reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
//===-- GlobalDCE.cpp - DCE unreachable internal functions ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This transform is designed to eliminate unreachable internal globals from the
// program.  It uses an aggressive algorithm, searching out globals that are
// known to be alive.  After it finds all of the globals which are needed, it
// deletes whatever is left over.  This allows it to delete recursive chunks of
// the program which are unreachable.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/GlobalDCE.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/TypeMetadataUtils.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Utils/CtorUtils.h"
#include "llvm/Transforms/Utils/GlobalStatus.h"

using namespace llvm;

#define DEBUG_TYPE "globaldce"

static cl::opt<bool>
    ClEnableVFE("enable-vfe", cl::Hidden, cl::init(true), cl::ZeroOrMore,
                cl::desc("Enable virtual function elimination"));

STATISTIC(NumAliases  , "Number of global aliases removed");
STATISTIC(NumFunctions, "Number of functions removed");
STATISTIC(NumIFuncs,    "Number of indirect functions removed");
STATISTIC(NumVariables, "Number of global variables removed");
STATISTIC(NumVFuncs,    "Number of virtual functions removed");

namespace {
  class GlobalDCELegacyPass : public ModulePass {
  public:
    static char ID; // Pass identification, replacement for typeid
    GlobalDCELegacyPass() : ModulePass(ID) {
      initializeGlobalDCELegacyPassPass(*PassRegistry::getPassRegistry());
    }

    // run - Do the GlobalDCE pass on the specified module, optionally updating
    // the specified callgraph to reflect the changes.
    //
    bool runOnModule(Module &M) override {
      if (skipModule(M))
        return false;

      // We need a minimally functional dummy module analysis manager. It needs
      // to at least know about the possibility of proxying a function analysis
      // manager.
      FunctionAnalysisManager DummyFAM;
      ModuleAnalysisManager DummyMAM;
      DummyMAM.registerPass(
          [&] { return FunctionAnalysisManagerModuleProxy(DummyFAM); });

      auto PA = Impl.run(M, DummyMAM);
      return !PA.areAllPreserved();
    }

  private:
    GlobalDCEPass Impl;
  };
}

char GlobalDCELegacyPass::ID = 0;
INITIALIZE_PASS(GlobalDCELegacyPass, "globaldce",
                "Dead Global Elimination", false, false)

// Public interface to the GlobalDCEPass.
ModulePass *llvm::createGlobalDCEPass() {
  return new GlobalDCELegacyPass();
}

/// Returns true if F is effectively empty.
static bool isEmptyFunction(Function *F) {
  BasicBlock &Entry = F->getEntryBlock();
  for (auto &I : Entry) {
    if (isa<DbgInfoIntrinsic>(I))
      continue;
    if (auto *RI = dyn_cast<ReturnInst>(&I))
      return !RI->getReturnValue();
    break;
  }
  return false;
}

/// Compute the set of GlobalValue that depends from V.
/// The recursion stops as soon as a GlobalValue is met.
void GlobalDCEPass::ComputeDependencies(Value *V,
                                        SmallPtrSetImpl<GlobalValue *> &Deps) {
  if (auto *I = dyn_cast<Instruction>(V)) {
    Function *Parent = I->getParent()->getParent();
    Deps.insert(Parent);
  } else if (auto *GV = dyn_cast<GlobalValue>(V)) {
    Deps.insert(GV);
  } else if (auto *CE = dyn_cast<Constant>(V)) {
    // Avoid walking the whole tree of a big ConstantExprs multiple times.
    auto Where = ConstantDependenciesCache.find(CE);
    if (Where != ConstantDependenciesCache.end()) {
      auto const &K = Where->second;
      Deps.insert(K.begin(), K.end());
    } else {
      SmallPtrSetImpl<GlobalValue *> &LocalDeps = ConstantDependenciesCache[CE];
      for (User *CEUser : CE->users())
        ComputeDependencies(CEUser, LocalDeps);
      Deps.insert(LocalDeps.begin(), LocalDeps.end());
    }
  }
}

void GlobalDCEPass::UpdateGVDependencies(GlobalValue &GV) {
  SmallPtrSet<GlobalValue *, 8> Deps;
  for (User *User : GV.users())
    ComputeDependencies(User, Deps);
  Deps.erase(&GV); // Remove self-reference.
  for (GlobalValue *GVU : Deps) {
    // If this is a dep from a vtable to a virtual function, and we have
    // complete information about all virtual call sites which could call
    // though this vtable, then skip it, because the call site information will
    // be more precise.
    if (VFESafeVTables.count(GVU) && isa<Function>(&GV)) {
      LLVM_DEBUG(dbgs() << "Ignoring dep " << GVU->getName() << " -> "
                        << GV.getName() << "\n");
      continue;
    }
    GVDependencies[GVU].insert(&GV);
  }
}

/// Mark Global value as Live
void GlobalDCEPass::MarkLive(GlobalValue &GV,
                             SmallVectorImpl<GlobalValue *> *Updates) {
  auto const Ret = AliveGlobals.insert(&GV);
  if (!Ret.second)
    return;

  if (Updates)
    Updates->push_back(&GV);
  if (Comdat *C = GV.getComdat()) {
    for (auto &&CM : make_range(ComdatMembers.equal_range(C))) {
      MarkLive(*CM.second, Updates); // Recursion depth is only two because only
                                     // globals in the same comdat are visited.
    }
  }
}

void GlobalDCEPass::ScanVTables(Module &M) {
  SmallVector<MDNode *, 2> Types;
  LLVM_DEBUG(dbgs() << "Building type info -> vtable map\n");

  auto *LTOPostLinkMD =
      cast_or_null<ConstantAsMetadata>(M.getModuleFlag("LTOPostLink"));
  bool LTOPostLink =
      LTOPostLinkMD &&
      (cast<ConstantInt>(LTOPostLinkMD->getValue())->getZExtValue() != 0);

  for (GlobalVariable &GV : M.globals()) {
    Types.clear();
    GV.getMetadata(LLVMContext::MD_type, Types);
    if (GV.isDeclaration() || Types.empty())
      continue;

    // Use the typeid metadata on the vtable to build a mapping from typeids to
    // the list of (GV, offset) pairs which are the possible vtables for that
    // typeid.
    for (MDNode *Type : Types) {
      Metadata *TypeID = Type->getOperand(1).get();

      uint64_t Offset =
          cast<ConstantInt>(
              cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
              ->getZExtValue();

      TypeIdMap[TypeID].insert(std::make_pair(&GV, Offset));
    }

    // If the type corresponding to the vtable is private to this translation
    // unit, we know that we can see all virtual functions which might use it,
    // so VFE is safe.
    if (auto GO = dyn_cast<GlobalObject>(&GV)) {
      GlobalObject::VCallVisibility TypeVis = GO->getVCallVisibility();
      if (TypeVis == GlobalObject::VCallVisibilityTranslationUnit ||
          (LTOPostLink &&
           TypeVis == GlobalObject::VCallVisibilityLinkageUnit)) {
        LLVM_DEBUG(dbgs() << GV.getName() << " is safe for VFE\n");
        VFESafeVTables.insert(&GV);
      }
    }
  }
}

void GlobalDCEPass::ScanVTableLoad(Function *Caller, Metadata *TypeId,
                                   uint64_t CallOffset) {
  for (auto &VTableInfo : TypeIdMap[TypeId]) {
    GlobalVariable *VTable = VTableInfo.first;
    uint64_t VTableOffset = VTableInfo.second;

    Constant *Ptr =
        getPointerAtOffset(VTable->getInitializer(), VTableOffset + CallOffset,
                           *Caller->getParent());
    if (!Ptr) {
      LLVM_DEBUG(dbgs() << "can't find pointer in vtable!\n");
      VFESafeVTables.erase(VTable);
      return;
    }

    auto Callee = dyn_cast<Function>(Ptr->stripPointerCasts());
    if (!Callee) {
      LLVM_DEBUG(dbgs() << "vtable entry is not function pointer!\n");
      VFESafeVTables.erase(VTable);
      return;
    }

    LLVM_DEBUG(dbgs() << "vfunc dep " << Caller->getName() << " -> "
                      << Callee->getName() << "\n");
    GVDependencies[Caller].insert(Callee);
  }
}

void GlobalDCEPass::ScanTypeCheckedLoadIntrinsics(Module &M) {
  LLVM_DEBUG(dbgs() << "Scanning type.checked.load intrinsics\n");
  Function *TypeCheckedLoadFunc =
      M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));

  if (!TypeCheckedLoadFunc)
    return;

  for (auto U : TypeCheckedLoadFunc->users()) {
    auto CI = dyn_cast<CallInst>(U);
    if (!CI)
      continue;

    auto *Offset = dyn_cast<ConstantInt>(CI->getArgOperand(1));
    Value *TypeIdValue = CI->getArgOperand(2);
    auto *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();

    if (Offset) {
      ScanVTableLoad(CI->getFunction(), TypeId, Offset->getZExtValue());
    } else {
      // type.checked.load with a non-constant offset, so assume every entry in
      // every matching vtable is used.
      for (auto &VTableInfo : TypeIdMap[TypeId]) {
        VFESafeVTables.erase(VTableInfo.first);
      }
    }
  }
}

void GlobalDCEPass::AddVirtualFunctionDependencies(Module &M) {
  if (!ClEnableVFE)
    return;

  ScanVTables(M);

  if (VFESafeVTables.empty())
    return;

  ScanTypeCheckedLoadIntrinsics(M);

  LLVM_DEBUG(
    dbgs() << "VFE safe vtables:\n";
    for (auto *VTable : VFESafeVTables)
      dbgs() << "  " << VTable->getName() << "\n";
  );
}

PreservedAnalyses GlobalDCEPass::run(Module &M, ModuleAnalysisManager &MAM) {
  bool Changed = false;

  // The algorithm first computes the set L of global variables that are
  // trivially live.  Then it walks the initialization of these variables to
  // compute the globals used to initialize them, which effectively builds a
  // directed graph where nodes are global variables, and an edge from A to B
  // means B is used to initialize A.  Finally, it propagates the liveness
  // information through the graph starting from the nodes in L. Nodes note
  // marked as alive are discarded.

  // Remove empty functions from the global ctors list.
  Changed |= optimizeGlobalCtorsList(M, isEmptyFunction);

  // Collect the set of members for each comdat.
  for (Function &F : M)
    if (Comdat *C = F.getComdat())
      ComdatMembers.insert(std::make_pair(C, &F));
  for (GlobalVariable &GV : M.globals())
    if (Comdat *C = GV.getComdat())
      ComdatMembers.insert(std::make_pair(C, &GV));
  for (GlobalAlias &GA : M.aliases())
    if (Comdat *C = GA.getComdat())
      ComdatMembers.insert(std::make_pair(C, &GA));

  // Add dependencies between virtual call sites and the virtual functions they
  // might call, if we have that information.
  AddVirtualFunctionDependencies(M);

  // Loop over the module, adding globals which are obviously necessary.
  for (GlobalObject &GO : M.global_objects()) {
    Changed |= RemoveUnusedGlobalValue(GO);
    // Functions with external linkage are needed if they have a body.
    // Externally visible & appending globals are needed, if they have an
    // initializer.
    if (!GO.isDeclaration())
      if (!GO.isDiscardableIfUnused())
        MarkLive(GO);

    UpdateGVDependencies(GO);
  }

  // Compute direct dependencies of aliases.
  for (GlobalAlias &GA : M.aliases()) {
    Changed |= RemoveUnusedGlobalValue(GA);
    // Externally visible aliases are needed.
    if (!GA.isDiscardableIfUnused())
      MarkLive(GA);

    UpdateGVDependencies(GA);
  }

  // Compute direct dependencies of ifuncs.
  for (GlobalIFunc &GIF : M.ifuncs()) {
    Changed |= RemoveUnusedGlobalValue(GIF);
    // Externally visible ifuncs are needed.
    if (!GIF.isDiscardableIfUnused())
      MarkLive(GIF);

    UpdateGVDependencies(GIF);
  }

  // Propagate liveness from collected Global Values through the computed
  // dependencies.
  SmallVector<GlobalValue *, 8> NewLiveGVs{AliveGlobals.begin(),
                                           AliveGlobals.end()};
  while (!NewLiveGVs.empty()) {
    GlobalValue *LGV = NewLiveGVs.pop_back_val();
    for (auto *GVD : GVDependencies[LGV])
      MarkLive(*GVD, &NewLiveGVs);
  }

  // Now that all globals which are needed are in the AliveGlobals set, we loop
  // through the program, deleting those which are not alive.
  //

  // The first pass is to drop initializers of global variables which are dead.
  std::vector<GlobalVariable *> DeadGlobalVars; // Keep track of dead globals
  for (GlobalVariable &GV : M.globals())
    if (!AliveGlobals.count(&GV)) {
      DeadGlobalVars.push_back(&GV);         // Keep track of dead globals
      if (GV.hasInitializer()) {
        Constant *Init = GV.getInitializer();
        GV.setInitializer(nullptr);
        if (isSafeToDestroyConstant(Init))
          Init->destroyConstant();
      }
    }

  // The second pass drops the bodies of functions which are dead...
  std::vector<Function *> DeadFunctions;
  for (Function &F : M)
    if (!AliveGlobals.count(&F)) {
      DeadFunctions.push_back(&F);         // Keep track of dead globals
      if (!F.isDeclaration())
        F.deleteBody();
    }

  // The third pass drops targets of aliases which are dead...
  std::vector<GlobalAlias*> DeadAliases;
  for (GlobalAlias &GA : M.aliases())
    if (!AliveGlobals.count(&GA)) {
      DeadAliases.push_back(&GA);
      GA.setAliasee(nullptr);
    }

  // The fourth pass drops targets of ifuncs which are dead...
  std::vector<GlobalIFunc*> DeadIFuncs;
  for (GlobalIFunc &GIF : M.ifuncs())
    if (!AliveGlobals.count(&GIF)) {
      DeadIFuncs.push_back(&GIF);
      GIF.setResolver(nullptr);
    }

  // Now that all interferences have been dropped, delete the actual objects
  // themselves.
  auto EraseUnusedGlobalValue = [&](GlobalValue *GV) {
    RemoveUnusedGlobalValue(*GV);
    GV->eraseFromParent();
    Changed = true;
  };

  NumFunctions += DeadFunctions.size();
  for (Function *F : DeadFunctions) {
    if (!F->use_empty()) {
      // Virtual functions might still be referenced by one or more vtables,
      // but if we've proven them to be unused then it's safe to replace the
      // virtual function pointers with null, allowing us to remove the
      // function itself.
      ++NumVFuncs;
      F->replaceNonMetadataUsesWith(ConstantPointerNull::get(F->getType()));
    }
    EraseUnusedGlobalValue(F);
  }

  NumVariables += DeadGlobalVars.size();
  for (GlobalVariable *GV : DeadGlobalVars)
    EraseUnusedGlobalValue(GV);

  NumAliases += DeadAliases.size();
  for (GlobalAlias *GA : DeadAliases)
    EraseUnusedGlobalValue(GA);

  NumIFuncs += DeadIFuncs.size();
  for (GlobalIFunc *GIF : DeadIFuncs)
    EraseUnusedGlobalValue(GIF);

  // Make sure that all memory is released
  AliveGlobals.clear();
  ConstantDependenciesCache.clear();
  GVDependencies.clear();
  ComdatMembers.clear();
  TypeIdMap.clear();
  VFESafeVTables.clear();

  if (Changed)
    return PreservedAnalyses::none();
  return PreservedAnalyses::all();
}

// RemoveUnusedGlobalValue - Loop over all of the uses of the specified
// GlobalValue, looking for the constant pointer ref that may be pointing to it.
// If found, check to see if the constant pointer ref is safe to destroy, and if
// so, nuke it.  This will reduce the reference count on the global value, which
// might make it deader.
//
bool GlobalDCEPass::RemoveUnusedGlobalValue(GlobalValue &GV) {
  if (GV.use_empty())
    return false;
  GV.removeDeadConstantUsers();
  return GV.use_empty();
}