reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
//===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is part of the X86 Disassembler.
// It contains code to translate the data produced by the decoder into
//  MCInsts.
//
//
// The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
// 64-bit X86 instruction sets.  The main decode sequence for an assembly
// instruction in this disassembler is:
//
// 1. Read the prefix bytes and determine the attributes of the instruction.
//    These attributes, recorded in enum attributeBits
//    (X86DisassemblerDecoderCommon.h), form a bitmask.  The table CONTEXTS_SYM
//    provides a mapping from bitmasks to contexts, which are represented by
//    enum InstructionContext (ibid.).
//
// 2. Read the opcode, and determine what kind of opcode it is.  The
//    disassembler distinguishes four kinds of opcodes, which are enumerated in
//    OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
//    (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
//    (0x0f 0x3a 0xnn).  Mandatory prefixes are treated as part of the context.
//
// 3. Depending on the opcode type, look in one of four ClassDecision structures
//    (X86DisassemblerDecoderCommon.h).  Use the opcode class to determine which
//    OpcodeDecision (ibid.) to look the opcode in.  Look up the opcode, to get
//    a ModRMDecision (ibid.).
//
// 4. Some instructions, such as escape opcodes or extended opcodes, or even
//    instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
//    ModR/M byte to complete decode.  The ModRMDecision's type is an entry from
//    ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
//    ModR/M byte is required and how to interpret it.
//
// 5. After resolving the ModRMDecision, the disassembler has a unique ID
//    of type InstrUID (X86DisassemblerDecoderCommon.h).  Looking this ID up in
//    INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
//    meanings of its operands.
//
// 6. For each operand, its encoding is an entry from OperandEncoding
//    (X86DisassemblerDecoderCommon.h) and its type is an entry from
//    OperandType (ibid.).  The encoding indicates how to read it from the
//    instruction; the type indicates how to interpret the value once it has
//    been read.  For example, a register operand could be stored in the R/M
//    field of the ModR/M byte, the REG field of the ModR/M byte, or added to
//    the main opcode.  This is orthogonal from its meaning (an GPR or an XMM
//    register, for instance).  Given this information, the operands can be
//    extracted and interpreted.
//
// 7. As the last step, the disassembler translates the instruction information
//    and operands into a format understandable by the client - in this case, an
//    MCInst for use by the MC infrastructure.
//
// The disassembler is broken broadly into two parts: the table emitter that
// emits the instruction decode tables discussed above during compilation, and
// the disassembler itself.  The table emitter is documented in more detail in
// utils/TableGen/X86DisassemblerEmitter.h.
//
// X86Disassembler.cpp contains the code responsible for step 7, and for
//   invoking the decoder to execute steps 1-6.
// X86DisassemblerDecoderCommon.h contains the definitions needed by both the
//   table emitter and the disassembler.
// X86DisassemblerDecoder.h contains the public interface of the decoder,
//   factored out into C for possible use by other projects.
// X86DisassemblerDecoder.c contains the source code of the decoder, which is
//   responsible for steps 1-6.
//
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86MCTargetDesc.h"
#include "TargetInfo/X86TargetInfo.h"
#include "X86DisassemblerDecoder.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;
using namespace llvm::X86Disassembler;

#define DEBUG_TYPE "x86-disassembler"

void llvm::X86Disassembler::Debug(const char *file, unsigned line,
                                  const char *s) {
  dbgs() << file << ":" << line << ": " << s;
}

StringRef llvm::X86Disassembler::GetInstrName(unsigned Opcode,
                                                const void *mii) {
  const MCInstrInfo *MII = static_cast<const MCInstrInfo *>(mii);
  return MII->getName(Opcode);
}

#define debug(s) LLVM_DEBUG(Debug(__FILE__, __LINE__, s));

namespace llvm {

// Fill-ins to make the compiler happy.  These constants are never actually
//   assigned; they are just filler to make an automatically-generated switch
//   statement work.
namespace X86 {
  enum {
    BX_SI = 500,
    BX_DI = 501,
    BP_SI = 502,
    BP_DI = 503,
    sib   = 504,
    sib64 = 505
  };
}

}

static bool translateInstruction(MCInst &target,
                                InternalInstruction &source,
                                const MCDisassembler *Dis);

namespace {

/// Generic disassembler for all X86 platforms. All each platform class should
/// have to do is subclass the constructor, and provide a different
/// disassemblerMode value.
class X86GenericDisassembler : public MCDisassembler {
  std::unique_ptr<const MCInstrInfo> MII;
public:
  X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
                         std::unique_ptr<const MCInstrInfo> MII);
public:
  DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
                              ArrayRef<uint8_t> Bytes, uint64_t Address,
                              raw_ostream &vStream,
                              raw_ostream &cStream) const override;

private:
  DisassemblerMode              fMode;
};

}

X86GenericDisassembler::X86GenericDisassembler(
                                         const MCSubtargetInfo &STI,
                                         MCContext &Ctx,
                                         std::unique_ptr<const MCInstrInfo> MII)
  : MCDisassembler(STI, Ctx), MII(std::move(MII)) {
  const FeatureBitset &FB = STI.getFeatureBits();
  if (FB[X86::Mode16Bit]) {
    fMode = MODE_16BIT;
    return;
  } else if (FB[X86::Mode32Bit]) {
    fMode = MODE_32BIT;
    return;
  } else if (FB[X86::Mode64Bit]) {
    fMode = MODE_64BIT;
    return;
  }

  llvm_unreachable("Invalid CPU mode");
}

namespace {
struct Region {
  ArrayRef<uint8_t> Bytes;
  uint64_t Base;
  Region(ArrayRef<uint8_t> Bytes, uint64_t Base) : Bytes(Bytes), Base(Base) {}
};
} // end anonymous namespace

/// A callback function that wraps the readByte method from Region.
///
/// @param Arg      - The generic callback parameter.  In this case, this should
///                   be a pointer to a Region.
/// @param Byte     - A pointer to the byte to be read.
/// @param Address  - The address to be read.
static int regionReader(const void *Arg, uint8_t *Byte, uint64_t Address) {
  auto *R = static_cast<const Region *>(Arg);
  ArrayRef<uint8_t> Bytes = R->Bytes;
  unsigned Index = Address - R->Base;
  if (Bytes.size() <= Index)
    return -1;
  *Byte = Bytes[Index];
  return 0;
}

/// logger - a callback function that wraps the operator<< method from
///   raw_ostream.
///
/// @param arg      - The generic callback parameter.  This should be a pointe
///                   to a raw_ostream.
/// @param log      - A string to be logged.  logger() adds a newline.
static void logger(void* arg, const char* log) {
  if (!arg)
    return;

  raw_ostream &vStream = *(static_cast<raw_ostream*>(arg));
  vStream << log << "\n";
}

//
// Public interface for the disassembler
//

MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
    MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address,
    raw_ostream &VStream, raw_ostream &CStream) const {
  CommentStream = &CStream;

  InternalInstruction InternalInstr;

  dlog_t LoggerFn = logger;
  if (&VStream == &nulls())
    LoggerFn = nullptr; // Disable logging completely if it's going to nulls().

  Region R(Bytes, Address);

  int Ret = decodeInstruction(&InternalInstr, regionReader, (const void *)&R,
                              LoggerFn, (void *)&VStream,
                              (const void *)MII.get(), Address, fMode);

  if (Ret) {
    Size = InternalInstr.readerCursor - Address;
    return Fail;
  } else {
    Size = InternalInstr.length;
    bool Ret = translateInstruction(Instr, InternalInstr, this);
    if (!Ret) {
      unsigned Flags = X86::IP_NO_PREFIX;
      if (InternalInstr.hasAdSize)
        Flags |= X86::IP_HAS_AD_SIZE;
      if (!InternalInstr.mandatoryPrefix) {
        if (InternalInstr.hasOpSize)
          Flags |= X86::IP_HAS_OP_SIZE;
        if (InternalInstr.repeatPrefix == 0xf2)
          Flags |= X86::IP_HAS_REPEAT_NE;
        else if (InternalInstr.repeatPrefix == 0xf3 &&
                 // It should not be 'pause' f3 90
                 InternalInstr.opcode != 0x90)
          Flags |= X86::IP_HAS_REPEAT;
        if (InternalInstr.hasLockPrefix)
          Flags |= X86::IP_HAS_LOCK;
      }
      Instr.setFlags(Flags);
    }
    return (!Ret) ? Success : Fail;
  }
}

//
// Private code that translates from struct InternalInstructions to MCInsts.
//

/// translateRegister - Translates an internal register to the appropriate LLVM
///   register, and appends it as an operand to an MCInst.
///
/// @param mcInst     - The MCInst to append to.
/// @param reg        - The Reg to append.
static void translateRegister(MCInst &mcInst, Reg reg) {
#define ENTRY(x) X86::x,
  static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS};
#undef ENTRY

  MCPhysReg llvmRegnum = llvmRegnums[reg];
  mcInst.addOperand(MCOperand::createReg(llvmRegnum));
}

/// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the
/// immediate Value in the MCInst.
///
/// @param Value      - The immediate Value, has had any PC adjustment made by
///                     the caller.
/// @param isBranch   - If the instruction is a branch instruction
/// @param Address    - The starting address of the instruction
/// @param Offset     - The byte offset to this immediate in the instruction
/// @param Width      - The byte width of this immediate in the instruction
///
/// If the getOpInfo() function was set when setupForSymbolicDisassembly() was
/// called then that function is called to get any symbolic information for the
/// immediate in the instruction using the Address, Offset and Width.  If that
/// returns non-zero then the symbolic information it returns is used to create
/// an MCExpr and that is added as an operand to the MCInst.  If getOpInfo()
/// returns zero and isBranch is true then a symbol look up for immediate Value
/// is done and if a symbol is found an MCExpr is created with that, else
/// an MCExpr with the immediate Value is created.  This function returns true
/// if it adds an operand to the MCInst and false otherwise.
static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch,
                                     uint64_t Address, uint64_t Offset,
                                     uint64_t Width, MCInst &MI,
                                     const MCDisassembler *Dis) {
  return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch,
                                       Offset, Width);
}

/// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being
/// referenced by a load instruction with the base register that is the rip.
/// These can often be addresses in a literal pool.  The Address of the
/// instruction and its immediate Value are used to determine the address
/// being referenced in the literal pool entry.  The SymbolLookUp call back will
/// return a pointer to a literal 'C' string if the referenced address is an
/// address into a section with 'C' string literals.
static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value,
                                            const void *Decoder) {
  const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder);
  Dis->tryAddingPcLoadReferenceComment(Value, Address);
}

static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
  0,        // SEG_OVERRIDE_NONE
  X86::CS,
  X86::SS,
  X86::DS,
  X86::ES,
  X86::FS,
  X86::GS
};

/// translateSrcIndex   - Appends a source index operand to an MCInst.
///
/// @param mcInst       - The MCInst to append to.
/// @param insn         - The internal instruction.
static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) {
  unsigned baseRegNo;

  if (insn.mode == MODE_64BIT)
    baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI;
  else if (insn.mode == MODE_32BIT)
    baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI;
  else {
    assert(insn.mode == MODE_16BIT);
    baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI;
  }
  MCOperand baseReg = MCOperand::createReg(baseRegNo);
  mcInst.addOperand(baseReg);

  MCOperand segmentReg;
  segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
  mcInst.addOperand(segmentReg);
  return false;
}

/// translateDstIndex   - Appends a destination index operand to an MCInst.
///
/// @param mcInst       - The MCInst to append to.
/// @param insn         - The internal instruction.

static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
  unsigned baseRegNo;

  if (insn.mode == MODE_64BIT)
    baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI;
  else if (insn.mode == MODE_32BIT)
    baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI;
  else {
    assert(insn.mode == MODE_16BIT);
    baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI;
  }
  MCOperand baseReg = MCOperand::createReg(baseRegNo);
  mcInst.addOperand(baseReg);
  return false;
}

/// translateImmediate  - Appends an immediate operand to an MCInst.
///
/// @param mcInst       - The MCInst to append to.
/// @param immediate    - The immediate value to append.
/// @param operand      - The operand, as stored in the descriptor table.
/// @param insn         - The internal instruction.
static void translateImmediate(MCInst &mcInst, uint64_t immediate,
                               const OperandSpecifier &operand,
                               InternalInstruction &insn,
                               const MCDisassembler *Dis) {
  // Sign-extend the immediate if necessary.

  OperandType type = (OperandType)operand.type;

  bool isBranch = false;
  uint64_t pcrel = 0;
  if (type == TYPE_REL) {
    isBranch = true;
    pcrel = insn.startLocation +
            insn.immediateOffset + insn.immediateSize;
    switch (operand.encoding) {
    default:
      break;
    case ENCODING_Iv:
      switch (insn.displacementSize) {
      default:
        break;
      case 1:
        if(immediate & 0x80)
          immediate |= ~(0xffull);
        break;
      case 2:
        if(immediate & 0x8000)
          immediate |= ~(0xffffull);
        break;
      case 4:
        if(immediate & 0x80000000)
          immediate |= ~(0xffffffffull);
        break;
      case 8:
        break;
      }
      break;
    case ENCODING_IB:
      if(immediate & 0x80)
        immediate |= ~(0xffull);
      break;
    case ENCODING_IW:
      if(immediate & 0x8000)
        immediate |= ~(0xffffull);
      break;
    case ENCODING_ID:
      if(immediate & 0x80000000)
        immediate |= ~(0xffffffffull);
      break;
    }
  }
  // By default sign-extend all X86 immediates based on their encoding.
  else if (type == TYPE_IMM) {
    switch (operand.encoding) {
    default:
      break;
    case ENCODING_IB:
      if(immediate & 0x80)
        immediate |= ~(0xffull);
      break;
    case ENCODING_IW:
      if(immediate & 0x8000)
        immediate |= ~(0xffffull);
      break;
    case ENCODING_ID:
      if(immediate & 0x80000000)
        immediate |= ~(0xffffffffull);
      break;
    case ENCODING_IO:
      break;
    }
  }

  switch (type) {
  case TYPE_XMM:
    mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4)));
    return;
  case TYPE_YMM:
    mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4)));
    return;
  case TYPE_ZMM:
    mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4)));
    return;
  default:
    // operand is 64 bits wide.  Do nothing.
    break;
  }

  if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation,
                               insn.immediateOffset, insn.immediateSize,
                               mcInst, Dis))
    mcInst.addOperand(MCOperand::createImm(immediate));

  if (type == TYPE_MOFFS) {
    MCOperand segmentReg;
    segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
    mcInst.addOperand(segmentReg);
  }
}

/// translateRMRegister - Translates a register stored in the R/M field of the
///   ModR/M byte to its LLVM equivalent and appends it to an MCInst.
/// @param mcInst       - The MCInst to append to.
/// @param insn         - The internal instruction to extract the R/M field
///                       from.
/// @return             - 0 on success; -1 otherwise
static bool translateRMRegister(MCInst &mcInst,
                                InternalInstruction &insn) {
  if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
    debug("A R/M register operand may not have a SIB byte");
    return true;
  }

  switch (insn.eaBase) {
  default:
    debug("Unexpected EA base register");
    return true;
  case EA_BASE_NONE:
    debug("EA_BASE_NONE for ModR/M base");
    return true;
#define ENTRY(x) case EA_BASE_##x:
  ALL_EA_BASES
#undef ENTRY
    debug("A R/M register operand may not have a base; "
          "the operand must be a register.");
    return true;
#define ENTRY(x)                                                      \
  case EA_REG_##x:                                                    \
    mcInst.addOperand(MCOperand::createReg(X86::x)); break;
  ALL_REGS
#undef ENTRY
  }

  return false;
}

/// translateRMMemory - Translates a memory operand stored in the Mod and R/M
///   fields of an internal instruction (and possibly its SIB byte) to a memory
///   operand in LLVM's format, and appends it to an MCInst.
///
/// @param mcInst       - The MCInst to append to.
/// @param insn         - The instruction to extract Mod, R/M, and SIB fields
///                       from.
/// @return             - 0 on success; nonzero otherwise
static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
                              const MCDisassembler *Dis) {
  // Addresses in an MCInst are represented as five operands:
  //   1. basereg       (register)  The R/M base, or (if there is a SIB) the
  //                                SIB base
  //   2. scaleamount   (immediate) 1, or (if there is a SIB) the specified
  //                                scale amount
  //   3. indexreg      (register)  x86_registerNONE, or (if there is a SIB)
  //                                the index (which is multiplied by the
  //                                scale amount)
  //   4. displacement  (immediate) 0, or the displacement if there is one
  //   5. segmentreg    (register)  x86_registerNONE for now, but could be set
  //                                if we have segment overrides

  MCOperand baseReg;
  MCOperand scaleAmount;
  MCOperand indexReg;
  MCOperand displacement;
  MCOperand segmentReg;
  uint64_t pcrel = 0;

  if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
    if (insn.sibBase != SIB_BASE_NONE) {
      switch (insn.sibBase) {
      default:
        debug("Unexpected sibBase");
        return true;
#define ENTRY(x)                                          \
      case SIB_BASE_##x:                                  \
        baseReg = MCOperand::createReg(X86::x); break;
      ALL_SIB_BASES
#undef ENTRY
      }
    } else {
      baseReg = MCOperand::createReg(X86::NoRegister);
    }

    if (insn.sibIndex != SIB_INDEX_NONE) {
      switch (insn.sibIndex) {
      default:
        debug("Unexpected sibIndex");
        return true;
#define ENTRY(x)                                          \
      case SIB_INDEX_##x:                                 \
        indexReg = MCOperand::createReg(X86::x); break;
      EA_BASES_32BIT
      EA_BASES_64BIT
      REGS_XMM
      REGS_YMM
      REGS_ZMM
#undef ENTRY
      }
    } else {
      // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present,
      // but no index is used and modrm alone should have been enough.
      // -No base register in 32-bit mode. In 64-bit mode this is used to
      //  avoid rip-relative addressing.
      // -Any base register used other than ESP/RSP/R12D/R12. Using these as a
      //  base always requires a SIB byte.
      // -A scale other than 1 is used.
      if (insn.sibScale != 1 ||
          (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) ||
          (insn.sibBase != SIB_BASE_NONE &&
           insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP &&
           insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12)) {
        indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ :
                                                                X86::RIZ);
      } else
        indexReg = MCOperand::createReg(X86::NoRegister);
    }

    scaleAmount = MCOperand::createImm(insn.sibScale);
  } else {
    switch (insn.eaBase) {
    case EA_BASE_NONE:
      if (insn.eaDisplacement == EA_DISP_NONE) {
        debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
        return true;
      }
      if (insn.mode == MODE_64BIT){
        pcrel = insn.startLocation +
                insn.displacementOffset + insn.displacementSize;
        tryAddingPcLoadReferenceComment(insn.startLocation +
                                        insn.displacementOffset,
                                        insn.displacement + pcrel, Dis);
        // Section 2.2.1.6
        baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP :
                                                               X86::RIP);
      }
      else
        baseReg = MCOperand::createReg(X86::NoRegister);

      indexReg = MCOperand::createReg(X86::NoRegister);
      break;
    case EA_BASE_BX_SI:
      baseReg = MCOperand::createReg(X86::BX);
      indexReg = MCOperand::createReg(X86::SI);
      break;
    case EA_BASE_BX_DI:
      baseReg = MCOperand::createReg(X86::BX);
      indexReg = MCOperand::createReg(X86::DI);
      break;
    case EA_BASE_BP_SI:
      baseReg = MCOperand::createReg(X86::BP);
      indexReg = MCOperand::createReg(X86::SI);
      break;
    case EA_BASE_BP_DI:
      baseReg = MCOperand::createReg(X86::BP);
      indexReg = MCOperand::createReg(X86::DI);
      break;
    default:
      indexReg = MCOperand::createReg(X86::NoRegister);
      switch (insn.eaBase) {
      default:
        debug("Unexpected eaBase");
        return true;
        // Here, we will use the fill-ins defined above.  However,
        //   BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
        //   sib and sib64 were handled in the top-level if, so they're only
        //   placeholders to keep the compiler happy.
#define ENTRY(x)                                        \
      case EA_BASE_##x:                                 \
        baseReg = MCOperand::createReg(X86::x); break;
      ALL_EA_BASES
#undef ENTRY
#define ENTRY(x) case EA_REG_##x:
      ALL_REGS
#undef ENTRY
        debug("A R/M memory operand may not be a register; "
              "the base field must be a base.");
        return true;
      }
    }

    scaleAmount = MCOperand::createImm(1);
  }

  displacement = MCOperand::createImm(insn.displacement);

  segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);

  mcInst.addOperand(baseReg);
  mcInst.addOperand(scaleAmount);
  mcInst.addOperand(indexReg);
  if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false,
                               insn.startLocation, insn.displacementOffset,
                               insn.displacementSize, mcInst, Dis))
    mcInst.addOperand(displacement);
  mcInst.addOperand(segmentReg);
  return false;
}

/// translateRM - Translates an operand stored in the R/M (and possibly SIB)
///   byte of an instruction to LLVM form, and appends it to an MCInst.
///
/// @param mcInst       - The MCInst to append to.
/// @param operand      - The operand, as stored in the descriptor table.
/// @param insn         - The instruction to extract Mod, R/M, and SIB fields
///                       from.
/// @return             - 0 on success; nonzero otherwise
static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
                        InternalInstruction &insn, const MCDisassembler *Dis) {
  switch (operand.type) {
  default:
    debug("Unexpected type for a R/M operand");
    return true;
  case TYPE_R8:
  case TYPE_R16:
  case TYPE_R32:
  case TYPE_R64:
  case TYPE_Rv:
  case TYPE_MM64:
  case TYPE_XMM:
  case TYPE_YMM:
  case TYPE_ZMM:
  case TYPE_VK_PAIR:
  case TYPE_VK:
  case TYPE_DEBUGREG:
  case TYPE_CONTROLREG:
  case TYPE_BNDR:
    return translateRMRegister(mcInst, insn);
  case TYPE_M:
  case TYPE_MVSIBX:
  case TYPE_MVSIBY:
  case TYPE_MVSIBZ:
    return translateRMMemory(mcInst, insn, Dis);
  }
}

/// translateFPRegister - Translates a stack position on the FPU stack to its
///   LLVM form, and appends it to an MCInst.
///
/// @param mcInst       - The MCInst to append to.
/// @param stackPos     - The stack position to translate.
static void translateFPRegister(MCInst &mcInst,
                                uint8_t stackPos) {
  mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos));
}

/// translateMaskRegister - Translates a 3-bit mask register number to
///   LLVM form, and appends it to an MCInst.
///
/// @param mcInst       - The MCInst to append to.
/// @param maskRegNum   - Number of mask register from 0 to 7.
/// @return             - false on success; true otherwise.
static bool translateMaskRegister(MCInst &mcInst,
                                uint8_t maskRegNum) {
  if (maskRegNum >= 8) {
    debug("Invalid mask register number");
    return true;
  }

  mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum));
  return false;
}

/// translateOperand - Translates an operand stored in an internal instruction
///   to LLVM's format and appends it to an MCInst.
///
/// @param mcInst       - The MCInst to append to.
/// @param operand      - The operand, as stored in the descriptor table.
/// @param insn         - The internal instruction.
/// @return             - false on success; true otherwise.
static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
                             InternalInstruction &insn,
                             const MCDisassembler *Dis) {
  switch (operand.encoding) {
  default:
    debug("Unhandled operand encoding during translation");
    return true;
  case ENCODING_REG:
    translateRegister(mcInst, insn.reg);
    return false;
  case ENCODING_WRITEMASK:
    return translateMaskRegister(mcInst, insn.writemask);
  CASE_ENCODING_RM:
  CASE_ENCODING_VSIB:
    return translateRM(mcInst, operand, insn, Dis);
  case ENCODING_IB:
  case ENCODING_IW:
  case ENCODING_ID:
  case ENCODING_IO:
  case ENCODING_Iv:
  case ENCODING_Ia:
    translateImmediate(mcInst,
                       insn.immediates[insn.numImmediatesTranslated++],
                       operand,
                       insn,
                       Dis);
    return false;
  case ENCODING_IRC:
    mcInst.addOperand(MCOperand::createImm(insn.RC));
    return false;
  case ENCODING_SI:
    return translateSrcIndex(mcInst, insn);
  case ENCODING_DI:
    return translateDstIndex(mcInst, insn);
  case ENCODING_RB:
  case ENCODING_RW:
  case ENCODING_RD:
  case ENCODING_RO:
  case ENCODING_Rv:
    translateRegister(mcInst, insn.opcodeRegister);
    return false;
  case ENCODING_CC:
    mcInst.addOperand(MCOperand::createImm(insn.immediates[1]));
    return false;
  case ENCODING_FP:
    translateFPRegister(mcInst, insn.modRM & 7);
    return false;
  case ENCODING_VVVV:
    translateRegister(mcInst, insn.vvvv);
    return false;
  case ENCODING_DUP:
    return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
                            insn, Dis);
  }
}

/// translateInstruction - Translates an internal instruction and all its
///   operands to an MCInst.
///
/// @param mcInst       - The MCInst to populate with the instruction's data.
/// @param insn         - The internal instruction.
/// @return             - false on success; true otherwise.
static bool translateInstruction(MCInst &mcInst,
                                InternalInstruction &insn,
                                const MCDisassembler *Dis) {
  if (!insn.spec) {
    debug("Instruction has no specification");
    return true;
  }

  mcInst.clear();
  mcInst.setOpcode(insn.instructionID);
  // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
  // prefix bytes should be disassembled as xrelease and xacquire then set the
  // opcode to those instead of the rep and repne opcodes.
  if (insn.xAcquireRelease) {
    if(mcInst.getOpcode() == X86::REP_PREFIX)
      mcInst.setOpcode(X86::XRELEASE_PREFIX);
    else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
      mcInst.setOpcode(X86::XACQUIRE_PREFIX);
  }

  insn.numImmediatesTranslated = 0;

  for (const auto &Op : insn.operands) {
    if (Op.encoding != ENCODING_NONE) {
      if (translateOperand(mcInst, Op, insn, Dis)) {
        return true;
      }
    }
  }

  return false;
}

static MCDisassembler *createX86Disassembler(const Target &T,
                                             const MCSubtargetInfo &STI,
                                             MCContext &Ctx) {
  std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo());
  return new X86GenericDisassembler(STI, Ctx, std::move(MII));
}

extern "C" void LLVMInitializeX86Disassembler() {
  // Register the disassembler.
  TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(),
                                         createX86Disassembler);
  TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(),
                                         createX86Disassembler);
}