reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
//===-- Memory.cpp ----------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "lldb/Target/Memory.h"
#include "lldb/Target/Process.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/RangeMap.h"
#include "lldb/Utility/State.h"

#include <cinttypes>
#include <memory>

using namespace lldb;
using namespace lldb_private;

// MemoryCache constructor
MemoryCache::MemoryCache(Process &process)
    : m_mutex(), m_L1_cache(), m_L2_cache(), m_invalid_ranges(),
      m_process(process),
      m_L2_cache_line_byte_size(process.GetMemoryCacheLineSize()) {}

// Destructor
MemoryCache::~MemoryCache() {}

void MemoryCache::Clear(bool clear_invalid_ranges) {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);
  m_L1_cache.clear();
  m_L2_cache.clear();
  if (clear_invalid_ranges)
    m_invalid_ranges.Clear();
  m_L2_cache_line_byte_size = m_process.GetMemoryCacheLineSize();
}

void MemoryCache::AddL1CacheData(lldb::addr_t addr, const void *src,
                                 size_t src_len) {
  AddL1CacheData(
      addr, DataBufferSP(new DataBufferHeap(DataBufferHeap(src, src_len))));
}

void MemoryCache::AddL1CacheData(lldb::addr_t addr,
                                 const DataBufferSP &data_buffer_sp) {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);
  m_L1_cache[addr] = data_buffer_sp;
}

void MemoryCache::Flush(addr_t addr, size_t size) {
  if (size == 0)
    return;

  std::lock_guard<std::recursive_mutex> guard(m_mutex);

  // Erase any blocks from the L1 cache that intersect with the flush range
  if (!m_L1_cache.empty()) {
    AddrRange flush_range(addr, size);
    BlockMap::iterator pos = m_L1_cache.upper_bound(addr);
    if (pos != m_L1_cache.begin()) {
      --pos;
    }
    while (pos != m_L1_cache.end()) {
      AddrRange chunk_range(pos->first, pos->second->GetByteSize());
      if (!chunk_range.DoesIntersect(flush_range))
        break;
      pos = m_L1_cache.erase(pos);
    }
  }

  if (!m_L2_cache.empty()) {
    const uint32_t cache_line_byte_size = m_L2_cache_line_byte_size;
    const addr_t end_addr = (addr + size - 1);
    const addr_t first_cache_line_addr = addr - (addr % cache_line_byte_size);
    const addr_t last_cache_line_addr =
        end_addr - (end_addr % cache_line_byte_size);
    // Watch for overflow where size will cause us to go off the end of the
    // 64 bit address space
    uint32_t num_cache_lines;
    if (last_cache_line_addr >= first_cache_line_addr)
      num_cache_lines = ((last_cache_line_addr - first_cache_line_addr) /
                         cache_line_byte_size) +
                        1;
    else
      num_cache_lines =
          (UINT64_MAX - first_cache_line_addr + 1) / cache_line_byte_size;

    uint32_t cache_idx = 0;
    for (addr_t curr_addr = first_cache_line_addr; cache_idx < num_cache_lines;
         curr_addr += cache_line_byte_size, ++cache_idx) {
      BlockMap::iterator pos = m_L2_cache.find(curr_addr);
      if (pos != m_L2_cache.end())
        m_L2_cache.erase(pos);
    }
  }
}

void MemoryCache::AddInvalidRange(lldb::addr_t base_addr,
                                  lldb::addr_t byte_size) {
  if (byte_size > 0) {
    std::lock_guard<std::recursive_mutex> guard(m_mutex);
    InvalidRanges::Entry range(base_addr, byte_size);
    m_invalid_ranges.Append(range);
    m_invalid_ranges.Sort();
  }
}

bool MemoryCache::RemoveInvalidRange(lldb::addr_t base_addr,
                                     lldb::addr_t byte_size) {
  if (byte_size > 0) {
    std::lock_guard<std::recursive_mutex> guard(m_mutex);
    const uint32_t idx = m_invalid_ranges.FindEntryIndexThatContains(base_addr);
    if (idx != UINT32_MAX) {
      const InvalidRanges::Entry *entry = m_invalid_ranges.GetEntryAtIndex(idx);
      if (entry->GetRangeBase() == base_addr &&
          entry->GetByteSize() == byte_size)
        return m_invalid_ranges.RemoveEntrtAtIndex(idx);
    }
  }
  return false;
}

size_t MemoryCache::Read(addr_t addr, void *dst, size_t dst_len,
                         Status &error) {
  size_t bytes_left = dst_len;

  // Check the L1 cache for a range that contain the entire memory read. If we
  // find a range in the L1 cache that does, we use it. Else we fall back to
  // reading memory in m_L2_cache_line_byte_size byte sized chunks. The L1
  // cache contains chunks of memory that are not required to be
  // m_L2_cache_line_byte_size bytes in size, so we don't try anything tricky
  // when reading from them (no partial reads from the L1 cache).

  std::lock_guard<std::recursive_mutex> guard(m_mutex);
  if (!m_L1_cache.empty()) {
    AddrRange read_range(addr, dst_len);
    BlockMap::iterator pos = m_L1_cache.upper_bound(addr);
    if (pos != m_L1_cache.begin()) {
      --pos;
    }
    AddrRange chunk_range(pos->first, pos->second->GetByteSize());
    if (chunk_range.Contains(read_range)) {
      memcpy(dst, pos->second->GetBytes() + (addr - chunk_range.GetRangeBase()),
             dst_len);
      return dst_len;
    }
  }

  // If this memory read request is larger than the cache line size, then we
  // (1) try to read as much of it at once as possible, and (2) don't add the
  // data to the memory cache.  We don't want to split a big read up into more
  // separate reads than necessary, and with a large memory read request, it is
  // unlikely that the caller function will ask for the next
  // 4 bytes after the large memory read - so there's little benefit to saving
  // it in the cache.
  if (dst && dst_len > m_L2_cache_line_byte_size) {
    size_t bytes_read =
        m_process.ReadMemoryFromInferior(addr, dst, dst_len, error);
    // Add this non block sized range to the L1 cache if we actually read
    // anything
    if (bytes_read > 0)
      AddL1CacheData(addr, dst, bytes_read);
    return bytes_read;
  }

  if (dst && bytes_left > 0) {
    const uint32_t cache_line_byte_size = m_L2_cache_line_byte_size;
    uint8_t *dst_buf = (uint8_t *)dst;
    addr_t curr_addr = addr - (addr % cache_line_byte_size);
    addr_t cache_offset = addr - curr_addr;

    while (bytes_left > 0) {
      if (m_invalid_ranges.FindEntryThatContains(curr_addr)) {
        error.SetErrorStringWithFormat("memory read failed for 0x%" PRIx64,
                                       curr_addr);
        return dst_len - bytes_left;
      }

      BlockMap::const_iterator pos = m_L2_cache.find(curr_addr);
      BlockMap::const_iterator end = m_L2_cache.end();

      if (pos != end) {
        size_t curr_read_size = cache_line_byte_size - cache_offset;
        if (curr_read_size > bytes_left)
          curr_read_size = bytes_left;

        memcpy(dst_buf + dst_len - bytes_left,
               pos->second->GetBytes() + cache_offset, curr_read_size);

        bytes_left -= curr_read_size;
        curr_addr += curr_read_size + cache_offset;
        cache_offset = 0;

        if (bytes_left > 0) {
          // Get sequential cache page hits
          for (++pos; (pos != end) && (bytes_left > 0); ++pos) {
            assert((curr_addr % cache_line_byte_size) == 0);

            if (pos->first != curr_addr)
              break;

            curr_read_size = pos->second->GetByteSize();
            if (curr_read_size > bytes_left)
              curr_read_size = bytes_left;

            memcpy(dst_buf + dst_len - bytes_left, pos->second->GetBytes(),
                   curr_read_size);

            bytes_left -= curr_read_size;
            curr_addr += curr_read_size;

            // We have a cache page that succeeded to read some bytes but not
            // an entire page. If this happens, we must cap off how much data
            // we are able to read...
            if (pos->second->GetByteSize() != cache_line_byte_size)
              return dst_len - bytes_left;
          }
        }
      }

      // We need to read from the process

      if (bytes_left > 0) {
        assert((curr_addr % cache_line_byte_size) == 0);
        std::unique_ptr<DataBufferHeap> data_buffer_heap_up(
            new DataBufferHeap(cache_line_byte_size, 0));
        size_t process_bytes_read = m_process.ReadMemoryFromInferior(
            curr_addr, data_buffer_heap_up->GetBytes(),
            data_buffer_heap_up->GetByteSize(), error);
        if (process_bytes_read == 0)
          return dst_len - bytes_left;

        if (process_bytes_read != cache_line_byte_size)
          data_buffer_heap_up->SetByteSize(process_bytes_read);
        m_L2_cache[curr_addr] = DataBufferSP(data_buffer_heap_up.release());
        // We have read data and put it into the cache, continue through the
        // loop again to get the data out of the cache...
      }
    }
  }

  return dst_len - bytes_left;
}

AllocatedBlock::AllocatedBlock(lldb::addr_t addr, uint32_t byte_size,
                               uint32_t permissions, uint32_t chunk_size)
    : m_range(addr, byte_size), m_permissions(permissions),
      m_chunk_size(chunk_size)
{
  // The entire address range is free to start with.
  m_free_blocks.Append(m_range);
  assert(byte_size > chunk_size);
}

AllocatedBlock::~AllocatedBlock() {}

lldb::addr_t AllocatedBlock::ReserveBlock(uint32_t size) {
  // We must return something valid for zero bytes.
  if (size == 0)
    size = 1;
  Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
  
  const size_t free_count = m_free_blocks.GetSize();
  for (size_t i=0; i<free_count; ++i)
  {
    auto &free_block = m_free_blocks.GetEntryRef(i);
    const lldb::addr_t range_size = free_block.GetByteSize();
    if (range_size >= size)
    {
      // We found a free block that is big enough for our data. Figure out how
      // many chunks we will need and calculate the resulting block size we
      // will reserve.
      addr_t addr = free_block.GetRangeBase();
      size_t num_chunks = CalculateChunksNeededForSize(size);
      lldb::addr_t block_size = num_chunks * m_chunk_size;
      lldb::addr_t bytes_left = range_size - block_size;
      if (bytes_left == 0)
      {
        // The newly allocated block will take all of the bytes in this
        // available block, so we can just add it to the allocated ranges and
        // remove the range from the free ranges.
        m_reserved_blocks.Insert(free_block, false);
        m_free_blocks.RemoveEntryAtIndex(i);
      }
      else
      {
        // Make the new allocated range and add it to the allocated ranges.
        Range<lldb::addr_t, uint32_t> reserved_block(free_block);
        reserved_block.SetByteSize(block_size);
        // Insert the reserved range and don't combine it with other blocks in
        // the reserved blocks list.
        m_reserved_blocks.Insert(reserved_block, false);
        // Adjust the free range in place since we won't change the sorted
        // ordering of the m_free_blocks list.
        free_block.SetRangeBase(reserved_block.GetRangeEnd());
        free_block.SetByteSize(bytes_left);
      }
      LLDB_LOGV(log, "({0}) (size = {1} ({1:x})) => {2:x}", this, size, addr);
      return addr;
    }
  }

  LLDB_LOGV(log, "({0}) (size = {1} ({1:x})) => {2:x}", this, size,
            LLDB_INVALID_ADDRESS);
  return LLDB_INVALID_ADDRESS;
}

bool AllocatedBlock::FreeBlock(addr_t addr) {
  bool success = false;
  auto entry_idx = m_reserved_blocks.FindEntryIndexThatContains(addr);
  if (entry_idx != UINT32_MAX)
  {
    m_free_blocks.Insert(m_reserved_blocks.GetEntryRef(entry_idx), true);
    m_reserved_blocks.RemoveEntryAtIndex(entry_idx);
    success = true;
  }
  Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
  LLDB_LOGV(log, "({0}) (addr = {1:x}) => {2}", this, addr, success);
  return success;
}

AllocatedMemoryCache::AllocatedMemoryCache(Process &process)
    : m_process(process), m_mutex(), m_memory_map() {}

AllocatedMemoryCache::~AllocatedMemoryCache() {}

void AllocatedMemoryCache::Clear() {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);
  if (m_process.IsAlive()) {
    PermissionsToBlockMap::iterator pos, end = m_memory_map.end();
    for (pos = m_memory_map.begin(); pos != end; ++pos)
      m_process.DoDeallocateMemory(pos->second->GetBaseAddress());
  }
  m_memory_map.clear();
}

AllocatedMemoryCache::AllocatedBlockSP
AllocatedMemoryCache::AllocatePage(uint32_t byte_size, uint32_t permissions,
                                   uint32_t chunk_size, Status &error) {
  AllocatedBlockSP block_sp;
  const size_t page_size = 4096;
  const size_t num_pages = (byte_size + page_size - 1) / page_size;
  const size_t page_byte_size = num_pages * page_size;

  addr_t addr = m_process.DoAllocateMemory(page_byte_size, permissions, error);

  Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
  if (log) {
    LLDB_LOGF(log,
              "Process::DoAllocateMemory (byte_size = 0x%8.8" PRIx32
              ", permissions = %s) => 0x%16.16" PRIx64,
              (uint32_t)page_byte_size, GetPermissionsAsCString(permissions),
              (uint64_t)addr);
  }

  if (addr != LLDB_INVALID_ADDRESS) {
    block_sp = std::make_shared<AllocatedBlock>(addr, page_byte_size,
                                                permissions, chunk_size);
    m_memory_map.insert(std::make_pair(permissions, block_sp));
  }
  return block_sp;
}

lldb::addr_t AllocatedMemoryCache::AllocateMemory(size_t byte_size,
                                                  uint32_t permissions,
                                                  Status &error) {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);

  addr_t addr = LLDB_INVALID_ADDRESS;
  std::pair<PermissionsToBlockMap::iterator, PermissionsToBlockMap::iterator>
      range = m_memory_map.equal_range(permissions);

  for (PermissionsToBlockMap::iterator pos = range.first; pos != range.second;
       ++pos) {
    addr = (*pos).second->ReserveBlock(byte_size);
    if (addr != LLDB_INVALID_ADDRESS)
      break;
  }

  if (addr == LLDB_INVALID_ADDRESS) {
    AllocatedBlockSP block_sp(AllocatePage(byte_size, permissions, 16, error));

    if (block_sp)
      addr = block_sp->ReserveBlock(byte_size);
  }
  Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
  LLDB_LOGF(log,
            "AllocatedMemoryCache::AllocateMemory (byte_size = 0x%8.8" PRIx32
            ", permissions = %s) => 0x%16.16" PRIx64,
            (uint32_t)byte_size, GetPermissionsAsCString(permissions),
            (uint64_t)addr);
  return addr;
}

bool AllocatedMemoryCache::DeallocateMemory(lldb::addr_t addr) {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);

  PermissionsToBlockMap::iterator pos, end = m_memory_map.end();
  bool success = false;
  for (pos = m_memory_map.begin(); pos != end; ++pos) {
    if (pos->second->Contains(addr)) {
      success = pos->second->FreeBlock(addr);
      break;
    }
  }
  Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
  LLDB_LOGF(log,
            "AllocatedMemoryCache::DeallocateMemory (addr = 0x%16.16" PRIx64
            ") => %i",
            (uint64_t)addr, success);
  return success;
}