p Array.
  ///
  /// If no alloca was mapped for @p Array a new one is created.
  ///
  /// @param Array The array for which to generate the alloca.
  ///
  /// @returns The alloca for @p Array or a replacement value taken from
  ///          GlobalMap.
  Value *getOrCreateAlloca(const ScopArrayInfo *Array);

  /// Finalize the code generation for the SCoP @p S.
  ///
  /// This will initialize and finalize the scalar variables we demoted during
  /// the code generation.
  ///
  /// @see createScalarInitialization(Scop &)
  /// @see createScalarFinalization(Region &)
  void finalizeSCoP(Scop &S);

  /// An empty destructor
  virtual ~BlockGenerator() {}

  BlockGenerator(const BlockGenerator &) = default;

protected:
  PollyIRBuilder &Builder;
  LoopInfo &LI;
  ScalarEvolution &SE;
  IslExprBuilder *ExprBuilder;

  /// The dominator tree of this function.
  DominatorTree &DT;

  /// The entry block of the current function.
  BasicBlock *EntryBB;

  /// Map to resolve scalar dependences for PHI operands and scalars.
  ///
  /// When translating code that contains scalar dependences as they result from
  /// inter-block scalar dependences (including the use of data carrying PHI
  /// nodes), we do not directly regenerate in-register SSA code, but instead
  /// allocate some stack memory through which these scalar values are passed.
  /// Only a later pass of -mem2reg will then (re)introduce in-register
  /// computations.
  ///
  /// To keep track of the memory location(s) used to store the data computed by
  /// a given SSA instruction, we use the map 'ScalarMap'. ScalarMap maps a
  /// given ScopArrayInfo to the junk of stack allocated memory, that is
  /// used for code generation.
  ///
  /// Up to two different ScopArrayInfo objects are associated with each
  /// llvm::Value:
  ///
  /// MemoryType::Value objects are used for normal scalar dependences that go
  /// from a scalar definition to its use. Such dependences are lowered by
  /// directly writing the value an instruction computes into the corresponding
  /// chunk of memory and reading it back from this chunk of memory right before
  /// every use of this original scalar value. The memory allocations for
  /// MemoryType::Value objects end with '.s2a'.
  ///
  /// MemoryType::PHI (and MemoryType::ExitPHI) objects are used to model PHI
  /// nodes. For each PHI nodes we introduce, besides the Array of type
  /// MemoryType::Value, a second chunk of memory into which we write at the end
  /// of each basic block preceding the PHI instruction the value passed
  /// through this basic block. At the place where the PHI node is executed, we
  /// replace the PHI node with a load from the corresponding MemoryType::PHI
  /// memory location. The memory allocations for MemoryType::PHI end with
  /// '.phiops'.
  ///
  /// Example:
  ///
  ///                              Input C Code
  ///                              ============
  ///
  ///                 S1:      x1 = ...
  ///                          for (i=0...N) {
  ///                 S2:           x2 = phi(x1, add)
  ///                 S3:           add = x2 + 42;
  ///                          }
  ///                 S4:      print(x1)
  ///                          print(x2)
  ///                          print(add)
  ///
  ///
  ///        Unmodified IR                         IR After expansion
  ///        =============                         ==================
  ///
  /// S1:   x1 = ...                     S1:    x1 = ...
  ///                                           x1.s2a = s1
  ///                                           x2.phiops = s1
  ///        |                                    |
  ///        |   <--<--<--<--<                    |   <--<--<--<--<
  ///        | /              \                   | /              \     .
  ///        V V               \                  V V               \    .
  /// S2:  x2 = phi (x1, add)   |        S2:    x2 = x2.phiops       |
  ///                           |               x2.s2a = x2          |
  ///                           |                                    |
  /// S3:  add = x2 + 42        |        S3:    add = x2 + 42        |
  ///                           |               add.s2a = add        |
  ///                           |               x2.phiops = add      |
  ///        | \               /                  | \               /
  ///        |  \             /                   |  \             /
  ///        |   >-->-->-->-->                    |   >-->-->-->-->
  ///        V                                    V
  ///
  ///                                    S4:    x1 = x1.s2a
  /// S4:  ... = x1                             ... = x1
  ///                                           x2 = x2.s2a
  ///      ... = x2                             ... = x2
  ///                                           add = add.s2a
  ///      ... = add                            ... = add
  ///
  ///      ScalarMap = { x1:Value -> x1.s2a, x2:Value -> x2.s2a,
  ///                    add:Value -> add.s2a, x2:PHI -> x2.phiops }
  ///
  ///  ??? Why does a PHI-node require two memory chunks ???
  ///
  ///  One may wonder why a PHI node requires two memory chunks and not just
  ///  all data is stored in a single location. The following example tries
  ///  to store all data in .s2a and drops the .phiops location:
  ///
  ///      S1:    x1 = ...
  ///             x1.s2a = s1
  ///             x2.s2a = s1             // use .s2a instead of .phiops
  ///               |
  ///               |   <--<--<--<--<
  ///               | /              \    .
  ///               V V               \   .
  ///      S2:    x2 = x2.s2a          |  // value is same as above, but read
  ///                                  |  // from .s2a
  ///                                  |
  ///             x2.s2a = x2          |  // store into .s2a as normal
  ///                                  |
  ///      S3:    add = x2 + 42        |
  ///             add.s2a = add        |
  ///             x2.s2a = add         |  // use s2a instead of .phiops
  ///               | \               /   // !!! This is wrong, as x2.s2a now
  ///               |   >-->-->-->-->     // contains add instead of x2.
  ///               V
  ///
  ///      S4:    x1 = x1.s2a
  ///             ... = x1
  ///             x2 = x2.s2a             // !!! We now read 'add' instead of
  ///             ... = x2                // 'x2'
  ///             add = add.s2a
  ///             ... = add
  ///
  ///  As visible in the example, the SSA value of the PHI node may still be
  ///  needed _after_ the basic block, which could conceptually branch to the
  ///  PHI node, has been run and has overwritten the PHI's old value. Hence, a
  ///  single memory location is not enough to code-generate a PHI node.
  ///
  /// Memory locations used for the special PHI node modeling.
  AllocaMapTy &ScalarMap;

  /// Map from instructions to their escape users as well as the alloca.
  EscapeUsersAllocaMapTy &EscapeMap;

  /// A map from llvm::Values referenced in the old code to a new set of
  ///        llvm::Values, which is used to replace these old values during
  ///        code generation.
  ValueMapT &GlobalMap;

  /// The first basic block after the RTC.
  BasicBlock *StartBlock;

  /// Split @p BB to create a new one we can use to clone @p BB in.
  BasicBlock *splitBB(BasicBlock *BB);

  /// Copy the given basic block.
  ///
  /// @param Stmt      The statement to code generate.
  /// @param BB        The basic block to code generate.
  /// @param BBMap     A mapping from old values to their new values in this
  /// block.
  /// @param LTS         A map from old loops to new induction variables as
  ///                    SCEVs.
  /// @param NewAccesses A map from memory access ids to new ast expressions,
  ///                    which may contain new access expressions for certain
  ///                    memory accesses.
  ///
  /// @returns The copy of the basic block.
  BasicBlock *copyBB(ScopStmt &Stmt, BasicBlock *BB, ValueMapT &BBMap,
                     LoopToScevMapT &LTS, isl_id_to_ast_expr *NewAccesses);

  /// Copy the given basic block.
  ///
  /// @param Stmt      The statement to code generate.
  /// @param BB        The basic block to code generate.
  /// @param BBCopy    The new basic block to generate code in.
  /// @param BBMap     A mapping from old values to their new values in this
  /// block.
  /// @param LTS         A map from old loops to new induction variables as
  ///                    SCEVs.
  /// @param NewAccesses A map from memory access ids to new ast expressions,
  ///                    which may contain new access expressions for certain
  ///                    memory accesses.
  void copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *BBCopy,
              ValueMapT &BBMap, LoopToScevMapT &LTS,
              isl_id_to_ast_expr *NewAccesses);

  /// Generate reload of scalars demoted to memory and needed by @p Stmt.
  ///
  /// @param Stmt  The statement we generate code for.
  /// @param LTS   A mapping from loops virtual canonical induction
  ///              variable to their new values.
  /// @param BBMap A mapping from old values to their new values in this block.
  /// @param NewAccesses A map from memory access ids to new ast expressions.
  void generateScalarLoads(ScopStmt &Stmt, LoopToScevMapT &LTS,
                           ValueMapT &BBMap,
                           __isl_keep isl_id_to_ast_expr *NewAccesses);

  /// When statement tracing is enabled, build the print instructions for
  /// printing the current statement instance.
  ///
  /// The printed output looks like:
  ///
  ///     Stmt1(0)
  ///
  /// If printing of scalars is enabled, it also appends the value of each
  /// scalar to the line:
  ///
  ///     Stmt1(0) %i=1 %sum=5
  ///
  /// @param Stmt  The statement we generate code for.
  /// @param LTS   A mapping from loops virtual canonical induction
  ///              variable to their new values.
  /// @param BBMap A mapping from old values to their new values in this block.
  void generateBeginStmtTrace(ScopStmt &Stmt, LoopToScevMapT &LTS,
                              ValueMapT &BBMap);

  /// Generate instructions that compute whether one instance of @p Set is
  /// executed.
  ///
  /// @param Stmt      The statement we generate code for.
  /// @param Subdomain A set in the space of @p Stmt's domain. Elements not in
  ///                  @p Stmt's domain are ignored.
  ///
  /// @return An expression of type i1, generated into the current builder
  ///         position, that evaluates to 1 if the executed instance is part of
  ///         @p Set.
  Value *buildContainsCondition(ScopStmt &Stmt, const isl::set &Subdomain);

  /// Generate code that executes in a subset of @p Stmt's domain.
  ///
  /// @param Stmt        The statement we generate code for.
  /// @param Subdomain   The condition for some code to be executed.
  /// @param Subject     A name for the code that is executed
  ///                    conditionally. Used to name new basic blocks and
  ///                    instructions.
  /// @param GenThenFunc Callback which generates the code to be executed
  ///                    when the current executed instance is in @p Set. The
  ///                    IRBuilder's position is moved to within the block that
  ///                    executes conditionally for this callback.
  void generateConditionalExecution(ScopStmt &Stmt, const isl::set &Subdomain,
                                    StringRef Subject,
                                    const std::function<void()> &GenThenFunc);

  /// Generate the scalar stores for the given statement.
  ///
  /// After the statement @p Stmt was copied all inner-SCoP scalar dependences
  /// starting in @p Stmt (hence all scalar write accesses in @p Stmt) need to
  /// be demoted to memory.
  ///
  /// @param Stmt  The statement we generate code for.
  /// @param LTS   A mapping from loops virtual canonical induction
  ///              variable to their new values
  ///              (for values recalculated in the new ScoP, but not
  ///               within this basic block)
  /// @param BBMap A mapping from old values to their new values in this block.
  /// @param NewAccesses A map from memory access ids to new ast expressions.
  virtual void generateScalarStores(ScopStmt &Stmt, LoopToScevMapT &LTS,
                                    ValueMapT &BBMap,
                                    __isl_keep isl_id_to_ast_expr *NewAccesses);

  /// Handle users of @p Array outside the SCoP.
  ///
  /// @param S         The current SCoP.
  /// @param Inst      The ScopArrayInfo to handle.
  void handleOutsideUsers(const Scop &S, ScopArrayInfo *Array);

  /// Find scalar statements that have outside users.
  ///
  /// We register these scalar values to later update subsequent scalar uses of
  /// these values to either use the newly computed value from within the scop
  /// (if the scop was executed) or the unchanged original code (if the run-time
  /// check failed).
  ///
  /// @param S The scop for which to find the outside users.
  void findOutsideUsers(Scop &S);

  /// Initialize the memory of demoted scalars.
  ///
  /// @param S The scop for which to generate the scalar initializers.
  void createScalarInitialization(Scop &S);

  /// Create exit PHI node merges for PHI nodes with more than two edges
  ///        from inside the scop.
  ///
  /// For scops which have a PHI node in the exit block that has more than two
  /// incoming edges from inside the scop region, we require some special
  /// handling to understand which of the possible values will be passed to the
  /// PHI node from inside the optimized version of the scop. To do so ScopInfo
  /// models the possible incoming values as write accesses of the ScopStmts.
  ///
  /// This function creates corresponding code to reload the computed outgoing
  /// value from the stack slot it has been stored into and to pass it on to the
  /// PHI node in the original exit block.
  ///
  /// @param S The scop for which to generate the exiting PHI nodes.
  void createExitPHINodeMerges(Scop &S);

  /// Promote the values of demoted scalars after the SCoP.
  ///
  /// If a scalar value was used outside the SCoP we need to promote the value
  /// stored in the memory cell allocated for that scalar and combine it with
  /// the original value in the non-optimized SCoP.
  void createScalarFinalization(Scop &S);

  /// Try to synthesize a new value
  ///
  /// Given an old value, we try to synthesize it in a new context from its
  /// original SCEV expression. We start from the original SCEV expression,
  /// then replace outdated parameter and loop references, and finally
  /// expand it to code that computes this updated expression.
  ///
  /// @param Stmt      The statement to code generate
  /// @param Old       The old Value
  /// @param BBMap     A mapping from old values to their new values
  ///                  (for values recalculated within this basic block)
  /// @param LTS       A mapping from loops virtual canonical induction
  ///                  variable to their new values
  ///                  (for values recalculated in the new ScoP, but not
  ///                   within this basic block)
  /// @param L         The loop that surrounded the instruction that referenced
  ///                  this value in the original code. This loop is used to
  ///                  evaluate the scalar evolution at the right scope.
  ///
  /// @returns  o A newly synthesized value.
  ///           o NULL, if synthesizing the value failed.
  Value *trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap,
                               LoopToScevMapT &LTS, Loop *L) const;

  /// Get the new version of a value.
  ///
  /// Given an old value, we first check if a new version of this value is
  /// available in the BBMap or GlobalMap. In case it is not and the value can
  /// be recomputed using SCEV, we do so. If we can not recompute a value
  /// using SCEV, but we understand that the value is constant within the scop,
  /// we return the old value.  If the value can still not be derived, this
  /// function will assert.
  ///
  /// @param Stmt      The statement to code generate.
  /// @param Old       The old Value.
  /// @param BBMap     A mapping from old values to their new values
  ///                  (for values recalculated within this basic block).
  /// @param LTS       A mapping from loops virtual canonical induction
  ///                  variable to their new values
  ///                  (for values recalculated in the new ScoP, but not
  ///                   within this basic block).
  /// @param L         The loop that surrounded the instruction that referenced
  ///                  this value in the original code. This loop is used to
  ///                  evaluate the scalar evolution at the right scope.
  ///
  /// @returns  o The old value, if it is still valid.
  ///           o The new value, if available.
  ///           o NULL, if no value is found.
  Value *getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap,
                     LoopToScevMapT &LTS, Loop *L) const;

  void copyInstScalar(ScopStmt &Stmt, Instruction *Inst, ValueMapT &BBMap,
                      LoopToScevMapT &LTS);

  /// Get the innermost loop that surrounds the statement @p Stmt.
  Loop *getLoopForStmt(const ScopStmt &Stmt) const;

  /// Generate the operand address
  /// @param NewAccesses A map from memory access ids to new ast expressions,
  ///                    which may contain new access expressions for certain
  ///                    memory accesses.
  Value *generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst,
                                  ValueMapT &BBMap, LoopToScevMapT &LTS,
                                  isl_id_to_ast_expr *NewAccesses);

  /// Generate the operand address.
  ///
  /// @param Stmt         The statement to generate code for.
  /// @param L            The innermost loop that surrounds the statement.
  /// @param Pointer      If the access expression is not changed (ie. not found
  ///                     in @p LTS), use this Pointer from the original code
  ///                     instead.
  /// @param BBMap        A mapping from old values to their new values.
  /// @param LTS          A mapping from loops virtual canonical induction
  ///                     variable to their new values.
  /// @param NewAccesses  Ahead-of-time generated access expressions.
  /// @param Id           Identifier of the MemoryAccess to generate.
  /// @param ExpectedType The type the returned value should have.
  ///
  /// @return The generated address.
  Value *generateLocationAccessed(ScopStmt &Stmt, Loop *L, Value *Pointer,
                                  ValueMapT &BBMap, LoopToScevMapT &LTS,
                                  isl_id_to_ast_expr *NewAccesses,
                                  __isl_take isl_id *Id, Type *ExpectedType);

  /// Generate the pointer value that is accesses by @p Access.
  ///
  /// For write accesses, generate the target address. For read accesses,
  /// generate the source address.
  /// The access can be either an array access or a scalar access. In the first
  /// case, the returned address will point to an element into that array. In
  /// the scalar case, an alloca is used.
  /// If a new AccessRelation is set for the MemoryAccess, the new relation will
  /// be used.
  ///
  /// @param Access      The access to generate a pointer for.
  /// @param L           The innermost loop that surrounds the statement.
  /// @param LTS         A mapping from loops virtual canonical induction
  ///                    variable to their new values.
  /// @param BBMap       A mapping from old values to their new values.
  /// @param NewAccesses A map from memory access ids to new ast expressions.
  ///
  /// @return The generated address.
  Value *getImplicitAddress(MemoryAccess &Access, Loop *L, LoopToScevMapT &LTS,
                            ValueMapT &BBMap,
                            __isl_keep isl_id_to_ast_expr *NewAccesses);

  /// @param NewAccesses A map from memory access ids to new ast expressions,
  ///                    which may contain new access expressions for certain
  ///                    memory accesses.
  Value *generateArrayLoad(ScopStmt &Stmt, LoadInst *load, ValueMapT &BBMap,
                           LoopToScevMapT &LTS,
                           isl_id_to_ast_expr *NewAccesses);

  /// @param NewAccesses A map from memory access ids to new ast expressions,
  ///                    which may contain new access expressions for certain
  ///                    memory accesses.
  void generateArrayStore(ScopStmt &Stmt, StoreInst *store, ValueMapT &BBMap,
                          LoopToScevMapT &LTS, isl_id_to_ast_expr *NewAccesses);

  /// Copy a single PHI instruction.
  ///
  /// The implementation in the BlockGenerator is trivial, however it allows
  /// subclasses to handle PHIs different.
  virtual void copyPHIInstruction(ScopStmt &, PHINode *, ValueMapT &,
                                  LoopToScevMapT &) {}

  /// Copy a single Instruction.
  ///
  /// This copies a single Instruction and updates references to old values
  /// with references to new values, as defined by GlobalMap and BBMap.
  ///
  /// @param Stmt        The statement to code generate.
  /// @param Inst        The instruction to copy.
  /// @param BBMap       A mapping from old values to their new values
  ///                    (for values recalculated within this basic block).
  /// @param GlobalMap   A mapping from old values to their new values
  ///                    (for values recalculated in the new ScoP, but not
  ///                    within this basic block).
  /// @param LTS         A mapping from loops virtual canonical induction
  ///                    variable to their new values
  ///                    (for values recalculated in the new ScoP, but not
  ///                     within this basic block).
  /// @param NewAccesses A map from memory access ids to new ast expressions,
  ///                    which may contain new access expressions for certain
  ///                    memory accesses.
  void copyInstruction(ScopStmt &Stmt, Instruction *Inst, ValueMapT &BBMap,
                       LoopToScevMapT &LTS, isl_id_to_ast_expr *NewAccesses);

  /// Helper to determine if @p Inst can be synthesized in @p Stmt.
  ///
  /// @returns false, iff @p Inst can be synthesized in @p Stmt.
  bool canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst);

  /// Remove dead instructions generated for BB
  ///
  /// @param BB The basic block code for which code has been generated.
  /// @param BBMap A local map from old to new instructions.
  void removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap);

  /// Invalidate the scalar evolution expressions for a scop.
  ///
  /// This function invalidates the scalar evolution results for all
  /// instructions that are part of a given scop, and the loops
  /// surrounding the users of merge blocks. This is necessary to ensure that
  /// later scops do not obtain scalar evolution expressions that reference
  /// values that earlier dominated the later scop, but have been moved in the
  /// conditional part of an earlier scop and consequently do not any more
  /// dominate the later scop.
  ///
  /// @param S The scop to invalidate.
  void invalidateScalarEvolution(Scop &S);
};

/// Generate a new vector basic block for a polyhedral statement.
///
/// The only public function exposed is generate().
class VectorBlockGenerator : BlockGenerator {
public:
  /// Generate a new vector basic block for a ScoPStmt.
  ///
  /// This code generation is similar to the normal, scalar code generation,
  /// except that each instruction is code generated for several vector lanes
  /// at a time. If possible instructions are issued as actual vector
  /// instructions, but e.g. for address calculation instructions we currently
  /// generate scalar instructions for each vector lane.
  ///
  /// @param BlockGen    A block generator object used as parent.
  /// @param Stmt        The statement to code generate.
  /// @param VLTS        A mapping from loops virtual canonical induction
  ///                    variable to their new values
  ///                    (for values recalculated in the new ScoP, but not
  ///                     within this basic block), one for each lane.
  /// @param Schedule    A map from the statement to a schedule where the
  ///                    innermost dimension is the dimension of the innermost
  ///                    loop containing the statement.
  /// @param NewAccesses A map from memory access ids to new ast expressions,
  ///                    which may contain new access expressions for certain
  ///                    memory accesses.
  static void generate(BlockGenerator &BlockGen, ScopStmt &Stmt,
                       std::vector<LoopToScevMapT> &VLTS,
                       __isl_keep isl_map *Schedule,
                       __isl_keep isl_id_to_ast_expr *NewAccesses) {
    VectorBlockGenerator Generator(BlockGen, VLTS, Schedule);
    Generator.copyStmt(Stmt, NewAccesses);
  }

private:
  // This is a vector of loop->scev maps.  The first map is used for the first
  // vector lane, ...
  // Each map, contains information about Instructions in the old ScoP, which
  // are recalculated in the new SCoP. When copying the basic block, we replace
  // all references to the old instructions with their recalculated values.
  //
  // For example, when the code generator produces this AST:
  //
  //   for (int c1 = 0; c1 <= 1023; c1 += 1)
  //     for (int c2 = 0; c2 <= 1023; c2 += VF)
  //       for (int lane = 0; lane <= VF; lane += 1)
  //         Stmt(c2 + lane + 3, c1);
  //
  // VLTS[lane] contains a map:
  //   "outer loop in the old loop nest" -> SCEV("c2 + lane + 3"),
  //   "inner loop in the old loop nest" -> SCEV("c1").
  std::vector<LoopToScevMapT> &VLTS;

  // A map from the statement to a schedule where the innermost dimension is the
  // dimension of the innermost loop containing the statement.
  isl_map *Schedule;

  VectorBlockGenerator(BlockGenerator &BlockGen,
                       std::vector<LoopToScevMapT> &VLTS,
                       __isl_keep isl_map *Schedule);

  int getVectorWidth();

  Value *getVectorValue(ScopStmt &Stmt, Value *Old, ValueMapT &VectorMap,
                        VectorValueMapT &ScalarMaps, Loop *L);

  Type *getVectorPtrTy(const Value *V, int Width);

  /// Load a vector from a set of adjacent scalars
  ///
  /// In case a set of scalars is known to be next to each other in memory,
  /// create a vector load that loads those scalars
  ///
  /// %vector_ptr= bitcast double* %p to <4 x double>*
  /// %vec_full = load <4 x double>* %vector_ptr
  ///
  /// @param Stmt           The statement to code generate.
  /// @param NegativeStride This is used to indicate a -1 stride. In such
  ///                       a case we load the end of a base address and
  ///                       shuffle the accesses in reverse order into the
  ///                       vector. By default we would do only positive
  ///                       strides.
  ///
  /// @param NewAccesses    A map from memory access ids to new ast
  ///                       expressions, which may contain new access
  ///                       expressions for certain memory accesses.
  Value *generateStrideOneLoad(ScopStmt &Stmt, LoadInst *Load,
                               VectorValueMapT &ScalarMaps,
                               __isl_keep isl_id_to_ast_expr *NewAccesses,
                               bool NegativeStride);

  /// Load a vector initialized from a single scalar in memory
  ///
  /// In case all elements of a vector are initialized to the same
  /// scalar value, this value is loaded and shuffled into all elements
  /// of the vector.
  ///
  /// %splat_one = load <1 x double>* %p
  /// %splat = shufflevector <1 x double> %splat_one, <1 x
  ///       double> %splat_one, <4 x i32> zeroinitializer
  ///
  /// @param NewAccesses A map from memory access ids to new ast expressions,
  ///                    which may contain new access expressions for certain
  ///                    memory accesses.
  Value *generateStrideZeroLoad(ScopStmt &Stmt, LoadInst *Load,
                                ValueMapT &BBMap,
                                __isl_keep isl_id_to_ast_expr *NewAccesses);

  /// Load a vector from scalars distributed in memory
  ///
  /// In case some scalars a distributed randomly in memory. Create a vector
  /// by loading each scalar and by inserting one after the other into the
  /// vector.
  ///
  /// %scalar_1= load double* %p_1
  /// %vec_1 = insertelement <2 x double> undef, double %scalar_1, i32 0
  /// %scalar 2 = load double* %p_2
  /// %vec_2 = insertelement <2 x double> %vec_1, double %scalar_1, i32 1
  ///
  /// @param NewAccesses A map from memory access ids to new ast expressions,
  ///                    which may contain new access expressions for certain
  ///                    memory accesses.
  Value *generateUnknownStrideLoad(ScopStmt &Stmt, LoadInst *Load,
                                   VectorValueMapT &ScalarMaps,
                                   __isl_keep isl_id_to_ast_expr *NewAccesses);

  /// @param NewAccesses A map from memory access ids to new ast expressions,
  ///                    which may contain new access expressions for certain
  ///                    memory accesses.
  void generateLoad(ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap,
                    VectorValueMapT &ScalarMaps,
                    __isl_keep isl_id_to_ast_expr *NewAccesses);

  void copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst,
                     ValueMapT &VectorMap, VectorValueMapT &ScalarMaps);

  void copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst,
                      ValueMapT &VectorMap, VectorValueMapT &ScalarMaps);

  /// @param NewAccesses A map from memory access ids to new ast expressions,
  ///                    which may contain new access expressions for certain
  ///                    memory accesses.
  void copyStore(ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap,
                 VectorValueMapT &ScalarMaps,
                 __isl_keep isl_id_to_ast_expr *NewAccesses);

  /// @param NewAccesses A map from memory access ids to new ast expressions,
  ///                    which may contain new access expressions for certain
  ///                    memory accesses.
  void copyInstScalarized(ScopStmt &Stmt, Instruction *Inst,
                          ValueMapT &VectorMap, VectorValueMapT &ScalarMaps,
                          __isl_keep isl_id_to_ast_expr *NewAccesses);

  bool extractScalarValues(const Instruction *Inst, ValueMapT &VectorMap,
                           VectorValueMapT &ScalarMaps);

  bool hasVectorOperands(const Instruction *Inst, ValueMapT &VectorMap);

  /// Generate vector loads for scalars.
  ///
  /// @param Stmt           The scop statement for which to generate the loads.
  /// @param VectorBlockMap A map that will be updated to relate the original
  ///                       values with the newly generated vector loads.
  void generateScalarVectorLoads(ScopStmt &Stmt, ValueMapT &VectorBlockMap);

  /// Verify absence of scalar stores.
  ///
  /// @param Stmt The scop statement to check for scalar stores.
  void verifyNoScalarStores(ScopStmt &Stmt);

  /// @param NewAccesses A map from memory access ids to new ast expressions,
  ///                    which may contain new access expressions for certain
  ///                    memory accesses.
  void copyInstruction(ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
                       VectorValueMapT &ScalarMaps,
                       __isl_keep isl_id_to_ast_expr *NewAccesses);

  /// @param NewAccesses A map from memory access ids to new ast expressions,
  ///                    which may contain new access expressions for certain
  ///                    memory accesses.
  void copyStmt(ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses);
};

/// Generator for new versions of polyhedral region statements.
class RegionGenerator : public BlockGenerator {
public:
  /// Create a generator for regions.
  ///
  /// @param BlockGen A generator for basic blocks.
  RegionGenerator(BlockGenerator &BlockGen) : BlockGenerator(BlockGen) {}

  virtual ~RegionGenerator() {}

  /// Copy the region statement @p Stmt.
  ///
  /// This copies the entire region represented by @p Stmt and updates
  /// references to old values with references to new values, as defined by
  /// GlobalMap.
  ///
  /// @param Stmt      The statement to code generate.
  /// @param LTS       A map from old loops to new induction variables as SCEVs.
  void copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
                __isl_keep isl_id_to_ast_expr *IdToAstExp);

private:
  /// A map from old to the first new block in the region, that was created to
  /// model the old basic block.
  DenseMap<BasicBlock *, BasicBlock *> StartBlockMap;

  /// A map from old to the last new block in the region, that was created to
  /// model the old basic block.
  DenseMap<BasicBlock *, BasicBlock *> EndBlockMap;

  /// The "BBMaps" for the whole region (one for each block). In case a basic
  /// block is code generated to multiple basic blocks (e.g., for partial
  /// writes), the StartBasic is used as index for the RegionMap.
  DenseMap<BasicBlock *, ValueMapT> RegionMaps;

  /// Mapping to remember PHI nodes that still need incoming values.
  using PHINodePairTy = std::pair<PHINode *, PHINode *>;
  DenseMap<BasicBlock *, SmallVector<PHINodePairTy, 4>> IncompletePHINodeMap;

  /// Repair the dominance tree after we created a copy block for @p BB.
  ///
  /// @returns The immediate dominator in the DT for @p BBCopy if in the region.
  BasicBlock *repairDominance(BasicBlock *BB, BasicBlock *BBCopy);

  /// Add the new operand from the copy of @p IncomingBB to @p PHICopy.
  ///
  /// PHI nodes, which may have (multiple) edges that enter from outside the
  /// non-affine subregion and even from outside the scop, are code generated as
  /// follows:
  ///
  /// # Original
  ///
  ///   Region: %A-> %exit
  ///   NonAffine Stmt: %nonaffB -> %D (includes %nonaffB, %nonaffC)
  ///
  ///     pre:
  ///       %val = add i64 1, 1
  ///
  ///     A:
  ///      br label %nonaff
  ///
  ///     nonaffB:
  ///       %phi = phi i64 [%val, %A], [%valC, %nonAffC], [%valD, %D]
  ///       %cmp = <nonaff>
  ///       br i1 %cmp, label %C, label %nonaffC
  ///
  ///     nonaffC:
  ///       %valC = add i64 1, 1
  ///       br i1 undef, label %D, label %nonaffB
  ///
  ///     D:
  ///       %valD = ...
  ///       %exit_cond = <loopexit>
  ///       br i1 %exit_cond, label %nonaffB, label %exit
  ///
  ///     exit:
  ///       ...
  ///
  ///  - %start and %C enter from outside the non-affine region.
  ///  - %nonaffC enters from within the non-affine region.
  ///
  ///  # New
  ///
  ///    polly.A:
  ///       store i64 %val, i64* %phi.phiops
  ///       br label %polly.nonaffA.entry
  ///
  ///    polly.nonaffB.entry:
  ///       %phi.phiops.reload = load i64, i64* %phi.phiops
  ///       br label %nonaffB
  ///
  ///    polly.nonaffB:
  ///       %polly.phi = [%phi.phiops.reload, %nonaffB.entry],
  ///                    [%p.valC, %polly.nonaffC]
  ///
  ///    polly.nonaffC:
  ///       %p.valC = add i64 1, 1
  ///       br i1 undef, label %polly.D, label %polly.nonaffB
  ///
  ///    polly.D:
  ///        %p.valD = ...
  ///        store i64 %p.valD, i64* %phi.phiops
  ///        %p.exit_cond = <loopexit>
  ///        br i1 %p.exit_cond, label %polly.nonaffB, label %exit
  ///
  /// Values that enter the PHI from outside the non-affine region are stored
  /// into the stack slot %phi.phiops by statements %polly.A and %polly.D and
  /// reloaded in %polly.nonaffB.entry, a basic block generated before the
  /// actual non-affine region.
  ///
  /// When generating the PHI node of the non-affine region in %polly.nonaffB,
  /// incoming edges from outside the region are combined into a single branch
  /// from %polly.nonaffB.entry which has as incoming value the value reloaded
  /// from the %phi.phiops stack slot. Incoming edges from within the region
  /// refer to the copied instructions (%p.valC) and basic blocks
  /// (%polly.nonaffC) of the non-affine region.
  ///
  /// @param Stmt       The statement to code generate.
  /// @param PHI        The original PHI we copy.
  /// @param PHICopy    The copy of @p PHI.
  /// @param IncomingBB An incoming block of @p PHI.
  /// @param LTS        A map from old loops to new induction variables as
  /// SCEVs.
  void addOperandToPHI(ScopStmt &Stmt, PHINode *PHI, PHINode *PHICopy,
                       BasicBlock *IncomingBB, LoopToScevMapT &LTS);

  /// Create a PHI that combines the incoming values from all incoming blocks
  /// that are in the subregion.
  ///
  /// PHIs in the subregion's exit block can have incoming edges from within and
  /// outside the subregion. This function combines the incoming values from
  /// within the subregion to appear as if there is only one incoming edge from
  /// the subregion (an additional exit block is created by RegionGenerator).
  /// This is to avoid that a value is written to the .phiops location without
  /// leaving the subregion because the exiting block as an edge back into the
  /// subregion.
  ///
  /// @param MA    The WRITE of MemoryKind::PHI/MemoryKind::ExitPHI for a PHI in
  ///              the subregion's exit block.
  /// @param LTS   Virtual induction variable mapping.
  /// @param BBMap A mapping from old values to their new values in this block.
  /// @param L     Loop surrounding this region statement.
  ///
  /// @returns The constructed PHI node.
  PHINode *buildExitPHI(MemoryAccess *MA, LoopToScevMapT &LTS, ValueMapT &BBMap,
                        Loop *L);

  /// @param Return the new value of a scalar write, creating a PHINode if
  ///        necessary.
  ///
  /// @param MA    A scalar WRITE MemoryAccess.
  /// @param LTS   Virtual induction variable mapping.
  /// @param BBMap A mapping from old values to their new values in this block.
  ///
  /// @returns The effective value of @p MA's written value when leaving the
  ///          subregion.
  /// @see buildExitPHI
  Value *getExitScalar(MemoryAccess *MA, LoopToScevMapT &LTS, ValueMapT &BBMap);

  /// Generate the scalar stores for the given statement.
  ///
  /// After the statement @p Stmt was copied all inner-SCoP scalar dependences
  /// starting in @p Stmt (hence all scalar write accesses in @p Stmt) need to
  /// be demoted to memory.
  ///
  /// @param Stmt  The statement we generate code for.
  /// @param LTS   A mapping from loops virtual canonical induction variable to
  ///              their new values (for values recalculated in the new ScoP,
  ///              but not within this basic block)
  /// @param BBMap A mapping from old values to their new values in this block.
  /// @param LTS   A mapping from loops virtual canonical induction variable to
  /// their new values.
  virtual void
  generateScalarStores(ScopStmt &Stmt, LoopToScevMapT &LTS, ValueMapT &BBMAp,
                       __isl_keep isl_id_to_ast_expr *NewAccesses) override;

  /// Copy a single PHI instruction.
  ///
  /// This copies a single PHI instruction and updates references to old values
  /// with references to new values, as defined by GlobalMap and BBMap.
  ///
  /// @param Stmt      The statement to code generate.
  /// @param PHI       The PHI instruction to copy.
  /// @param BBMap     A mapping from old values to their new values
  ///                  (for values recalculated within this basic block).
  /// @param LTS       A map from old loops to new induction variables as SCEVs.
  virtual void copyPHIInstruction(ScopStmt &Stmt, PHINode *Inst,
                                  ValueMapT &BBMap,
                                  LoopToScevMapT &LTS) override;
};
} // namespace polly
#endif