reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
//===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains small standalone helper functions and enum definitions for
// the X86 target useful for the compiler back-end and the MC libraries.
// As such, it deliberately does not include references to LLVM core
// code gen types, passes, etc..
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
#define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H

#include "X86MCTargetDesc.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/ErrorHandling.h"

namespace llvm {

namespace X86 {
  // Enums for memory operand decoding.  Each memory operand is represented with
  // a 5 operand sequence in the form:
  //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
  // These enums help decode this.
  enum {
    AddrBaseReg = 0,
    AddrScaleAmt = 1,
    AddrIndexReg = 2,
    AddrDisp = 3,

    /// AddrSegmentReg - The operand # of the segment in the memory operand.
    AddrSegmentReg = 4,

    /// AddrNumOperands - Total number of operands in a memory reference.
    AddrNumOperands = 5
  };

  /// AVX512 static rounding constants.  These need to match the values in
  /// avx512fintrin.h.
  enum STATIC_ROUNDING {
    TO_NEAREST_INT = 0,
    TO_NEG_INF = 1,
    TO_POS_INF = 2,
    TO_ZERO = 3,
    CUR_DIRECTION = 4,
    NO_EXC = 8
  };

  /// The constants to describe instr prefixes if there are
  enum IPREFIXES {
    IP_NO_PREFIX = 0,
    IP_HAS_OP_SIZE = 1,
    IP_HAS_AD_SIZE = 2,
    IP_HAS_REPEAT_NE = 4,
    IP_HAS_REPEAT = 8,
    IP_HAS_LOCK = 16,
    IP_HAS_NOTRACK = 32,
    IP_USE_VEX3 = 64,
  };

  enum OperandType : unsigned {
    /// AVX512 embedded rounding control. This should only have values 0-3.
    OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET,
    OPERAND_COND_CODE,
  };

  // X86 specific condition code. These correspond to X86_*_COND in
  // X86InstrInfo.td. They must be kept in synch.
  enum CondCode {
    COND_O = 0,
    COND_NO = 1,
    COND_B = 2,
    COND_AE = 3,
    COND_E = 4,
    COND_NE = 5,
    COND_BE = 6,
    COND_A = 7,
    COND_S = 8,
    COND_NS = 9,
    COND_P = 10,
    COND_NP = 11,
    COND_L = 12,
    COND_GE = 13,
    COND_LE = 14,
    COND_G = 15,
    LAST_VALID_COND = COND_G,

    // Artificial condition codes. These are used by AnalyzeBranch
    // to indicate a block terminated with two conditional branches that together
    // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
    // which can't be represented on x86 with a single condition. These
    // are never used in MachineInstrs and are inverses of one another.
    COND_NE_OR_P,
    COND_E_AND_NP,

    COND_INVALID
  };
} // end namespace X86;

/// X86II - This namespace holds all of the target specific flags that
/// instruction info tracks.
///
namespace X86II {
  /// Target Operand Flag enum.
  enum TOF {
    //===------------------------------------------------------------------===//
    // X86 Specific MachineOperand flags.

    MO_NO_FLAG,

    /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
    /// relocation of:
    ///    SYMBOL_LABEL + [. - PICBASELABEL]
    MO_GOT_ABSOLUTE_ADDRESS,

    /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
    /// immediate should get the value of the symbol minus the PIC base label:
    ///    SYMBOL_LABEL - PICBASELABEL
    MO_PIC_BASE_OFFSET,

    /// MO_GOT - On a symbol operand this indicates that the immediate is the
    /// offset to the GOT entry for the symbol name from the base of the GOT.
    ///
    /// See the X86-64 ELF ABI supplement for more details.
    ///    SYMBOL_LABEL @GOT
    MO_GOT,

    /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
    /// the offset to the location of the symbol name from the base of the GOT.
    ///
    /// See the X86-64 ELF ABI supplement for more details.
    ///    SYMBOL_LABEL @GOTOFF
    MO_GOTOFF,

    /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
    /// offset to the GOT entry for the symbol name from the current code
    /// location.
    ///
    /// See the X86-64 ELF ABI supplement for more details.
    ///    SYMBOL_LABEL @GOTPCREL
    MO_GOTPCREL,

    /// MO_PLT - On a symbol operand this indicates that the immediate is
    /// offset to the PLT entry of symbol name from the current code location.
    ///
    /// See the X86-64 ELF ABI supplement for more details.
    ///    SYMBOL_LABEL @PLT
    MO_PLT,

    /// MO_TLSGD - On a symbol operand this indicates that the immediate is
    /// the offset of the GOT entry with the TLS index structure that contains
    /// the module number and variable offset for the symbol. Used in the
    /// general dynamic TLS access model.
    ///
    /// See 'ELF Handling for Thread-Local Storage' for more details.
    ///    SYMBOL_LABEL @TLSGD
    MO_TLSGD,

    /// MO_TLSLD - On a symbol operand this indicates that the immediate is
    /// the offset of the GOT entry with the TLS index for the module that
    /// contains the symbol. When this index is passed to a call to
    /// __tls_get_addr, the function will return the base address of the TLS
    /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
    ///
    /// See 'ELF Handling for Thread-Local Storage' for more details.
    ///    SYMBOL_LABEL @TLSLD
    MO_TLSLD,

    /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
    /// the offset of the GOT entry with the TLS index for the module that
    /// contains the symbol. When this index is passed to a call to
    /// ___tls_get_addr, the function will return the base address of the TLS
    /// block for the symbol. Used in the IA32 local dynamic TLS access model.
    ///
    /// See 'ELF Handling for Thread-Local Storage' for more details.
    ///    SYMBOL_LABEL @TLSLDM
    MO_TLSLDM,

    /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
    /// the offset of the GOT entry with the thread-pointer offset for the
    /// symbol. Used in the x86-64 initial exec TLS access model.
    ///
    /// See 'ELF Handling for Thread-Local Storage' for more details.
    ///    SYMBOL_LABEL @GOTTPOFF
    MO_GOTTPOFF,

    /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
    /// the absolute address of the GOT entry with the negative thread-pointer
    /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
    /// model.
    ///
    /// See 'ELF Handling for Thread-Local Storage' for more details.
    ///    SYMBOL_LABEL @INDNTPOFF
    MO_INDNTPOFF,

    /// MO_TPOFF - On a symbol operand this indicates that the immediate is
    /// the thread-pointer offset for the symbol. Used in the x86-64 local
    /// exec TLS access model.
    ///
    /// See 'ELF Handling for Thread-Local Storage' for more details.
    ///    SYMBOL_LABEL @TPOFF
    MO_TPOFF,

    /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
    /// the offset of the GOT entry with the TLS offset of the symbol. Used
    /// in the local dynamic TLS access model.
    ///
    /// See 'ELF Handling for Thread-Local Storage' for more details.
    ///    SYMBOL_LABEL @DTPOFF
    MO_DTPOFF,

    /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
    /// the negative thread-pointer offset for the symbol. Used in the IA32
    /// local exec TLS access model.
    ///
    /// See 'ELF Handling for Thread-Local Storage' for more details.
    ///    SYMBOL_LABEL @NTPOFF
    MO_NTPOFF,

    /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
    /// the offset of the GOT entry with the negative thread-pointer offset for
    /// the symbol. Used in the PIC IA32 initial exec TLS access model.
    ///
    /// See 'ELF Handling for Thread-Local Storage' for more details.
    ///    SYMBOL_LABEL @GOTNTPOFF
    MO_GOTNTPOFF,

    /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
    /// reference is actually to the "__imp_FOO" symbol.  This is used for
    /// dllimport linkage on windows.
    MO_DLLIMPORT,

    /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
    /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
    /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
    MO_DARWIN_NONLAZY,

    /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
    /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
    /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
    MO_DARWIN_NONLAZY_PIC_BASE,

    /// MO_TLVP - On a symbol operand this indicates that the immediate is
    /// some TLS offset.
    ///
    /// This is the TLS offset for the Darwin TLS mechanism.
    MO_TLVP,

    /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
    /// is some TLS offset from the picbase.
    ///
    /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
    MO_TLVP_PIC_BASE,

    /// MO_SECREL - On a symbol operand this indicates that the immediate is
    /// the offset from beginning of section.
    ///
    /// This is the TLS offset for the COFF/Windows TLS mechanism.
    MO_SECREL,

    /// MO_ABS8 - On a symbol operand this indicates that the symbol is known
    /// to be an absolute symbol in range [0,128), so we can use the @ABS8
    /// symbol modifier.
    MO_ABS8,

    /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the
    /// reference is actually to the ".refptr.FOO" symbol.  This is used for
    /// stub symbols on windows.
    MO_COFFSTUB,
  };

  enum : uint64_t {
    //===------------------------------------------------------------------===//
    // Instruction encodings.  These are the standard/most common forms for X86
    // instructions.
    //

    // PseudoFrm - This represents an instruction that is a pseudo instruction
    // or one that has not been implemented yet.  It is illegal to code generate
    // it, but tolerated for intermediate implementation stages.
    Pseudo         = 0,

    /// Raw - This form is for instructions that don't have any operands, so
    /// they are just a fixed opcode value, like 'leave'.
    RawFrm         = 1,

    /// AddRegFrm - This form is used for instructions like 'push r32' that have
    /// their one register operand added to their opcode.
    AddRegFrm      = 2,

    /// RawFrmMemOffs - This form is for instructions that store an absolute
    /// memory offset as an immediate with a possible segment override.
    RawFrmMemOffs  = 3,

    /// RawFrmSrc - This form is for instructions that use the source index
    /// register SI/ESI/RSI with a possible segment override.
    RawFrmSrc      = 4,

    /// RawFrmDst - This form is for instructions that use the destination index
    /// register DI/EDI/RDI.
    RawFrmDst      = 5,

    /// RawFrmDstSrc - This form is for instructions that use the source index
    /// register SI/ESI/RSI with a possible segment override, and also the
    /// destination index register DI/EDI/RDI.
    RawFrmDstSrc   = 6,

    /// RawFrmImm8 - This is used for the ENTER instruction, which has two
    /// immediates, the first of which is a 16-bit immediate (specified by
    /// the imm encoding) and the second is a 8-bit fixed value.
    RawFrmImm8 = 7,

    /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
    /// immediates, the first of which is a 16 or 32-bit immediate (specified by
    /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
    /// manual, this operand is described as pntr16:32 and pntr16:16
    RawFrmImm16 = 8,

    /// AddCCFrm - This form is used for Jcc that encode the condition code
    /// in the lower 4 bits of the opcode.
    AddCCFrm = 9,

    /// MRM[0-7][rm] - These forms are used to represent instructions that use
    /// a Mod/RM byte, and use the middle field to hold extended opcode
    /// information.  In the intel manual these are represented as /0, /1, ...
    ///

    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
    /// to specify a destination, which in this case is memory.
    ///
    MRMDestMem     = 32,

    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
    /// to specify a source, which in this case is memory.
    ///
    MRMSrcMem      = 33,

    /// MRMSrcMem4VOp3 - This form is used for instructions that encode
    /// operand 3 with VEX.VVVV and load from memory.
    ///
    MRMSrcMem4VOp3 = 34,

    /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
    /// byte to specify the fourth source, which in this case is memory.
    ///
    MRMSrcMemOp4   = 35,

    /// MRMSrcMemCC - This form is used for instructions that use the Mod/RM
    /// byte to specify the operands and also encodes a condition code.
    ///
    MRMSrcMemCC    = 36,

    /// MRMXm - This form is used for instructions that use the Mod/RM byte
    /// to specify a memory source, but doesn't use the middle field. And has
    /// a condition code.
    ///
    MRMXmCC = 38,

    /// MRMXm - This form is used for instructions that use the Mod/RM byte
    /// to specify a memory source, but doesn't use the middle field.
    ///
    MRMXm = 39,

    // Next, instructions that operate on a memory r/m operand...
    MRM0m = 40,  MRM1m = 41,  MRM2m = 42,  MRM3m = 43, // Format /0 /1 /2 /3
    MRM4m = 44,  MRM5m = 45,  MRM6m = 46,  MRM7m = 47, // Format /4 /5 /6 /7

    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
    /// to specify a destination, which in this case is a register.
    ///
    MRMDestReg     = 48,

    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
    /// to specify a source, which in this case is a register.
    ///
    MRMSrcReg      = 49,

    /// MRMSrcReg4VOp3 - This form is used for instructions that encode
    /// operand 3 with VEX.VVVV and do not load from memory.
    ///
    MRMSrcReg4VOp3 = 50,

    /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
    /// byte to specify the fourth source, which in this case is a register.
    ///
    MRMSrcRegOp4   = 51,

    /// MRMSrcRegCC - This form is used for instructions that use the Mod/RM
    /// byte to specify the operands and also encodes a condition code
    ///
    MRMSrcRegCC    = 52,

    /// MRMXCCr - This form is used for instructions that use the Mod/RM byte
    /// to specify a register source, but doesn't use the middle field. And has
    /// a condition code.
    ///
    MRMXrCC = 54,

    /// MRMXr - This form is used for instructions that use the Mod/RM byte
    /// to specify a register source, but doesn't use the middle field.
    ///
    MRMXr = 55,

    // Instructions that operate on a register r/m operand...
    MRM0r = 56,  MRM1r = 57,  MRM2r = 58,  MRM3r = 59, // Format /0 /1 /2 /3
    MRM4r = 60,  MRM5r = 61,  MRM6r = 62,  MRM7r = 63, // Format /4 /5 /6 /7

    /// MRM_XX - A mod/rm byte of exactly 0xXX.
    MRM_C0 = 64,  MRM_C1 = 65,  MRM_C2 = 66,  MRM_C3 = 67,
    MRM_C4 = 68,  MRM_C5 = 69,  MRM_C6 = 70,  MRM_C7 = 71,
    MRM_C8 = 72,  MRM_C9 = 73,  MRM_CA = 74,  MRM_CB = 75,
    MRM_CC = 76,  MRM_CD = 77,  MRM_CE = 78,  MRM_CF = 79,
    MRM_D0 = 80,  MRM_D1 = 81,  MRM_D2 = 82,  MRM_D3 = 83,
    MRM_D4 = 84,  MRM_D5 = 85,  MRM_D6 = 86,  MRM_D7 = 87,
    MRM_D8 = 88,  MRM_D9 = 89,  MRM_DA = 90,  MRM_DB = 91,
    MRM_DC = 92,  MRM_DD = 93,  MRM_DE = 94,  MRM_DF = 95,
    MRM_E0 = 96,  MRM_E1 = 97,  MRM_E2 = 98,  MRM_E3 = 99,
    MRM_E4 = 100, MRM_E5 = 101, MRM_E6 = 102, MRM_E7 = 103,
    MRM_E8 = 104, MRM_E9 = 105, MRM_EA = 106, MRM_EB = 107,
    MRM_EC = 108, MRM_ED = 109, MRM_EE = 110, MRM_EF = 111,
    MRM_F0 = 112, MRM_F1 = 113, MRM_F2 = 114, MRM_F3 = 115,
    MRM_F4 = 116, MRM_F5 = 117, MRM_F6 = 118, MRM_F7 = 119,
    MRM_F8 = 120, MRM_F9 = 121, MRM_FA = 122, MRM_FB = 123,
    MRM_FC = 124, MRM_FD = 125, MRM_FE = 126, MRM_FF = 127,

    FormMask       = 127,

    //===------------------------------------------------------------------===//
    // Actual flags...

    // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
    // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
    // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
    // prefix in 16-bit mode.
    OpSizeShift = 7,
    OpSizeMask = 0x3 << OpSizeShift,

    OpSizeFixed  = 0 << OpSizeShift,
    OpSize16     = 1 << OpSizeShift,
    OpSize32     = 2 << OpSizeShift,

    // AsSize - AdSizeX implies this instruction determines its need of 0x67
    // prefix from a normal ModRM memory operand. The other types indicate that
    // an operand is encoded with a specific width and a prefix is needed if
    // it differs from the current mode.
    AdSizeShift = OpSizeShift + 2,
    AdSizeMask  = 0x3 << AdSizeShift,

    AdSizeX  = 0 << AdSizeShift,
    AdSize16 = 1 << AdSizeShift,
    AdSize32 = 2 << AdSizeShift,
    AdSize64 = 3 << AdSizeShift,

    //===------------------------------------------------------------------===//
    // OpPrefix - There are several prefix bytes that are used as opcode
    // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
    // no prefix.
    //
    OpPrefixShift = AdSizeShift + 2,
    OpPrefixMask  = 0x3 << OpPrefixShift,

    // PD - Prefix code for packed double precision vector floating point
    // operations performed in the SSE registers.
    PD = 1 << OpPrefixShift,

    // XS, XD - These prefix codes are for single and double precision scalar
    // floating point operations performed in the SSE registers.
    XS = 2 << OpPrefixShift,  XD = 3 << OpPrefixShift,

    //===------------------------------------------------------------------===//
    // OpMap - This field determines which opcode map this instruction
    // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
    //
    OpMapShift = OpPrefixShift + 2,
    OpMapMask  = 0x7 << OpMapShift,

    // OB - OneByte - Set if this instruction has a one byte opcode.
    OB = 0 << OpMapShift,

    // TB - TwoByte - Set if this instruction has a two byte opcode, which
    // starts with a 0x0F byte before the real opcode.
    TB = 1 << OpMapShift,

    // T8, TA - Prefix after the 0x0F prefix.
    T8 = 2 << OpMapShift,  TA = 3 << OpMapShift,

    // XOP8 - Prefix to include use of imm byte.
    XOP8 = 4 << OpMapShift,

    // XOP9 - Prefix to exclude use of imm byte.
    XOP9 = 5 << OpMapShift,

    // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
    XOPA = 6 << OpMapShift,

    /// ThreeDNow - This indicates that the instruction uses the
    /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
    /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
    /// storing a classifier in the imm8 field.  To simplify our implementation,
    /// we handle this by storeing the classifier in the opcode field and using
    /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
    ThreeDNow = 7 << OpMapShift,

    //===------------------------------------------------------------------===//
    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
    // They are used to specify GPRs and SSE registers, 64-bit operand size,
    // etc. We only cares about REX.W and REX.R bits and only the former is
    // statically determined.
    //
    REXShift    = OpMapShift + 3,
    REX_W       = 1 << REXShift,

    //===------------------------------------------------------------------===//
    // This three-bit field describes the size of an immediate operand.  Zero is
    // unused so that we can tell if we forgot to set a value.
    ImmShift = REXShift + 1,
    ImmMask    = 15 << ImmShift,
    Imm8       = 1 << ImmShift,
    Imm8PCRel  = 2 << ImmShift,
    Imm8Reg    = 3 << ImmShift,
    Imm16      = 4 << ImmShift,
    Imm16PCRel = 5 << ImmShift,
    Imm32      = 6 << ImmShift,
    Imm32PCRel = 7 << ImmShift,
    Imm32S     = 8 << ImmShift,
    Imm64      = 9 << ImmShift,

    //===------------------------------------------------------------------===//
    // FP Instruction Classification...  Zero is non-fp instruction.

    // FPTypeMask - Mask for all of the FP types...
    FPTypeShift = ImmShift + 4,
    FPTypeMask  = 7 << FPTypeShift,

    // NotFP - The default, set for instructions that do not use FP registers.
    NotFP      = 0 << FPTypeShift,

    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
    ZeroArgFP  = 1 << FPTypeShift,

    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
    OneArgFP   = 2 << FPTypeShift,

    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
    // result back to ST(0).  For example, fcos, fsqrt, etc.
    //
    OneArgFPRW = 3 << FPTypeShift,

    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
    // explicit argument, storing the result to either ST(0) or the implicit
    // argument.  For example: fadd, fsub, fmul, etc...
    TwoArgFP   = 4 << FPTypeShift,

    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
    CompareFP  = 5 << FPTypeShift,

    // CondMovFP - "2 operand" floating point conditional move instructions.
    CondMovFP  = 6 << FPTypeShift,

    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
    SpecialFP  = 7 << FPTypeShift,

    // Lock prefix
    LOCKShift = FPTypeShift + 3,
    LOCK = 1 << LOCKShift,

    // REP prefix
    REPShift = LOCKShift + 1,
    REP = 1 << REPShift,

    // Execution domain for SSE instructions.
    // 0 means normal, non-SSE instruction.
    SSEDomainShift = REPShift + 1,

    // Encoding
    EncodingShift = SSEDomainShift + 2,
    EncodingMask = 0x3 << EncodingShift,

    // VEX - encoding using 0xC4/0xC5
    VEX = 1 << EncodingShift,

    /// XOP - Opcode prefix used by XOP instructions.
    XOP = 2 << EncodingShift,

    // VEX_EVEX - Specifies that this instruction use EVEX form which provides
    // syntax support up to 32 512-bit register operands and up to 7 16-bit
    // mask operands as well as source operand data swizzling/memory operand
    // conversion, eviction hint, and rounding mode.
    EVEX = 3 << EncodingShift,

    // Opcode
    OpcodeShift   = EncodingShift + 2,

    /// VEX_W - Has a opcode specific functionality, but is used in the same
    /// way as REX_W is for regular SSE instructions.
    VEX_WShift  = OpcodeShift + 8,
    VEX_W       = 1ULL << VEX_WShift,

    /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
    /// address instructions in SSE are represented as 3 address ones in AVX
    /// and the additional register is encoded in VEX_VVVV prefix.
    VEX_4VShift = VEX_WShift + 1,
    VEX_4V      = 1ULL << VEX_4VShift,

    /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
    /// instruction uses 256-bit wide registers. This is usually auto detected
    /// if a VR256 register is used, but some AVX instructions also have this
    /// field marked when using a f256 memory references.
    VEX_LShift = VEX_4VShift + 1,
    VEX_L       = 1ULL << VEX_LShift,

    // EVEX_K - Set if this instruction requires masking
    EVEX_KShift = VEX_LShift + 1,
    EVEX_K      = 1ULL << EVEX_KShift,

    // EVEX_Z - Set if this instruction has EVEX.Z field set.
    EVEX_ZShift = EVEX_KShift + 1,
    EVEX_Z      = 1ULL << EVEX_ZShift,

    // EVEX_L2 - Set if this instruction has EVEX.L' field set.
    EVEX_L2Shift = EVEX_ZShift + 1,
    EVEX_L2     = 1ULL << EVEX_L2Shift,

    // EVEX_B - Set if this instruction has EVEX.B field set.
    EVEX_BShift = EVEX_L2Shift + 1,
    EVEX_B      = 1ULL << EVEX_BShift,

    // The scaling factor for the AVX512's 8-bit compressed displacement.
    CD8_Scale_Shift = EVEX_BShift + 1,
    CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,

    /// Explicitly specified rounding control
    EVEX_RCShift = CD8_Scale_Shift + 7,
    EVEX_RC = 1ULL << EVEX_RCShift,

    // NOTRACK prefix
    NoTrackShift = EVEX_RCShift + 1,
    NOTRACK = 1ULL << NoTrackShift
  };

  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
  // specified machine instruction.
  //
  inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) {
    return TSFlags >> X86II::OpcodeShift;
  }

  inline bool hasImm(uint64_t TSFlags) {
    return (TSFlags & X86II::ImmMask) != 0;
  }

  /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
  /// of the specified instruction.
  inline unsigned getSizeOfImm(uint64_t TSFlags) {
    switch (TSFlags & X86II::ImmMask) {
    default: llvm_unreachable("Unknown immediate size");
    case X86II::Imm8:
    case X86II::Imm8PCRel:
    case X86II::Imm8Reg:    return 1;
    case X86II::Imm16:
    case X86II::Imm16PCRel: return 2;
    case X86II::Imm32:
    case X86II::Imm32S:
    case X86II::Imm32PCRel: return 4;
    case X86II::Imm64:      return 8;
    }
  }

  /// isImmPCRel - Return true if the immediate of the specified instruction's
  /// TSFlags indicates that it is pc relative.
  inline unsigned isImmPCRel(uint64_t TSFlags) {
    switch (TSFlags & X86II::ImmMask) {
    default: llvm_unreachable("Unknown immediate size");
    case X86II::Imm8PCRel:
    case X86II::Imm16PCRel:
    case X86II::Imm32PCRel:
      return true;
    case X86II::Imm8:
    case X86II::Imm8Reg:
    case X86II::Imm16:
    case X86II::Imm32:
    case X86II::Imm32S:
    case X86II::Imm64:
      return false;
    }
  }

  /// isImmSigned - Return true if the immediate of the specified instruction's
  /// TSFlags indicates that it is signed.
  inline unsigned isImmSigned(uint64_t TSFlags) {
    switch (TSFlags & X86II::ImmMask) {
    default: llvm_unreachable("Unknown immediate signedness");
    case X86II::Imm32S:
      return true;
    case X86II::Imm8:
    case X86II::Imm8PCRel:
    case X86II::Imm8Reg:
    case X86II::Imm16:
    case X86II::Imm16PCRel:
    case X86II::Imm32:
    case X86II::Imm32PCRel:
    case X86II::Imm64:
      return false;
    }
  }

  /// getOperandBias - compute whether all of the def operands are repeated
  ///                  in the uses and therefore should be skipped.
  /// This determines the start of the unique operand list. We need to determine
  /// if all of the defs have a corresponding tied operand in the uses.
  /// Unfortunately, the tied operand information is encoded in the uses not
  /// the defs so we have to use some heuristics to find which operands to
  /// query.
  inline unsigned getOperandBias(const MCInstrDesc& Desc) {
    unsigned NumDefs = Desc.getNumDefs();
    unsigned NumOps = Desc.getNumOperands();
    switch (NumDefs) {
    default: llvm_unreachable("Unexpected number of defs");
    case 0:
      return 0;
    case 1:
      // Common two addr case.
      if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
        return 1;
      // Check for AVX-512 scatter which has a TIED_TO in the second to last
      // operand.
      if (NumOps == 8 &&
          Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0)
        return 1;
      return 0;
    case 2:
      // XCHG/XADD have two destinations and two sources.
      if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
          Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
        return 2;
      // Check for gather. AVX-512 has the second tied operand early. AVX2
      // has it as the last op.
      if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
          (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 ||
           Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1))
        return 2;
      return 0;
    }
  }

  /// getMemoryOperandNo - The function returns the MCInst operand # for the
  /// first field of the memory operand.  If the instruction doesn't have a
  /// memory operand, this returns -1.
  ///
  /// Note that this ignores tied operands.  If there is a tied register which
  /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
  /// counted as one operand.
  ///
  inline int getMemoryOperandNo(uint64_t TSFlags) {
    bool HasVEX_4V = TSFlags & X86II::VEX_4V;
    bool HasEVEX_K = TSFlags & X86II::EVEX_K;

    switch (TSFlags & X86II::FormMask) {
    default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
    case X86II::Pseudo:
    case X86II::RawFrm:
    case X86II::AddRegFrm:
    case X86II::RawFrmImm8:
    case X86II::RawFrmImm16:
    case X86II::RawFrmMemOffs:
    case X86II::RawFrmSrc:
    case X86II::RawFrmDst:
    case X86II::RawFrmDstSrc:
    case X86II::AddCCFrm:
      return -1;
    case X86II::MRMDestMem:
      return 0;
    case X86II::MRMSrcMem:
      // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
      // mask register.
      return 1 + HasVEX_4V + HasEVEX_K;
    case X86II::MRMSrcMem4VOp3:
      // Skip registers encoded in reg.
      return 1 + HasEVEX_K;
    case X86II::MRMSrcMemOp4:
      // Skip registers encoded in reg, VEX_VVVV, and I8IMM.
      return 3;
    case X86II::MRMSrcMemCC:
      // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
      // mask register.
      return 1;
    case X86II::MRMDestReg:
    case X86II::MRMSrcReg:
    case X86II::MRMSrcReg4VOp3:
    case X86II::MRMSrcRegOp4:
    case X86II::MRMSrcRegCC:
    case X86II::MRMXrCC:
    case X86II::MRMXr:
    case X86II::MRM0r: case X86II::MRM1r:
    case X86II::MRM2r: case X86II::MRM3r:
    case X86II::MRM4r: case X86II::MRM5r:
    case X86II::MRM6r: case X86II::MRM7r:
      return -1;
    case X86II::MRMXmCC:
    case X86II::MRMXm:
    case X86II::MRM0m: case X86II::MRM1m:
    case X86II::MRM2m: case X86II::MRM3m:
    case X86II::MRM4m: case X86II::MRM5m:
    case X86II::MRM6m: case X86II::MRM7m:
      // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
      return 0 + HasVEX_4V + HasEVEX_K;
    case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
    case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
    case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
    case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
    case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
    case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
    case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
    case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
    case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
    case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
    case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
    case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
    case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
    case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
    case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
    case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
    case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
    case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
    case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
    case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
    case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
    case X86II::MRM_FF:
      return -1;
    }
  }

  /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
  /// higher) register?  e.g. r8, xmm8, xmm13, etc.
  inline bool isX86_64ExtendedReg(unsigned RegNo) {
    if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM31) ||
        (RegNo >= X86::YMM8 && RegNo <= X86::YMM31) ||
        (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31))
      return true;

    switch (RegNo) {
    default: break;
    case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
    case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
    case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
    case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
    case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
    case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
    case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
    case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
    case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
    case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
    case X86::DR8:   case X86::DR9:   case X86::DR10:  case X86::DR11:
    case X86::DR12:  case X86::DR13:  case X86::DR14:  case X86::DR15:
      return true;
    }
    return false;
  }

  /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher)
  /// registers? e.g. zmm21, etc.
  static inline bool is32ExtendedReg(unsigned RegNo) {
    return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
            (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
            (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
  }


  inline bool isX86_64NonExtLowByteReg(unsigned reg) {
    return (reg == X86::SPL || reg == X86::BPL ||
            reg == X86::SIL || reg == X86::DIL);
  }

  /// isKMasked - Is this a masked instruction.
  inline bool isKMasked(uint64_t TSFlags) {
    return (TSFlags & X86II::EVEX_K) != 0;
  }

  /// isKMergedMasked - Is this a merge masked instruction.
  inline bool isKMergeMasked(uint64_t TSFlags) {
    return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
  }
}

} // end namespace llvm;

#endif