reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
//===-- SymbolFile.cpp ------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "lldb/Symbol/SymbolFile.h"

#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Symbol/CompileUnit.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/TypeMap.h"
#include "lldb/Symbol/TypeSystem.h"
#include "lldb/Symbol/VariableList.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/StreamString.h"
#include "lldb/lldb-private.h"

#include <future>

using namespace lldb_private;
using namespace lldb;

void SymbolFile::PreloadSymbols() {
  // No-op for most implementations.
}

std::recursive_mutex &SymbolFile::GetModuleMutex() const {
  return GetObjectFile()->GetModule()->GetMutex();
}
ObjectFile *SymbolFile::GetMainObjectFile() {
  return m_objfile_sp->GetModule()->GetObjectFile();
}

SymbolFile *SymbolFile::FindPlugin(ObjectFileSP objfile_sp) {
  std::unique_ptr<SymbolFile> best_symfile_up;
  if (objfile_sp != nullptr) {

    // We need to test the abilities of this section list. So create what it
    // would be with this new objfile_sp.
    lldb::ModuleSP module_sp(objfile_sp->GetModule());
    if (module_sp) {
      // Default to the main module section list.
      ObjectFile *module_obj_file = module_sp->GetObjectFile();
      if (module_obj_file != objfile_sp.get()) {
        // Make sure the main object file's sections are created
        module_obj_file->GetSectionList();
        objfile_sp->CreateSections(*module_sp->GetUnifiedSectionList());
      }
    }

    // TODO: Load any plug-ins in the appropriate plug-in search paths and
    // iterate over all of them to find the best one for the job.

    uint32_t best_symfile_abilities = 0;

    SymbolFileCreateInstance create_callback;
    for (uint32_t idx = 0;
         (create_callback = PluginManager::GetSymbolFileCreateCallbackAtIndex(
              idx)) != nullptr;
         ++idx) {
      std::unique_ptr<SymbolFile> curr_symfile_up(create_callback(objfile_sp));

      if (curr_symfile_up) {
        const uint32_t sym_file_abilities = curr_symfile_up->GetAbilities();
        if (sym_file_abilities > best_symfile_abilities) {
          best_symfile_abilities = sym_file_abilities;
          best_symfile_up.reset(curr_symfile_up.release());
          // If any symbol file parser has all of the abilities, then we should
          // just stop looking.
          if ((kAllAbilities & sym_file_abilities) == kAllAbilities)
            break;
        }
      }
    }
    if (best_symfile_up) {
      // Let the winning symbol file parser initialize itself more completely
      // now that it has been chosen
      best_symfile_up->InitializeObject();
    }
  }
  return best_symfile_up.release();
}

llvm::Expected<TypeSystem &>
SymbolFile::GetTypeSystemForLanguage(lldb::LanguageType language) {
  auto type_system_or_err =
      m_objfile_sp->GetModule()->GetTypeSystemForLanguage(language);
  if (type_system_or_err) {
    type_system_or_err->SetSymbolFile(this);
  }
  return type_system_or_err;
}

uint32_t SymbolFile::ResolveSymbolContext(const FileSpec &file_spec,
                                          uint32_t line, bool check_inlines,
                                          lldb::SymbolContextItem resolve_scope,
                                          SymbolContextList &sc_list) {
  return 0;
}

void SymbolFile::FindGlobalVariables(ConstString name,
                                     const CompilerDeclContext *parent_decl_ctx,
                                     uint32_t max_matches,
                                     VariableList &variables) {}

void SymbolFile::FindGlobalVariables(const RegularExpression &regex,
                                     uint32_t max_matches,
                                     VariableList &variables) {}

void SymbolFile::FindFunctions(ConstString name,
                               const CompilerDeclContext *parent_decl_ctx,
                               lldb::FunctionNameType name_type_mask,
                               bool include_inlines,
                               SymbolContextList &sc_list) {}

void SymbolFile::FindFunctions(const RegularExpression &regex,
                               bool include_inlines,
                               SymbolContextList &sc_list) {}

void SymbolFile::GetMangledNamesForFunction(
    const std::string &scope_qualified_name,
    std::vector<ConstString> &mangled_names) {
  return;
}

void SymbolFile::FindTypes(
    ConstString name, const CompilerDeclContext *parent_decl_ctx,
    uint32_t max_matches,
    llvm::DenseSet<lldb_private::SymbolFile *> &searched_symbol_files,
    TypeMap &types) {}

void SymbolFile::FindTypes(llvm::ArrayRef<CompilerContext> pattern,
                           LanguageSet languages, TypeMap &types) {}

void SymbolFile::AssertModuleLock() {
  // The code below is too expensive to leave enabled in release builds. It's
  // enabled in debug builds or when the correct macro is set.
#if defined(LLDB_CONFIGURATION_DEBUG)
  // We assert that we have to module lock by trying to acquire the lock from a
  // different thread. Note that we must abort if the result is true to
  // guarantee correctness.
  assert(std::async(std::launch::async,
                    [this] { return this->GetModuleMutex().try_lock(); })
                 .get() == false &&
         "Module is not locked");
#endif
}

uint32_t SymbolFile::GetNumCompileUnits() {
  std::lock_guard<std::recursive_mutex> guard(GetModuleMutex());
  if (!m_compile_units) {
    // Create an array of compile unit shared pointers -- which will each
    // remain NULL until someone asks for the actual compile unit information.
    m_compile_units.emplace(CalculateNumCompileUnits());
  }
  return m_compile_units->size();
}

CompUnitSP SymbolFile::GetCompileUnitAtIndex(uint32_t idx) {
  std::lock_guard<std::recursive_mutex> guard(GetModuleMutex());
  uint32_t num = GetNumCompileUnits();
  if (idx >= num)
    return nullptr;
  lldb::CompUnitSP &cu_sp = (*m_compile_units)[idx];
  if (!cu_sp)
    cu_sp = ParseCompileUnitAtIndex(idx);
  return cu_sp;
}

void SymbolFile::SetCompileUnitAtIndex(uint32_t idx, const CompUnitSP &cu_sp) {
  std::lock_guard<std::recursive_mutex> guard(GetModuleMutex());
  const size_t num_compile_units = GetNumCompileUnits();
  assert(idx < num_compile_units);
  (void)num_compile_units;

  // Fire off an assertion if this compile unit already exists for now. The
  // partial parsing should take care of only setting the compile unit
  // once, so if this assertion fails, we need to make sure that we don't
  // have a race condition, or have a second parse of the same compile
  // unit.
  assert((*m_compile_units)[idx] == nullptr);
  (*m_compile_units)[idx] = cu_sp;
}

Symtab *SymbolFile::GetSymtab() {
  std::lock_guard<std::recursive_mutex> guard(GetModuleMutex());
  if (m_symtab)
    return m_symtab;

  // Fetch the symtab from the main object file.
  m_symtab = GetMainObjectFile()->GetSymtab();

  // Then add our symbols to it.
  if (m_symtab)
    AddSymbols(*m_symtab);

  return m_symtab;
}

void SymbolFile::SectionFileAddressesChanged() {
  ObjectFile *module_objfile = GetMainObjectFile();
  ObjectFile *symfile_objfile = GetObjectFile();
  if (symfile_objfile != module_objfile)
    symfile_objfile->SectionFileAddressesChanged();
  if (m_symtab)
    m_symtab->SectionFileAddressesChanged();
}

void SymbolFile::Dump(Stream &s) {
  s.Format("SymbolFile {0} ({1})\n", GetPluginName(),
           GetMainObjectFile()->GetFileSpec());
  s.PutCString("Types:\n");
  m_type_list.Dump(&s, /*show_context*/ false);
  s.PutChar('\n');

  s.PutCString("Compile units:\n");
  if (m_compile_units) {
    for (const CompUnitSP &cu_sp : *m_compile_units) {
      // We currently only dump the compile units that have been parsed
      if (cu_sp)
        cu_sp->Dump(&s, /*show_context*/ false);
    }
  }
  s.PutChar('\n');

  if (Symtab *symtab = GetSymtab())
    symtab->Dump(&s, nullptr, eSortOrderNone);
}

SymbolFile::RegisterInfoResolver::~RegisterInfoResolver() = default;