reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
//===-- SystemZTDC.cpp - Utilize Test Data Class instruction --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass looks for instructions that can be replaced by a Test Data Class
// instruction, and replaces them when profitable.
//
// Roughly, the following rules are recognized:
//
// 1: fcmp pred X, 0 -> tdc X, mask
// 2: fcmp pred X, +-inf -> tdc X, mask
// 3: fcmp pred X, +-minnorm -> tdc X, mask
// 4: tdc (fabs X), mask -> tdc X, newmask
// 5: icmp slt (bitcast float X to int), 0 -> tdc X, mask [ie. signbit]
// 6: icmp sgt (bitcast float X to int), -1 -> tdc X, mask
// 7: icmp ne/eq (call @llvm.s390.tdc.*(X, mask)) -> tdc X, mask/~mask
// 8: and i1 (tdc X, M1), (tdc X, M2) -> tdc X, (M1 & M2)
// 9: or i1 (tdc X, M1), (tdc X, M2) -> tdc X, (M1 | M2)
// 10: xor i1 (tdc X, M1), (tdc X, M2) -> tdc X, (M1 ^ M2)
//
// The pass works in 4 steps:
//
// 1. All fcmp and icmp instructions in a function are checked for a match
//    with rules 1-3 and 5-7.  Their TDC equivalents are stored in
//    the ConvertedInsts mapping.  If the operand of a fcmp instruction is
//    a fabs, it's also folded according to rule 4.
// 2. All and/or/xor i1 instructions whose both operands have been already
//    mapped are mapped according to rules 8-10.  LogicOpsWorklist is used
//    as a queue of instructions to check.
// 3. All mapped instructions that are considered worthy of conversion (ie.
//    replacing them will actually simplify the final code) are replaced
//    with a call to the s390.tdc intrinsic.
// 4. All intermediate results of replaced instructions are removed if unused.
//
// Instructions that match rules 1-3 are considered unworthy of conversion
// on their own (since a comparison instruction is superior), but are mapped
// in the hopes of folding the result using rules 4 and 8-10 (likely removing
// the original comparison in the process).
//
//===----------------------------------------------------------------------===//

#include "SystemZ.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include <deque>
#include <set>

using namespace llvm;

namespace llvm {
  void initializeSystemZTDCPassPass(PassRegistry&);
}

namespace {

class SystemZTDCPass : public FunctionPass {
public:
  static char ID;
  SystemZTDCPass() : FunctionPass(ID) {
    initializeSystemZTDCPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override;
private:
  // Maps seen instructions that can be mapped to a TDC, values are
  // (TDC operand, TDC mask, worthy flag) triples.
  MapVector<Instruction *, std::tuple<Value *, int, bool>> ConvertedInsts;
  // The queue of and/or/xor i1 instructions to be potentially folded.
  std::vector<BinaryOperator *> LogicOpsWorklist;
  // Instructions matched while folding, to be removed at the end if unused.
  std::set<Instruction *> PossibleJunk;

  // Tries to convert a fcmp instruction.
  void convertFCmp(CmpInst &I);

  // Tries to convert an icmp instruction.
  void convertICmp(CmpInst &I);

  // Tries to convert an i1 and/or/xor instruction, whose both operands
  // have been already converted.
  void convertLogicOp(BinaryOperator &I);

  // Marks an instruction as converted - adds it to ConvertedInsts and adds
  // any and/or/xor i1 users to the queue.
  void converted(Instruction *I, Value *V, int Mask, bool Worthy) {
    ConvertedInsts[I] = std::make_tuple(V, Mask, Worthy);
    auto &M = *I->getFunction()->getParent();
    auto &Ctx = M.getContext();
    for (auto *U : I->users()) {
      auto *LI = dyn_cast<BinaryOperator>(U);
      if (LI && LI->getType() == Type::getInt1Ty(Ctx) &&
          (LI->getOpcode() == Instruction::And ||
           LI->getOpcode() == Instruction::Or ||
           LI->getOpcode() == Instruction::Xor)) {
        LogicOpsWorklist.push_back(LI);
      }
    }
  }
};

} // end anonymous namespace

char SystemZTDCPass::ID = 0;
INITIALIZE_PASS(SystemZTDCPass, "systemz-tdc",
                "SystemZ Test Data Class optimization", false, false)

FunctionPass *llvm::createSystemZTDCPass() {
  return new SystemZTDCPass();
}

void SystemZTDCPass::convertFCmp(CmpInst &I) {
  Value *Op0 = I.getOperand(0);
  auto *Const = dyn_cast<ConstantFP>(I.getOperand(1));
  auto Pred = I.getPredicate();
  // Only comparisons with consts are interesting.
  if (!Const)
    return;
  // Compute the smallest normal number (and its negation).
  auto &Sem = Op0->getType()->getFltSemantics();
  APFloat Smallest = APFloat::getSmallestNormalized(Sem);
  APFloat NegSmallest = Smallest;
  NegSmallest.changeSign();
  // Check if Const is one of our recognized consts.
  int WhichConst;
  if (Const->isZero()) {
    // All comparisons with 0 can be converted.
    WhichConst = 0;
  } else if (Const->isInfinity()) {
    // Likewise for infinities.
    WhichConst = Const->isNegative() ? 2 : 1;
  } else if (Const->isExactlyValue(Smallest)) {
    // For Smallest, we cannot do EQ separately from GT.
    if ((Pred & CmpInst::FCMP_OGE) != CmpInst::FCMP_OGE &&
        (Pred & CmpInst::FCMP_OGE) != 0)
      return;
    WhichConst = 3;
  } else if (Const->isExactlyValue(NegSmallest)) {
    // Likewise for NegSmallest, we cannot do EQ separately from LT.
    if ((Pred & CmpInst::FCMP_OLE) != CmpInst::FCMP_OLE &&
        (Pred & CmpInst::FCMP_OLE) != 0)
      return;
    WhichConst = 4;
  } else {
    // Not one of our special constants.
    return;
  }
  // Partial masks to use for EQ, GT, LT, UN comparisons, respectively.
  static const int Masks[][4] = {
    { // 0
      SystemZ::TDCMASK_ZERO,              // eq
      SystemZ::TDCMASK_POSITIVE,          // gt
      SystemZ::TDCMASK_NEGATIVE,          // lt
      SystemZ::TDCMASK_NAN,               // un
    },
    { // inf
      SystemZ::TDCMASK_INFINITY_PLUS,     // eq
      0,                                  // gt
      (SystemZ::TDCMASK_ZERO |
       SystemZ::TDCMASK_NEGATIVE |
       SystemZ::TDCMASK_NORMAL_PLUS |
       SystemZ::TDCMASK_SUBNORMAL_PLUS),  // lt
      SystemZ::TDCMASK_NAN,               // un
    },
    { // -inf
      SystemZ::TDCMASK_INFINITY_MINUS,    // eq
      (SystemZ::TDCMASK_ZERO |
       SystemZ::TDCMASK_POSITIVE |
       SystemZ::TDCMASK_NORMAL_MINUS |
       SystemZ::TDCMASK_SUBNORMAL_MINUS), // gt
      0,                                  // lt
      SystemZ::TDCMASK_NAN,               // un
    },
    { // minnorm
      0,                                  // eq (unsupported)
      (SystemZ::TDCMASK_NORMAL_PLUS |
       SystemZ::TDCMASK_INFINITY_PLUS),   // gt (actually ge)
      (SystemZ::TDCMASK_ZERO |
       SystemZ::TDCMASK_NEGATIVE |
       SystemZ::TDCMASK_SUBNORMAL_PLUS),  // lt
      SystemZ::TDCMASK_NAN,               // un
    },
    { // -minnorm
      0,                                  // eq (unsupported)
      (SystemZ::TDCMASK_ZERO |
       SystemZ::TDCMASK_POSITIVE |
       SystemZ::TDCMASK_SUBNORMAL_MINUS), // gt
      (SystemZ::TDCMASK_NORMAL_MINUS |
       SystemZ::TDCMASK_INFINITY_MINUS),  // lt (actually le)
      SystemZ::TDCMASK_NAN,               // un
    }
  };
  // Construct the mask as a combination of the partial masks.
  int Mask = 0;
  if (Pred & CmpInst::FCMP_OEQ)
    Mask |= Masks[WhichConst][0];
  if (Pred & CmpInst::FCMP_OGT)
    Mask |= Masks[WhichConst][1];
  if (Pred & CmpInst::FCMP_OLT)
    Mask |= Masks[WhichConst][2];
  if (Pred & CmpInst::FCMP_UNO)
    Mask |= Masks[WhichConst][3];
  // A lone fcmp is unworthy of tdc conversion on its own, but may become
  // worthy if combined with fabs.
  bool Worthy = false;
  if (CallInst *CI = dyn_cast<CallInst>(Op0)) {
    Function *F = CI->getCalledFunction();
    if (F && F->getIntrinsicID() == Intrinsic::fabs) {
      // Fold with fabs - adjust the mask appropriately.
      Mask &= SystemZ::TDCMASK_PLUS;
      Mask |= Mask >> 1;
      Op0 = CI->getArgOperand(0);
      // A combination of fcmp with fabs is a win, unless the constant
      // involved is 0 (which is handled by later passes).
      Worthy = WhichConst != 0;
      PossibleJunk.insert(CI);
    }
  }
  converted(&I, Op0, Mask, Worthy);
}

void SystemZTDCPass::convertICmp(CmpInst &I) {
  Value *Op0 = I.getOperand(0);
  auto *Const = dyn_cast<ConstantInt>(I.getOperand(1));
  auto Pred = I.getPredicate();
  // All our icmp rules involve comparisons with consts.
  if (!Const)
    return;
  if (auto *Cast = dyn_cast<BitCastInst>(Op0)) {
    // Check for icmp+bitcast used for signbit.
    if (!Cast->getSrcTy()->isFloatTy() &&
        !Cast->getSrcTy()->isDoubleTy() &&
        !Cast->getSrcTy()->isFP128Ty())
      return;
    Value *V = Cast->getOperand(0);
    int Mask;
    if (Pred == CmpInst::ICMP_SLT && Const->isZero()) {
      // icmp slt (bitcast X), 0 - set if sign bit true
      Mask = SystemZ::TDCMASK_MINUS;
    } else if (Pred == CmpInst::ICMP_SGT && Const->isMinusOne()) {
      // icmp sgt (bitcast X), -1 - set if sign bit false
      Mask = SystemZ::TDCMASK_PLUS;
    } else {
      // Not a sign bit check.
      return;
    }
    PossibleJunk.insert(Cast);
    converted(&I, V, Mask, true);
  } else if (auto *CI = dyn_cast<CallInst>(Op0)) {
    // Check if this is a pre-existing call of our tdc intrinsic.
    Function *F = CI->getCalledFunction();
    if (!F || F->getIntrinsicID() != Intrinsic::s390_tdc)
      return;
    if (!Const->isZero())
      return;
    Value *V = CI->getArgOperand(0);
    auto *MaskC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
    // Bail if the mask is not a constant.
    if (!MaskC)
      return;
    int Mask = MaskC->getZExtValue();
    Mask &= SystemZ::TDCMASK_ALL;
    if (Pred == CmpInst::ICMP_NE) {
      // icmp ne (call llvm.s390.tdc(...)), 0 -> simple TDC
    } else if (Pred == CmpInst::ICMP_EQ) {
      // icmp eq (call llvm.s390.tdc(...)), 0 -> TDC with inverted mask
      Mask ^= SystemZ::TDCMASK_ALL;
    } else {
      // An unknown comparison - ignore.
      return;
    }
    PossibleJunk.insert(CI);
    converted(&I, V, Mask, false);
  }
}

void SystemZTDCPass::convertLogicOp(BinaryOperator &I) {
  Value *Op0, *Op1;
  int Mask0, Mask1;
  bool Worthy0, Worthy1;
  std::tie(Op0, Mask0, Worthy0) = ConvertedInsts[cast<Instruction>(I.getOperand(0))];
  std::tie(Op1, Mask1, Worthy1) = ConvertedInsts[cast<Instruction>(I.getOperand(1))];
  if (Op0 != Op1)
    return;
  int Mask;
  switch (I.getOpcode()) {
    case Instruction::And:
      Mask = Mask0 & Mask1;
      break;
    case Instruction::Or:
      Mask = Mask0 | Mask1;
      break;
    case Instruction::Xor:
      Mask = Mask0 ^ Mask1;
      break;
    default:
      llvm_unreachable("Unknown op in convertLogicOp");
  }
  converted(&I, Op0, Mask, true);
}

bool SystemZTDCPass::runOnFunction(Function &F) {
  ConvertedInsts.clear();
  LogicOpsWorklist.clear();
  PossibleJunk.clear();

  // Look for icmp+fcmp instructions.
  for (auto &I : instructions(F)) {
    if (I.getOpcode() == Instruction::FCmp)
      convertFCmp(cast<CmpInst>(I));
    else if (I.getOpcode() == Instruction::ICmp)
      convertICmp(cast<CmpInst>(I));
  }

  // If none found, bail already.
  if (ConvertedInsts.empty())
    return false;

  // Process the queue of logic instructions.
  while (!LogicOpsWorklist.empty()) {
    BinaryOperator *Op = LogicOpsWorklist.back();
    LogicOpsWorklist.pop_back();
    // If both operands mapped, and the instruction itself not yet mapped,
    // convert it.
    if (ConvertedInsts.count(dyn_cast<Instruction>(Op->getOperand(0))) &&
        ConvertedInsts.count(dyn_cast<Instruction>(Op->getOperand(1))) &&
        !ConvertedInsts.count(Op))
      convertLogicOp(*Op);
  }

  // Time to actually replace the instructions.  Do it in the reverse order
  // of finding them, since there's a good chance the earlier ones will be
  // unused (due to being folded into later ones).
  Module &M = *F.getParent();
  auto &Ctx = M.getContext();
  Value *Zero32 = ConstantInt::get(Type::getInt32Ty(Ctx), 0);
  bool MadeChange = false;
  for (auto &It : reverse(ConvertedInsts)) {
    Instruction *I = It.first;
    Value *V;
    int Mask;
    bool Worthy;
    std::tie(V, Mask, Worthy) = It.second;
    if (!I->user_empty()) {
      // If used and unworthy of conversion, skip it.
      if (!Worthy)
        continue;
      // Call the intrinsic, compare result with 0.
      Function *TDCFunc =
          Intrinsic::getDeclaration(&M, Intrinsic::s390_tdc, V->getType());
      IRBuilder<> IRB(I);
      Value *MaskVal = ConstantInt::get(Type::getInt64Ty(Ctx), Mask);
      Instruction *TDC = IRB.CreateCall(TDCFunc, {V, MaskVal});
      Value *ICmp = IRB.CreateICmp(CmpInst::ICMP_NE, TDC, Zero32);
      I->replaceAllUsesWith(ICmp);
    }
    // If unused, or used and converted, remove it.
    I->eraseFromParent();
    MadeChange = true;
  }

  if (!MadeChange)
    return false;

  // We've actually done something - now clear misc accumulated junk (fabs,
  // bitcast).
  for (auto *I : PossibleJunk)
    if (I->user_empty())
      I->eraseFromParent();

  return true;
}