reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
//===-- Hexagon.cpp -------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "InputFiles.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/Endian.h"

using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;

namespace lld {
namespace elf {

namespace {
class Hexagon final : public TargetInfo {
public:
  Hexagon();
  uint32_t calcEFlags() const override;
  RelExpr getRelExpr(RelType type, const Symbol &s,
                     const uint8_t *loc) const override;
  RelType getDynRel(RelType type) const override;
  void relocateOne(uint8_t *loc, RelType type, uint64_t val) const override;
  void writePltHeader(uint8_t *buf) const override;
  void writePlt(uint8_t *buf, uint64_t gotPltEntryAddr, uint64_t pltEntryAddr,
                int32_t index, unsigned relOff) const override;
};
} // namespace

Hexagon::Hexagon() {
  pltRel = R_HEX_JMP_SLOT;
  relativeRel = R_HEX_RELATIVE;
  gotRel = R_HEX_GLOB_DAT;
  symbolicRel = R_HEX_32;

  // The zero'th GOT entry is reserved for the address of _DYNAMIC.  The
  // next 3 are reserved for the dynamic loader.
  gotPltHeaderEntriesNum = 4;

  pltEntrySize = 16;
  pltHeaderSize = 32;

  // Hexagon Linux uses 64K pages by default.
  defaultMaxPageSize = 0x10000;
  noneRel = R_HEX_NONE;
}

uint32_t Hexagon::calcEFlags() const {
  assert(!objectFiles.empty());

  // The architecture revision must always be equal to or greater than
  // greatest revision in the list of inputs.
  uint32_t ret = 0;
  for (InputFile *f : objectFiles) {
    uint32_t eflags = cast<ObjFile<ELF32LE>>(f)->getObj().getHeader()->e_flags;
    if (eflags > ret)
      ret = eflags;
  }
  return ret;
}

static uint32_t applyMask(uint32_t mask, uint32_t data) {
  uint32_t result = 0;
  size_t off = 0;

  for (size_t bit = 0; bit != 32; ++bit) {
    uint32_t valBit = (data >> off) & 1;
    uint32_t maskBit = (mask >> bit) & 1;
    if (maskBit) {
      result |= (valBit << bit);
      ++off;
    }
  }
  return result;
}

RelExpr Hexagon::getRelExpr(RelType type, const Symbol &s,
                            const uint8_t *loc) const {
  switch (type) {
  case R_HEX_NONE:
    return R_NONE;
  case R_HEX_6_X:
  case R_HEX_8_X:
  case R_HEX_9_X:
  case R_HEX_10_X:
  case R_HEX_11_X:
  case R_HEX_12_X:
  case R_HEX_16_X:
  case R_HEX_32:
  case R_HEX_32_6_X:
  case R_HEX_HI16:
  case R_HEX_LO16:
    return R_ABS;
  case R_HEX_B9_PCREL:
  case R_HEX_B13_PCREL:
  case R_HEX_B15_PCREL:
  case R_HEX_6_PCREL_X:
  case R_HEX_32_PCREL:
    return R_PC;
  case R_HEX_B9_PCREL_X:
  case R_HEX_B15_PCREL_X:
  case R_HEX_B22_PCREL:
  case R_HEX_PLT_B22_PCREL:
  case R_HEX_B22_PCREL_X:
  case R_HEX_B32_PCREL_X:
    return R_PLT_PC;
  case R_HEX_GOTREL_11_X:
  case R_HEX_GOTREL_16_X:
  case R_HEX_GOTREL_32_6_X:
  case R_HEX_GOTREL_HI16:
  case R_HEX_GOTREL_LO16:
    return R_GOTPLTREL;
  case R_HEX_GOT_11_X:
  case R_HEX_GOT_16_X:
  case R_HEX_GOT_32_6_X:
    return R_GOTPLT;
  default:
    error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
          ") against symbol " + toString(s));
    return R_NONE;
  }
}

static uint32_t findMaskR6(uint32_t insn) {
  // There are (arguably too) many relocation masks for the DSP's
  // R_HEX_6_X type.  The table below is used to select the correct mask
  // for the given instruction.
  struct InstructionMask {
    uint32_t cmpMask;
    uint32_t relocMask;
  };

  static const InstructionMask r6[] = {
      {0x38000000, 0x0000201f}, {0x39000000, 0x0000201f},
      {0x3e000000, 0x00001f80}, {0x3f000000, 0x00001f80},
      {0x40000000, 0x000020f8}, {0x41000000, 0x000007e0},
      {0x42000000, 0x000020f8}, {0x43000000, 0x000007e0},
      {0x44000000, 0x000020f8}, {0x45000000, 0x000007e0},
      {0x46000000, 0x000020f8}, {0x47000000, 0x000007e0},
      {0x6a000000, 0x00001f80}, {0x7c000000, 0x001f2000},
      {0x9a000000, 0x00000f60}, {0x9b000000, 0x00000f60},
      {0x9c000000, 0x00000f60}, {0x9d000000, 0x00000f60},
      {0x9f000000, 0x001f0100}, {0xab000000, 0x0000003f},
      {0xad000000, 0x0000003f}, {0xaf000000, 0x00030078},
      {0xd7000000, 0x006020e0}, {0xd8000000, 0x006020e0},
      {0xdb000000, 0x006020e0}, {0xdf000000, 0x006020e0}};

  // Duplex forms have a fixed mask and parse bits 15:14 are always
  // zero.  Non-duplex insns will always have at least one bit set in the
  // parse field.
  if ((0xC000 & insn) == 0x0)
    return 0x03f00000;

  for (InstructionMask i : r6)
    if ((0xff000000 & insn) == i.cmpMask)
      return i.relocMask;

  error("unrecognized instruction for R_HEX_6 relocation: 0x" +
        utohexstr(insn));
  return 0;
}

static uint32_t findMaskR8(uint32_t insn) {
  if ((0xff000000 & insn) == 0xde000000)
    return 0x00e020e8;
  if ((0xff000000 & insn) == 0x3c000000)
    return 0x0000207f;
  return 0x00001fe0;
}

static uint32_t findMaskR11(uint32_t insn) {
  if ((0xff000000 & insn) == 0xa1000000)
    return 0x060020ff;
  return 0x06003fe0;
}

static uint32_t findMaskR16(uint32_t insn) {
  if ((0xff000000 & insn) == 0x48000000)
    return 0x061f20ff;
  if ((0xff000000 & insn) == 0x49000000)
    return 0x061f3fe0;
  if ((0xff000000 & insn) == 0x78000000)
    return 0x00df3fe0;
  if ((0xff000000 & insn) == 0xb0000000)
    return 0x0fe03fe0;

  error("unrecognized instruction for R_HEX_16_X relocation: 0x" +
        utohexstr(insn));
  return 0;
}

static void or32le(uint8_t *p, int32_t v) { write32le(p, read32le(p) | v); }

void Hexagon::relocateOne(uint8_t *loc, RelType type, uint64_t val) const {
  switch (type) {
  case R_HEX_NONE:
    break;
  case R_HEX_6_PCREL_X:
  case R_HEX_6_X:
    or32le(loc, applyMask(findMaskR6(read32le(loc)), val));
    break;
  case R_HEX_8_X:
    or32le(loc, applyMask(findMaskR8(read32le(loc)), val));
    break;
  case R_HEX_9_X:
    or32le(loc, applyMask(0x00003fe0, val & 0x3f));
    break;
  case R_HEX_10_X:
    or32le(loc, applyMask(0x00203fe0, val & 0x3f));
    break;
  case R_HEX_11_X:
  case R_HEX_GOT_11_X:
  case R_HEX_GOTREL_11_X:
    or32le(loc, applyMask(findMaskR11(read32le(loc)), val & 0x3f));
    break;
  case R_HEX_12_X:
    or32le(loc, applyMask(0x000007e0, val));
    break;
  case R_HEX_16_X: // These relocs only have 6 effective bits.
  case R_HEX_GOT_16_X:
  case R_HEX_GOTREL_16_X:
    or32le(loc, applyMask(findMaskR16(read32le(loc)), val & 0x3f));
    break;
  case R_HEX_32:
  case R_HEX_32_PCREL:
    or32le(loc, val);
    break;
  case R_HEX_32_6_X:
  case R_HEX_GOT_32_6_X:
  case R_HEX_GOTREL_32_6_X:
    or32le(loc, applyMask(0x0fff3fff, val >> 6));
    break;
  case R_HEX_B9_PCREL:
    checkInt(loc, val, 11, type);
    or32le(loc, applyMask(0x003000fe, val >> 2));
    break;
  case R_HEX_B9_PCREL_X:
    or32le(loc, applyMask(0x003000fe, val & 0x3f));
    break;
  case R_HEX_B13_PCREL:
    checkInt(loc, val, 15, type);
    or32le(loc, applyMask(0x00202ffe, val >> 2));
    break;
  case R_HEX_B15_PCREL:
    checkInt(loc, val, 17, type);
    or32le(loc, applyMask(0x00df20fe, val >> 2));
    break;
  case R_HEX_B15_PCREL_X:
    or32le(loc, applyMask(0x00df20fe, val & 0x3f));
    break;
  case R_HEX_B22_PCREL:
  case R_HEX_PLT_B22_PCREL:
    checkInt(loc, val, 22, type);
    or32le(loc, applyMask(0x1ff3ffe, val >> 2));
    break;
  case R_HEX_B22_PCREL_X:
    or32le(loc, applyMask(0x1ff3ffe, val & 0x3f));
    break;
  case R_HEX_B32_PCREL_X:
    or32le(loc, applyMask(0x0fff3fff, val >> 6));
    break;
  case R_HEX_GOTREL_HI16:
  case R_HEX_HI16:
    or32le(loc, applyMask(0x00c03fff, val >> 16));
    break;
  case R_HEX_GOTREL_LO16:
  case R_HEX_LO16:
    or32le(loc, applyMask(0x00c03fff, val));
    break;
  default:
    llvm_unreachable("unknown relocation");
  }
}

void Hexagon::writePltHeader(uint8_t *buf) const {
  const uint8_t pltData[] = {
      0x00, 0x40, 0x00, 0x00, // { immext (#0)
      0x1c, 0xc0, 0x49, 0x6a, //   r28 = add (pc, ##GOT0@PCREL) } # @GOT0
      0x0e, 0x42, 0x9c, 0xe2, // { r14 -= add (r28, #16)  # offset of GOTn
      0x4f, 0x40, 0x9c, 0x91, //   r15 = memw (r28 + #8)  # object ID at GOT2
      0x3c, 0xc0, 0x9c, 0x91, //   r28 = memw (r28 + #4) }# dynamic link at GOT1
      0x0e, 0x42, 0x0e, 0x8c, // { r14 = asr (r14, #2)    # index of PLTn
      0x00, 0xc0, 0x9c, 0x52, //   jumpr r28 }            # call dynamic linker
      0x0c, 0xdb, 0x00, 0x54, // trap0(#0xdb) # bring plt0 into 16byte alignment
  };
  memcpy(buf, pltData, sizeof(pltData));

  // Offset from PLT0 to the GOT.
  uint64_t off = in.gotPlt->getVA() - in.plt->getVA();
  relocateOne(buf, R_HEX_B32_PCREL_X, off);
  relocateOne(buf + 4, R_HEX_6_PCREL_X, off);
}

void Hexagon::writePlt(uint8_t *buf, uint64_t gotPltEntryAddr,
                       uint64_t pltEntryAddr, int32_t index,
                       unsigned relOff) const {
  const uint8_t inst[] = {
      0x00, 0x40, 0x00, 0x00, // { immext (#0)
      0x0e, 0xc0, 0x49, 0x6a, //   r14 = add (pc, ##GOTn@PCREL) }
      0x1c, 0xc0, 0x8e, 0x91, // r28 = memw (r14)
      0x00, 0xc0, 0x9c, 0x52, // jumpr r28
  };
  memcpy(buf, inst, sizeof(inst));

  relocateOne(buf, R_HEX_B32_PCREL_X, gotPltEntryAddr - pltEntryAddr);
  relocateOne(buf + 4, R_HEX_6_PCREL_X, gotPltEntryAddr - pltEntryAddr);
}

RelType Hexagon::getDynRel(RelType type) const {
  if (type == R_HEX_32)
    return type;
  return R_HEX_NONE;
}

TargetInfo *getHexagonTargetInfo() {
  static Hexagon target;
  return &target;
}

} // namespace elf
} // namespace lld