reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
//===- X86_64.cpp ---------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "InputFiles.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/Endian.h"

using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;

namespace lld {
namespace elf {

namespace {
class X86_64 : public TargetInfo {
public:
  X86_64();
  int getTlsGdRelaxSkip(RelType type) const override;
  RelExpr getRelExpr(RelType type, const Symbol &s,
                     const uint8_t *loc) const override;
  RelType getDynRel(RelType type) const override;
  void writeGotPltHeader(uint8_t *buf) const override;
  void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
  void writePltHeader(uint8_t *buf) const override;
  void writePlt(uint8_t *buf, uint64_t gotPltEntryAddr, uint64_t pltEntryAddr,
                int32_t index, unsigned relOff) const override;
  void relocateOne(uint8_t *loc, RelType type, uint64_t val) const override;

  RelExpr adjustRelaxExpr(RelType type, const uint8_t *data,
                          RelExpr expr) const override;
  void relaxGot(uint8_t *loc, RelType type, uint64_t val) const override;
  void relaxTlsGdToIe(uint8_t *loc, RelType type, uint64_t val) const override;
  void relaxTlsGdToLe(uint8_t *loc, RelType type, uint64_t val) const override;
  void relaxTlsIeToLe(uint8_t *loc, RelType type, uint64_t val) const override;
  void relaxTlsLdToLe(uint8_t *loc, RelType type, uint64_t val) const override;
  bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
                                        uint8_t stOther) const override;
};
} // namespace

X86_64::X86_64() {
  copyRel = R_X86_64_COPY;
  gotRel = R_X86_64_GLOB_DAT;
  noneRel = R_X86_64_NONE;
  pltRel = R_X86_64_JUMP_SLOT;
  relativeRel = R_X86_64_RELATIVE;
  iRelativeRel = R_X86_64_IRELATIVE;
  symbolicRel = R_X86_64_64;
  tlsDescRel = R_X86_64_TLSDESC;
  tlsGotRel = R_X86_64_TPOFF64;
  tlsModuleIndexRel = R_X86_64_DTPMOD64;
  tlsOffsetRel = R_X86_64_DTPOFF64;
  pltEntrySize = 16;
  pltHeaderSize = 16;
  trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3

  // Align to the large page size (known as a superpage or huge page).
  // FreeBSD automatically promotes large, superpage-aligned allocations.
  defaultImageBase = 0x200000;
}

int X86_64::getTlsGdRelaxSkip(RelType type) const { return 2; }

RelExpr X86_64::getRelExpr(RelType type, const Symbol &s,
                           const uint8_t *loc) const {
  if (type == R_X86_64_GOTTPOFF)
    config->hasStaticTlsModel = true;

  switch (type) {
  case R_X86_64_8:
  case R_X86_64_16:
  case R_X86_64_32:
  case R_X86_64_32S:
  case R_X86_64_64:
    return R_ABS;
  case R_X86_64_DTPOFF32:
  case R_X86_64_DTPOFF64:
    return R_DTPREL;
  case R_X86_64_TPOFF32:
    return R_TLS;
  case R_X86_64_TLSDESC_CALL:
    return R_TLSDESC_CALL;
  case R_X86_64_TLSLD:
    return R_TLSLD_PC;
  case R_X86_64_TLSGD:
    return R_TLSGD_PC;
  case R_X86_64_SIZE32:
  case R_X86_64_SIZE64:
    return R_SIZE;
  case R_X86_64_PLT32:
    return R_PLT_PC;
  case R_X86_64_PC8:
  case R_X86_64_PC16:
  case R_X86_64_PC32:
  case R_X86_64_PC64:
    return R_PC;
  case R_X86_64_GOT32:
  case R_X86_64_GOT64:
    return R_GOTPLT;
  case R_X86_64_GOTPC32_TLSDESC:
    return R_TLSDESC_PC;
  case R_X86_64_GOTPCREL:
  case R_X86_64_GOTPCRELX:
  case R_X86_64_REX_GOTPCRELX:
  case R_X86_64_GOTTPOFF:
    return R_GOT_PC;
  case R_X86_64_GOTOFF64:
    return R_GOTPLTREL;
  case R_X86_64_GOTPC32:
  case R_X86_64_GOTPC64:
    return R_GOTPLTONLY_PC;
  case R_X86_64_NONE:
    return R_NONE;
  default:
    error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
          ") against symbol " + toString(s));
    return R_NONE;
  }
}

void X86_64::writeGotPltHeader(uint8_t *buf) const {
  // The first entry holds the value of _DYNAMIC. It is not clear why that is
  // required, but it is documented in the psabi and the glibc dynamic linker
  // seems to use it (note that this is relevant for linking ld.so, not any
  // other program).
  write64le(buf, mainPart->dynamic->getVA());
}

void X86_64::writeGotPlt(uint8_t *buf, const Symbol &s) const {
  // See comments in X86::writeGotPlt.
  write64le(buf, s.getPltVA() + 6);
}

void X86_64::writePltHeader(uint8_t *buf) const {
  const uint8_t pltData[] = {
      0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip)
      0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip)
      0x0f, 0x1f, 0x40, 0x00, // nop
  };
  memcpy(buf, pltData, sizeof(pltData));
  uint64_t gotPlt = in.gotPlt->getVA();
  uint64_t plt = in.plt->getVA();
  write32le(buf + 2, gotPlt - plt + 2); // GOTPLT+8
  write32le(buf + 8, gotPlt - plt + 4); // GOTPLT+16
}

void X86_64::writePlt(uint8_t *buf, uint64_t gotPltEntryAddr,
                      uint64_t pltEntryAddr, int32_t index,
                      unsigned relOff) const {
  const uint8_t inst[] = {
      0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip)
      0x68, 0, 0, 0, 0,       // pushq <relocation index>
      0xe9, 0, 0, 0, 0,       // jmpq plt[0]
  };
  memcpy(buf, inst, sizeof(inst));

  write32le(buf + 2, gotPltEntryAddr - pltEntryAddr - 6);
  write32le(buf + 7, index);
  write32le(buf + 12, -pltHeaderSize - pltEntrySize * index - 16);
}

RelType X86_64::getDynRel(RelType type) const {
  if (type == R_X86_64_64 || type == R_X86_64_PC64 || type == R_X86_64_SIZE32 ||
      type == R_X86_64_SIZE64)
    return type;
  return R_X86_64_NONE;
}

void X86_64::relaxTlsGdToLe(uint8_t *loc, RelType type, uint64_t val) const {
  if (type == R_X86_64_TLSGD) {
    // Convert
    //   .byte 0x66
    //   leaq x@tlsgd(%rip), %rdi
    //   .word 0x6666
    //   rex64
    //   call __tls_get_addr@plt
    // to the following two instructions.
    const uint8_t inst[] = {
        0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
        0x00, 0x00,                            // mov %fs:0x0,%rax
        0x48, 0x8d, 0x80, 0,    0,    0,    0, // lea x@tpoff,%rax
    };
    memcpy(loc - 4, inst, sizeof(inst));

    // The original code used a pc relative relocation and so we have to
    // compensate for the -4 in had in the addend.
    write32le(loc + 8, val + 4);
  } else {
    // Convert
    //   lea x@tlsgd(%rip), %rax
    //   call *(%rax)
    // to the following two instructions.
    assert(type == R_X86_64_GOTPC32_TLSDESC);
    if (memcmp(loc - 3, "\x48\x8d\x05", 3)) {
      error(getErrorLocation(loc - 3) + "R_X86_64_GOTPC32_TLSDESC must be used "
                                        "in callq *x@tlsdesc(%rip), %rax");
      return;
    }
    // movq $x@tpoff(%rip),%rax
    loc[-2] = 0xc7;
    loc[-1] = 0xc0;
    write32le(loc, val + 4);
    // xchg ax,ax
    loc[4] = 0x66;
    loc[5] = 0x90;
  }
}

void X86_64::relaxTlsGdToIe(uint8_t *loc, RelType type, uint64_t val) const {
  if (type == R_X86_64_TLSGD) {
    // Convert
    //   .byte 0x66
    //   leaq x@tlsgd(%rip), %rdi
    //   .word 0x6666
    //   rex64
    //   call __tls_get_addr@plt
    // to the following two instructions.
    const uint8_t inst[] = {
        0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
        0x00, 0x00,                            // mov %fs:0x0,%rax
        0x48, 0x03, 0x05, 0,    0,    0,    0, // addq x@gottpoff(%rip),%rax
    };
    memcpy(loc - 4, inst, sizeof(inst));

    // Both code sequences are PC relatives, but since we are moving the
    // constant forward by 8 bytes we have to subtract the value by 8.
    write32le(loc + 8, val - 8);
  } else {
    // Convert
    //   lea x@tlsgd(%rip), %rax
    //   call *(%rax)
    // to the following two instructions.
    assert(type == R_X86_64_GOTPC32_TLSDESC);
    if (memcmp(loc - 3, "\x48\x8d\x05", 3)) {
      error(getErrorLocation(loc - 3) + "R_X86_64_GOTPC32_TLSDESC must be used "
                                        "in callq *x@tlsdesc(%rip), %rax");
      return;
    }
    // movq x@gottpoff(%rip),%rax
    loc[-2] = 0x8b;
    write32le(loc, val);
    // xchg ax,ax
    loc[4] = 0x66;
    loc[5] = 0x90;
  }
}

// In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
// R_X86_64_TPOFF32 so that it does not use GOT.
void X86_64::relaxTlsIeToLe(uint8_t *loc, RelType type, uint64_t val) const {
  uint8_t *inst = loc - 3;
  uint8_t reg = loc[-1] >> 3;
  uint8_t *regSlot = loc - 1;

  // Note that ADD with RSP or R12 is converted to ADD instead of LEA
  // because LEA with these registers needs 4 bytes to encode and thus
  // wouldn't fit the space.

  if (memcmp(inst, "\x48\x03\x25", 3) == 0) {
    // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp"
    memcpy(inst, "\x48\x81\xc4", 3);
  } else if (memcmp(inst, "\x4c\x03\x25", 3) == 0) {
    // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12"
    memcpy(inst, "\x49\x81\xc4", 3);
  } else if (memcmp(inst, "\x4c\x03", 2) == 0) {
    // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]"
    memcpy(inst, "\x4d\x8d", 2);
    *regSlot = 0x80 | (reg << 3) | reg;
  } else if (memcmp(inst, "\x48\x03", 2) == 0) {
    // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg"
    memcpy(inst, "\x48\x8d", 2);
    *regSlot = 0x80 | (reg << 3) | reg;
  } else if (memcmp(inst, "\x4c\x8b", 2) == 0) {
    // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]"
    memcpy(inst, "\x49\xc7", 2);
    *regSlot = 0xc0 | reg;
  } else if (memcmp(inst, "\x48\x8b", 2) == 0) {
    // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg"
    memcpy(inst, "\x48\xc7", 2);
    *regSlot = 0xc0 | reg;
  } else {
    error(getErrorLocation(loc - 3) +
          "R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only");
  }

  // The original code used a PC relative relocation.
  // Need to compensate for the -4 it had in the addend.
  write32le(loc, val + 4);
}

void X86_64::relaxTlsLdToLe(uint8_t *loc, RelType type, uint64_t val) const {
  if (type == R_X86_64_DTPOFF64) {
    write64le(loc, val);
    return;
  }
  if (type == R_X86_64_DTPOFF32) {
    write32le(loc, val);
    return;
  }

  const uint8_t inst[] = {
      0x66, 0x66,                                           // .word 0x6666
      0x66,                                                 // .byte 0x66
      0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0,%rax
  };

  if (loc[4] == 0xe8) {
    // Convert
    //   leaq bar@tlsld(%rip), %rdi           # 48 8d 3d <Loc>
    //   callq __tls_get_addr@PLT             # e8 <disp32>
    //   leaq bar@dtpoff(%rax), %rcx
    // to
    //   .word 0x6666
    //   .byte 0x66
    //   mov %fs:0,%rax
    //   leaq bar@tpoff(%rax), %rcx
    memcpy(loc - 3, inst, sizeof(inst));
    return;
  }

  if (loc[4] == 0xff && loc[5] == 0x15) {
    // Convert
    //   leaq  x@tlsld(%rip),%rdi               # 48 8d 3d <Loc>
    //   call *__tls_get_addr@GOTPCREL(%rip)    # ff 15 <disp32>
    // to
    //   .long  0x66666666
    //   movq   %fs:0,%rax
    // See "Table 11.9: LD -> LE Code Transition (LP64)" in
    // https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/x86-64-psABI-1.0.pdf
    loc[-3] = 0x66;
    memcpy(loc - 2, inst, sizeof(inst));
    return;
  }

  error(getErrorLocation(loc - 3) +
        "expected R_X86_64_PLT32 or R_X86_64_GOTPCRELX after R_X86_64_TLSLD");
}

void X86_64::relocateOne(uint8_t *loc, RelType type, uint64_t val) const {
  switch (type) {
  case R_X86_64_8:
    checkIntUInt(loc, val, 8, type);
    *loc = val;
    break;
  case R_X86_64_PC8:
    checkInt(loc, val, 8, type);
    *loc = val;
    break;
  case R_X86_64_16:
    checkIntUInt(loc, val, 16, type);
    write16le(loc, val);
    break;
  case R_X86_64_PC16:
    checkInt(loc, val, 16, type);
    write16le(loc, val);
    break;
  case R_X86_64_32:
    checkUInt(loc, val, 32, type);
    write32le(loc, val);
    break;
  case R_X86_64_32S:
  case R_X86_64_TPOFF32:
  case R_X86_64_GOT32:
  case R_X86_64_GOTPC32:
  case R_X86_64_GOTPC32_TLSDESC:
  case R_X86_64_GOTPCREL:
  case R_X86_64_GOTPCRELX:
  case R_X86_64_REX_GOTPCRELX:
  case R_X86_64_PC32:
  case R_X86_64_GOTTPOFF:
  case R_X86_64_PLT32:
  case R_X86_64_TLSGD:
  case R_X86_64_TLSLD:
  case R_X86_64_DTPOFF32:
  case R_X86_64_SIZE32:
    checkInt(loc, val, 32, type);
    write32le(loc, val);
    break;
  case R_X86_64_64:
  case R_X86_64_DTPOFF64:
  case R_X86_64_PC64:
  case R_X86_64_SIZE64:
  case R_X86_64_GOT64:
  case R_X86_64_GOTOFF64:
  case R_X86_64_GOTPC64:
    write64le(loc, val);
    break;
  default:
    llvm_unreachable("unknown relocation");
  }
}

RelExpr X86_64::adjustRelaxExpr(RelType type, const uint8_t *data,
                                RelExpr relExpr) const {
  if (type != R_X86_64_GOTPCRELX && type != R_X86_64_REX_GOTPCRELX)
    return relExpr;
  const uint8_t op = data[-2];
  const uint8_t modRm = data[-1];

  // FIXME: When PIC is disabled and foo is defined locally in the
  // lower 32 bit address space, memory operand in mov can be converted into
  // immediate operand. Otherwise, mov must be changed to lea. We support only
  // latter relaxation at this moment.
  if (op == 0x8b)
    return R_RELAX_GOT_PC;

  // Relax call and jmp.
  if (op == 0xff && (modRm == 0x15 || modRm == 0x25))
    return R_RELAX_GOT_PC;

  // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor.
  // If PIC then no relaxation is available.
  // We also don't relax test/binop instructions without REX byte,
  // they are 32bit operations and not common to have.
  assert(type == R_X86_64_REX_GOTPCRELX);
  return config->isPic ? relExpr : R_RELAX_GOT_PC_NOPIC;
}

// A subset of relaxations can only be applied for no-PIC. This method
// handles such relaxations. Instructions encoding information was taken from:
// "Intel 64 and IA-32 Architectures Software Developer's Manual V2"
// (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
//    64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
static void relaxGotNoPic(uint8_t *loc, uint64_t val, uint8_t op,
                          uint8_t modRm) {
  const uint8_t rex = loc[-3];
  // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg".
  if (op == 0x85) {
    // See "TEST-Logical Compare" (4-428 Vol. 2B),
    // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension).

    // ModR/M byte has form XX YYY ZZZ, where
    // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1).
    // XX has different meanings:
    // 00: The operand's memory address is in reg1.
    // 01: The operand's memory address is reg1 + a byte-sized displacement.
    // 10: The operand's memory address is reg1 + a word-sized displacement.
    // 11: The operand is reg1 itself.
    // If an instruction requires only one operand, the unused reg2 field
    // holds extra opcode bits rather than a register code
    // 0xC0 == 11 000 000 binary.
    // 0x38 == 00 111 000 binary.
    // We transfer reg2 to reg1 here as operand.
    // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3).
    loc[-1] = 0xc0 | (modRm & 0x38) >> 3; // ModR/M byte.

    // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32
    // See "TEST-Logical Compare" (4-428 Vol. 2B).
    loc[-2] = 0xf7;

    // Move R bit to the B bit in REX byte.
    // REX byte is encoded as 0100WRXB, where
    // 0100 is 4bit fixed pattern.
    // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the
    //   default operand size is used (which is 32-bit for most but not all
    //   instructions).
    // REX.R This 1-bit value is an extension to the MODRM.reg field.
    // REX.X This 1-bit value is an extension to the SIB.index field.
    // REX.B This 1-bit value is an extension to the MODRM.rm field or the
    // SIB.base field.
    // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A).
    loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
    write32le(loc, val);
    return;
  }

  // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub
  // or xor operations.

  // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg".
  // Logic is close to one for test instruction above, but we also
  // write opcode extension here, see below for details.
  loc[-1] = 0xc0 | (modRm & 0x38) >> 3 | (op & 0x3c); // ModR/M byte.

  // Primary opcode is 0x81, opcode extension is one of:
  // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB,
  // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP.
  // This value was wrote to MODRM.reg in a line above.
  // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15),
  // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for
  // descriptions about each operation.
  loc[-2] = 0x81;
  loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
  write32le(loc, val);
}

void X86_64::relaxGot(uint8_t *loc, RelType type, uint64_t val) const {
  const uint8_t op = loc[-2];
  const uint8_t modRm = loc[-1];

  // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg".
  if (op == 0x8b) {
    loc[-2] = 0x8d;
    write32le(loc, val);
    return;
  }

  if (op != 0xff) {
    // We are relaxing a rip relative to an absolute, so compensate
    // for the old -4 addend.
    assert(!config->isPic);
    relaxGotNoPic(loc, val + 4, op, modRm);
    return;
  }

  // Convert call/jmp instructions.
  if (modRm == 0x15) {
    // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo".
    // Instead we convert to "addr32 call foo" where addr32 is an instruction
    // prefix. That makes result expression to be a single instruction.
    loc[-2] = 0x67; // addr32 prefix
    loc[-1] = 0xe8; // call
    write32le(loc, val);
    return;
  }

  // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop".
  // jmp doesn't return, so it is fine to use nop here, it is just a stub.
  assert(modRm == 0x25);
  loc[-2] = 0xe9; // jmp
  loc[3] = 0x90;  // nop
  write32le(loc - 1, val + 1);
}

// A split-stack prologue starts by checking the amount of stack remaining
// in one of two ways:
// A) Comparing of the stack pointer to a field in the tcb.
// B) Or a load of a stack pointer offset with an lea to r10 or r11.
bool X86_64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
                                              uint8_t stOther) const {
  if (!config->is64) {
    error("Target doesn't support split stacks.");
    return false;
  }

  if (loc + 8 >= end)
    return false;

  // Replace "cmp %fs:0x70,%rsp" and subsequent branch
  // with "stc, nopl 0x0(%rax,%rax,1)"
  if (memcmp(loc, "\x64\x48\x3b\x24\x25", 5) == 0) {
    memcpy(loc, "\xf9\x0f\x1f\x84\x00\x00\x00\x00", 8);
    return true;
  }

  // Adjust "lea X(%rsp),%rYY" to lea "(X - 0x4000)(%rsp),%rYY" where rYY could
  // be r10 or r11. The lea instruction feeds a subsequent compare which checks
  // if there is X available stack space. Making X larger effectively reserves
  // that much additional space. The stack grows downward so subtract the value.
  if (memcmp(loc, "\x4c\x8d\x94\x24", 4) == 0 ||
      memcmp(loc, "\x4c\x8d\x9c\x24", 4) == 0) {
    // The offset bytes are encoded four bytes after the start of the
    // instruction.
    write32le(loc + 4, read32le(loc + 4) - 0x4000);
    return true;
  }
  return false;
}

// These nonstandard PLT entries are to migtigate Spectre v2 security
// vulnerability. In order to mitigate Spectre v2, we want to avoid indirect
// branch instructions such as `jmp *GOTPLT(%rip)`. So, in the following PLT
// entries, we use a CALL followed by MOV and RET to do the same thing as an
// indirect jump. That instruction sequence is so-called "retpoline".
//
// We have two types of retpoline PLTs as a size optimization. If `-z now`
// is specified, all dynamic symbols are resolved at load-time. Thus, when
// that option is given, we can omit code for symbol lazy resolution.
namespace {
class Retpoline : public X86_64 {
public:
  Retpoline();
  void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
  void writePltHeader(uint8_t *buf) const override;
  void writePlt(uint8_t *buf, uint64_t gotPltEntryAddr, uint64_t pltEntryAddr,
                int32_t index, unsigned relOff) const override;
};

class RetpolineZNow : public X86_64 {
public:
  RetpolineZNow();
  void writeGotPlt(uint8_t *buf, const Symbol &s) const override {}
  void writePltHeader(uint8_t *buf) const override;
  void writePlt(uint8_t *buf, uint64_t gotPltEntryAddr, uint64_t pltEntryAddr,
                int32_t index, unsigned relOff) const override;
};
} // namespace

Retpoline::Retpoline() {
  pltHeaderSize = 48;
  pltEntrySize = 32;
}

void Retpoline::writeGotPlt(uint8_t *buf, const Symbol &s) const {
  write64le(buf, s.getPltVA() + 17);
}

void Retpoline::writePltHeader(uint8_t *buf) const {
  const uint8_t insn[] = {
      0xff, 0x35, 0,    0,    0,    0,          // 0:    pushq GOTPLT+8(%rip)
      0x4c, 0x8b, 0x1d, 0,    0,    0,    0,    // 6:    mov GOTPLT+16(%rip), %r11
      0xe8, 0x0e, 0x00, 0x00, 0x00,             // d:    callq next
      0xf3, 0x90,                               // 12: loop: pause
      0x0f, 0xae, 0xe8,                         // 14:   lfence
      0xeb, 0xf9,                               // 17:   jmp loop
      0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19:   int3; .align 16
      0x4c, 0x89, 0x1c, 0x24,                   // 20: next: mov %r11, (%rsp)
      0xc3,                                     // 24:   ret
      0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 25:   int3; padding
      0xcc, 0xcc, 0xcc, 0xcc,                   // 2c:   int3; padding
  };
  memcpy(buf, insn, sizeof(insn));

  uint64_t gotPlt = in.gotPlt->getVA();
  uint64_t plt = in.plt->getVA();
  write32le(buf + 2, gotPlt - plt - 6 + 8);
  write32le(buf + 9, gotPlt - plt - 13 + 16);
}

void Retpoline::writePlt(uint8_t *buf, uint64_t gotPltEntryAddr,
                         uint64_t pltEntryAddr, int32_t index,
                         unsigned relOff) const {
  const uint8_t insn[] = {
      0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 0:  mov foo@GOTPLT(%rip), %r11
      0xe8, 0,    0,    0,    0,    // 7:  callq plt+0x20
      0xe9, 0,    0,    0,    0,    // c:  jmp plt+0x12
      0x68, 0,    0,    0,    0,    // 11: pushq <relocation index>
      0xe9, 0,    0,    0,    0,    // 16: jmp plt+0
      0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1b: int3; padding
  };
  memcpy(buf, insn, sizeof(insn));

  uint64_t off = pltHeaderSize + pltEntrySize * index;

  write32le(buf + 3, gotPltEntryAddr - pltEntryAddr - 7);
  write32le(buf + 8, -off - 12 + 32);
  write32le(buf + 13, -off - 17 + 18);
  write32le(buf + 18, index);
  write32le(buf + 23, -off - 27);
}

RetpolineZNow::RetpolineZNow() {
  pltHeaderSize = 32;
  pltEntrySize = 16;
}

void RetpolineZNow::writePltHeader(uint8_t *buf) const {
  const uint8_t insn[] = {
      0xe8, 0x0b, 0x00, 0x00, 0x00, // 0:    call next
      0xf3, 0x90,                   // 5:  loop: pause
      0x0f, 0xae, 0xe8,             // 7:    lfence
      0xeb, 0xf9,                   // a:    jmp loop
      0xcc, 0xcc, 0xcc, 0xcc,       // c:    int3; .align 16
      0x4c, 0x89, 0x1c, 0x24,       // 10: next: mov %r11, (%rsp)
      0xc3,                         // 14:   ret
      0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 15:   int3; padding
      0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a:   int3; padding
      0xcc,                         // 1f:   int3; padding
  };
  memcpy(buf, insn, sizeof(insn));
}

void RetpolineZNow::writePlt(uint8_t *buf, uint64_t gotPltEntryAddr,
                             uint64_t pltEntryAddr, int32_t index,
                             unsigned relOff) const {
  const uint8_t insn[] = {
      0x4c, 0x8b, 0x1d, 0,    0, 0, 0, // mov foo@GOTPLT(%rip), %r11
      0xe9, 0,    0,    0,    0,       // jmp plt+0
      0xcc, 0xcc, 0xcc, 0xcc,          // int3; padding
  };
  memcpy(buf, insn, sizeof(insn));

  write32le(buf + 3, gotPltEntryAddr - pltEntryAddr - 7);
  write32le(buf + 8, -pltHeaderSize - pltEntrySize * index - 12);
}

static TargetInfo *getTargetInfo() {
  if (config->zRetpolineplt) {
    if (config->zNow) {
      static RetpolineZNow t;
      return &t;
    }
    static Retpoline t;
    return &t;
  }

  static X86_64 t;
  return &t;
}

TargetInfo *getX86_64TargetInfo() { return getTargetInfo(); }

} // namespace elf
} // namespace lld