reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
//===- ICF.cpp ------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// ICF is short for Identical Code Folding. That is a size optimization to
// identify and merge two or more read-only sections (typically functions)
// that happened to have the same contents. It usually reduces output size
// by a few percent.
//
// On Windows, ICF is enabled by default.
//
// See ELF/ICF.cpp for the details about the algorithm.
//
//===----------------------------------------------------------------------===//

#include "ICF.h"
#include "Chunks.h"
#include "Symbols.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Threads.h"
#include "lld/Common/Timer.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Parallel.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/xxhash.h"
#include <algorithm>
#include <atomic>
#include <vector>

using namespace llvm;

namespace lld {
namespace coff {

static Timer icfTimer("ICF", Timer::root());

class ICF {
public:
  void run(ArrayRef<Chunk *> v);

private:
  void segregate(size_t begin, size_t end, bool constant);

  bool assocEquals(const SectionChunk *a, const SectionChunk *b);

  bool equalsConstant(const SectionChunk *a, const SectionChunk *b);
  bool equalsVariable(const SectionChunk *a, const SectionChunk *b);

  bool isEligible(SectionChunk *c);

  size_t findBoundary(size_t begin, size_t end);

  void forEachClassRange(size_t begin, size_t end,
                         std::function<void(size_t, size_t)> fn);

  void forEachClass(std::function<void(size_t, size_t)> fn);

  std::vector<SectionChunk *> chunks;
  int cnt = 0;
  std::atomic<bool> repeat = {false};
};

// Returns true if section S is subject of ICF.
//
// Microsoft's documentation
// (https://msdn.microsoft.com/en-us/library/bxwfs976.aspx; visited April
// 2017) says that /opt:icf folds both functions and read-only data.
// Despite that, the MSVC linker folds only functions. We found
// a few instances of programs that are not safe for data merging.
// Therefore, we merge only functions just like the MSVC tool. However, we also
// merge read-only sections in a couple of cases where the address of the
// section is insignificant to the user program and the behaviour matches that
// of the Visual C++ linker.
bool ICF::isEligible(SectionChunk *c) {
  // Non-comdat chunks, dead chunks, and writable chunks are not eligible.
  bool writable = c->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_WRITE;
  if (!c->isCOMDAT() || !c->live || writable)
    return false;

  // Code sections are eligible.
  if (c->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_EXECUTE)
    return true;

  // .pdata and .xdata unwind info sections are eligible.
  StringRef outSecName = c->getSectionName().split('$').first;
  if (outSecName == ".pdata" || outSecName == ".xdata")
    return true;

  // So are vtables.
  if (c->sym && c->sym->getName().startswith("??_7"))
    return true;

  // Anything else not in an address-significance table is eligible.
  return !c->keepUnique;
}

// Split an equivalence class into smaller classes.
void ICF::segregate(size_t begin, size_t end, bool constant) {
  while (begin < end) {
    // Divide [Begin, End) into two. Let Mid be the start index of the
    // second group.
    auto bound = std::stable_partition(
        chunks.begin() + begin + 1, chunks.begin() + end, [&](SectionChunk *s) {
          if (constant)
            return equalsConstant(chunks[begin], s);
          return equalsVariable(chunks[begin], s);
        });
    size_t mid = bound - chunks.begin();

    // Split [Begin, End) into [Begin, Mid) and [Mid, End). We use Mid as an
    // equivalence class ID because every group ends with a unique index.
    for (size_t i = begin; i < mid; ++i)
      chunks[i]->eqClass[(cnt + 1) % 2] = mid;

    // If we created a group, we need to iterate the main loop again.
    if (mid != end)
      repeat = true;

    begin = mid;
  }
}

// Returns true if two sections' associative children are equal.
bool ICF::assocEquals(const SectionChunk *a, const SectionChunk *b) {
  auto childClasses = [&](const SectionChunk *sc) {
    std::vector<uint32_t> classes;
    for (const SectionChunk &c : sc->children())
      if (!c.getSectionName().startswith(".debug") &&
          c.getSectionName() != ".gfids$y" && c.getSectionName() != ".gljmp$y")
        classes.push_back(c.eqClass[cnt % 2]);
    return classes;
  };
  return childClasses(a) == childClasses(b);
}

// Compare "non-moving" part of two sections, namely everything
// except relocation targets.
bool ICF::equalsConstant(const SectionChunk *a, const SectionChunk *b) {
  if (a->relocsSize != b->relocsSize)
    return false;

  // Compare relocations.
  auto eq = [&](const coff_relocation &r1, const coff_relocation &r2) {
    if (r1.Type != r2.Type ||
        r1.VirtualAddress != r2.VirtualAddress) {
      return false;
    }
    Symbol *b1 = a->file->getSymbol(r1.SymbolTableIndex);
    Symbol *b2 = b->file->getSymbol(r2.SymbolTableIndex);
    if (b1 == b2)
      return true;
    if (auto *d1 = dyn_cast<DefinedRegular>(b1))
      if (auto *d2 = dyn_cast<DefinedRegular>(b2))
        return d1->getValue() == d2->getValue() &&
               d1->getChunk()->eqClass[cnt % 2] == d2->getChunk()->eqClass[cnt % 2];
    return false;
  };
  if (!std::equal(a->getRelocs().begin(), a->getRelocs().end(),
                  b->getRelocs().begin(), eq))
    return false;

  // Compare section attributes and contents.
  return a->getOutputCharacteristics() == b->getOutputCharacteristics() &&
         a->getSectionName() == b->getSectionName() &&
         a->header->SizeOfRawData == b->header->SizeOfRawData &&
         a->checksum == b->checksum && a->getContents() == b->getContents() &&
         assocEquals(a, b);
}

// Compare "moving" part of two sections, namely relocation targets.
bool ICF::equalsVariable(const SectionChunk *a, const SectionChunk *b) {
  // Compare relocations.
  auto eq = [&](const coff_relocation &r1, const coff_relocation &r2) {
    Symbol *b1 = a->file->getSymbol(r1.SymbolTableIndex);
    Symbol *b2 = b->file->getSymbol(r2.SymbolTableIndex);
    if (b1 == b2)
      return true;
    if (auto *d1 = dyn_cast<DefinedRegular>(b1))
      if (auto *d2 = dyn_cast<DefinedRegular>(b2))
        return d1->getChunk()->eqClass[cnt % 2] == d2->getChunk()->eqClass[cnt % 2];
    return false;
  };
  return std::equal(a->getRelocs().begin(), a->getRelocs().end(),
                    b->getRelocs().begin(), eq) &&
         assocEquals(a, b);
}

// Find the first Chunk after Begin that has a different class from Begin.
size_t ICF::findBoundary(size_t begin, size_t end) {
  for (size_t i = begin + 1; i < end; ++i)
    if (chunks[begin]->eqClass[cnt % 2] != chunks[i]->eqClass[cnt % 2])
      return i;
  return end;
}

void ICF::forEachClassRange(size_t begin, size_t end,
                            std::function<void(size_t, size_t)> fn) {
  while (begin < end) {
    size_t mid = findBoundary(begin, end);
    fn(begin, mid);
    begin = mid;
  }
}

// Call Fn on each class group.
void ICF::forEachClass(std::function<void(size_t, size_t)> fn) {
  // If the number of sections are too small to use threading,
  // call Fn sequentially.
  if (chunks.size() < 1024) {
    forEachClassRange(0, chunks.size(), fn);
    ++cnt;
    return;
  }

  // Shard into non-overlapping intervals, and call Fn in parallel.
  // The sharding must be completed before any calls to Fn are made
  // so that Fn can modify the Chunks in its shard without causing data
  // races.
  const size_t numShards = 256;
  size_t step = chunks.size() / numShards;
  size_t boundaries[numShards + 1];
  boundaries[0] = 0;
  boundaries[numShards] = chunks.size();
  parallelForEachN(1, numShards, [&](size_t i) {
    boundaries[i] = findBoundary((i - 1) * step, chunks.size());
  });
  parallelForEachN(1, numShards + 1, [&](size_t i) {
    if (boundaries[i - 1] < boundaries[i]) {
      forEachClassRange(boundaries[i - 1], boundaries[i], fn);
    }
  });
  ++cnt;
}

// Merge identical COMDAT sections.
// Two sections are considered the same if their section headers,
// contents and relocations are all the same.
void ICF::run(ArrayRef<Chunk *> vec) {
  ScopedTimer t(icfTimer);

  // Collect only mergeable sections and group by hash value.
  uint32_t nextId = 1;
  for (Chunk *c : vec) {
    if (auto *sc = dyn_cast<SectionChunk>(c)) {
      if (isEligible(sc))
        chunks.push_back(sc);
      else
        sc->eqClass[0] = nextId++;
    }
  }

  // Make sure that ICF doesn't merge sections that are being handled by string
  // tail merging.
  for (MergeChunk *mc : MergeChunk::instances)
    if (mc)
      for (SectionChunk *sc : mc->sections)
        sc->eqClass[0] = nextId++;

  // Initially, we use hash values to partition sections.
  parallelForEach(chunks, [&](SectionChunk *sc) {
    sc->eqClass[0] = xxHash64(sc->getContents());
  });

  // Combine the hashes of the sections referenced by each section into its
  // hash.
  for (unsigned cnt = 0; cnt != 2; ++cnt) {
    parallelForEach(chunks, [&](SectionChunk *sc) {
      uint32_t hash = sc->eqClass[cnt % 2];
      for (Symbol *b : sc->symbols())
        if (auto *sym = dyn_cast_or_null<DefinedRegular>(b))
          hash += sym->getChunk()->eqClass[cnt % 2];
      // Set MSB to 1 to avoid collisions with non-hash classes.
      sc->eqClass[(cnt + 1) % 2] = hash | (1U << 31);
    });
  }

  // From now on, sections in Chunks are ordered so that sections in
  // the same group are consecutive in the vector.
  llvm::stable_sort(chunks, [](const SectionChunk *a, const SectionChunk *b) {
    return a->eqClass[0] < b->eqClass[0];
  });

  // Compare static contents and assign unique IDs for each static content.
  forEachClass([&](size_t begin, size_t end) { segregate(begin, end, true); });

  // Split groups by comparing relocations until convergence is obtained.
  do {
    repeat = false;
    forEachClass(
        [&](size_t begin, size_t end) { segregate(begin, end, false); });
  } while (repeat);

  log("ICF needed " + Twine(cnt) + " iterations");

  // Merge sections in the same classes.
  forEachClass([&](size_t begin, size_t end) {
    if (end - begin == 1)
      return;

    log("Selected " + chunks[begin]->getDebugName());
    for (size_t i = begin + 1; i < end; ++i) {
      log("  Removed " + chunks[i]->getDebugName());
      chunks[begin]->replace(chunks[i]);
    }
  });
}

// Entry point to ICF.
void doICF(ArrayRef<Chunk *> chunks) { ICF().run(chunks); }

} // namespace coff
} // namespace lld