reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
//===-- HexagonTargetObjectFile.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the declarations of the HexagonTargetAsmInfo properties.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "hexagon-sdata"

#include "HexagonTargetObjectFile.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GlobalObject.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Type.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/SectionKind.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"

using namespace llvm;

static cl::opt<unsigned> SmallDataThreshold("hexagon-small-data-threshold",
  cl::init(8), cl::Hidden,
  cl::desc("The maximum size of an object in the sdata section"));

static cl::opt<bool> NoSmallDataSorting("mno-sort-sda", cl::init(false),
  cl::Hidden, cl::desc("Disable small data sections sorting"));

static cl::opt<bool> StaticsInSData("hexagon-statics-in-small-data",
  cl::init(false), cl::Hidden, cl::ZeroOrMore,
  cl::desc("Allow static variables in .sdata"));

static cl::opt<bool> TraceGVPlacement("trace-gv-placement",
  cl::Hidden, cl::init(false),
  cl::desc("Trace global value placement"));

static cl::opt<bool>
    EmitJtInText("hexagon-emit-jt-text", cl::Hidden, cl::init(false),
                 cl::desc("Emit hexagon jump tables in function section"));

static cl::opt<bool>
    EmitLutInText("hexagon-emit-lut-text", cl::Hidden, cl::init(false),
                 cl::desc("Emit hexagon lookup tables in function section"));

// TraceGVPlacement controls messages for all builds. For builds with assertions
// (debug or release), messages are also controlled by the usual debug flags
// (e.g. -debug and -debug-only=globallayout)
#define TRACE_TO(s, X) s << X
#ifdef NDEBUG
#define TRACE(X)                                                               \
  do {                                                                         \
    if (TraceGVPlacement) {                                                    \
      TRACE_TO(errs(), X);                                                     \
    }                                                                          \
  } while (false)
#else
#define TRACE(X)                                                               \
  do {                                                                         \
    if (TraceGVPlacement) {                                                    \
      TRACE_TO(errs(), X);                                                     \
    } else {                                                                   \
      LLVM_DEBUG(TRACE_TO(dbgs(), X));                                         \
    }                                                                          \
  } while (false)
#endif

// Returns true if the section name is such that the symbol will be put
// in a small data section.
// For instance, global variables with section attributes such as ".sdata"
// ".sdata.*", ".sbss", and ".sbss.*" will go into small data.
static bool isSmallDataSection(StringRef Sec) {
  // sectionName is either ".sdata" or ".sbss". Looking for an exact match
  // obviates the need for checks for section names such as ".sdatafoo".
  if (Sec.equals(".sdata") || Sec.equals(".sbss") || Sec.equals(".scommon"))
    return true;
  // If either ".sdata." or ".sbss." is a substring of the section name
  // then put the symbol in small data.
  return Sec.find(".sdata.") != StringRef::npos ||
         Sec.find(".sbss.") != StringRef::npos ||
         Sec.find(".scommon.") != StringRef::npos;
}

static const char *getSectionSuffixForSize(unsigned Size) {
  switch (Size) {
  default:
    return "";
  case 1:
    return ".1";
  case 2:
    return ".2";
  case 4:
    return ".4";
  case 8:
    return ".8";
  }
}

void HexagonTargetObjectFile::Initialize(MCContext &Ctx,
      const TargetMachine &TM) {
  TargetLoweringObjectFileELF::Initialize(Ctx, TM);
  InitializeELF(TM.Options.UseInitArray);

  SmallDataSection =
    getContext().getELFSection(".sdata", ELF::SHT_PROGBITS,
                               ELF::SHF_WRITE | ELF::SHF_ALLOC |
                               ELF::SHF_HEX_GPREL);
  SmallBSSSection =
    getContext().getELFSection(".sbss", ELF::SHT_NOBITS,
                               ELF::SHF_WRITE | ELF::SHF_ALLOC |
                               ELF::SHF_HEX_GPREL);
}

MCSection *HexagonTargetObjectFile::SelectSectionForGlobal(
    const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
  TRACE("[SelectSectionForGlobal] GO(" << GO->getName() << ") ");
  TRACE("input section(" << GO->getSection() << ") ");

  TRACE((GO->hasPrivateLinkage() ? "private_linkage " : "")
         << (GO->hasLocalLinkage() ? "local_linkage " : "")
         << (GO->hasInternalLinkage() ? "internal " : "")
         << (GO->hasExternalLinkage() ? "external " : "")
         << (GO->hasCommonLinkage() ? "common_linkage " : "")
         << (GO->hasCommonLinkage() ? "common " : "" )
         << (Kind.isCommon() ? "kind_common " : "" )
         << (Kind.isBSS() ? "kind_bss " : "" )
         << (Kind.isBSSLocal() ? "kind_bss_local " : "" ));

  // If the lookup table is used by more than one function, do not place
  // it in text section.
  if (EmitLutInText && GO->getName().startswith("switch.table")) {
    if (const Function *Fn = getLutUsedFunction(GO))
      return selectSectionForLookupTable(GO, TM, Fn);
  }

  if (isGlobalInSmallSection(GO, TM))
    return selectSmallSectionForGlobal(GO, Kind, TM);

  if (Kind.isCommon()) {
    // This is purely for LTO+Linker Script because commons don't really have a
    // section. However, the BitcodeSectionWriter pass will query for the
    // sections of commons (and the linker expects us to know their section) so
    // we'll return one here.
    return BSSSection;
  }

  TRACE("default_ELF_section\n");
  // Otherwise, we work the same as ELF.
  return TargetLoweringObjectFileELF::SelectSectionForGlobal(GO, Kind, TM);
}

MCSection *HexagonTargetObjectFile::getExplicitSectionGlobal(
    const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
  TRACE("[getExplicitSectionGlobal] GO(" << GO->getName() << ") from("
        << GO->getSection() << ") ");
  TRACE((GO->hasPrivateLinkage() ? "private_linkage " : "")
         << (GO->hasLocalLinkage() ? "local_linkage " : "")
         << (GO->hasInternalLinkage() ? "internal " : "")
         << (GO->hasExternalLinkage() ? "external " : "")
         << (GO->hasCommonLinkage() ? "common_linkage " : "")
         << (GO->hasCommonLinkage() ? "common " : "" )
         << (Kind.isCommon() ? "kind_common " : "" )
         << (Kind.isBSS() ? "kind_bss " : "" )
         << (Kind.isBSSLocal() ? "kind_bss_local " : "" ));

  if (GO->hasSection()) {
    StringRef Section = GO->getSection();
    if (Section.find(".access.text.group") != StringRef::npos)
      return getContext().getELFSection(GO->getSection(), ELF::SHT_PROGBITS,
                                        ELF::SHF_ALLOC | ELF::SHF_EXECINSTR);
    if (Section.find(".access.data.group") != StringRef::npos)
      return getContext().getELFSection(GO->getSection(), ELF::SHT_PROGBITS,
                                        ELF::SHF_WRITE | ELF::SHF_ALLOC);
  }

  if (isGlobalInSmallSection(GO, TM))
    return selectSmallSectionForGlobal(GO, Kind, TM);

  // Otherwise, we work the same as ELF.
  TRACE("default_ELF_section\n");
  return TargetLoweringObjectFileELF::getExplicitSectionGlobal(GO, Kind, TM);
}

/// Return true if this global value should be placed into small data/bss
/// section.
bool HexagonTargetObjectFile::isGlobalInSmallSection(const GlobalObject *GO,
      const TargetMachine &TM) const {
  bool HaveSData = isSmallDataEnabled(TM);
  if (!HaveSData)
    LLVM_DEBUG(dbgs() << "Small-data allocation is disabled, but symbols "
                         "may have explicit section assignments...\n");
  // Only global variables, not functions.
  LLVM_DEBUG(dbgs() << "Checking if value is in small-data, -G"
                    << SmallDataThreshold << ": \"" << GO->getName() << "\": ");
  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GO);
  if (!GVar) {
    LLVM_DEBUG(dbgs() << "no, not a global variable\n");
    return false;
  }

  // Globals with external linkage that have an original section set must be
  // emitted to that section, regardless of whether we would put them into
  // small data or not. This is how we can support mixing -G0/-G8 in LTO.
  if (GVar->hasSection()) {
    bool IsSmall = isSmallDataSection(GVar->getSection());
    LLVM_DEBUG(dbgs() << (IsSmall ? "yes" : "no")
                      << ", has section: " << GVar->getSection() << '\n');
    return IsSmall;
  }

  // If sdata is disabled, stop the checks here.
  if (!HaveSData) {
    LLVM_DEBUG(dbgs() << "no, small-data allocation is disabled\n");
    return false;
  }

  if (GVar->isConstant()) {
    LLVM_DEBUG(dbgs() << "no, is a constant\n");
    return false;
  }

  bool IsLocal = GVar->hasLocalLinkage();
  if (!StaticsInSData && IsLocal) {
    LLVM_DEBUG(dbgs() << "no, is static\n");
    return false;
  }

  Type *GType = GVar->getValueType();
  if (isa<ArrayType>(GType)) {
    LLVM_DEBUG(dbgs() << "no, is an array\n");
    return false;
  }

  // If the type is a struct with no body provided, treat is conservatively.
  // There cannot be actual definitions of object of such a type in this CU
  // (only references), so assuming that they are not in sdata is safe. If
  // these objects end up in the sdata, the references will still be valid.
  if (StructType *ST = dyn_cast<StructType>(GType)) {
    if (ST->isOpaque()) {
      LLVM_DEBUG(dbgs() << "no, has opaque type\n");
      return false;
    }
  }

  unsigned Size = GVar->getParent()->getDataLayout().getTypeAllocSize(GType);
  if (Size == 0) {
    LLVM_DEBUG(dbgs() << "no, has size 0\n");
    return false;
  }
  if (Size > SmallDataThreshold) {
    LLVM_DEBUG(dbgs() << "no, size exceeds sdata threshold: " << Size << '\n');
    return false;
  }

  LLVM_DEBUG(dbgs() << "yes\n");
  return true;
}

bool HexagonTargetObjectFile::isSmallDataEnabled(const TargetMachine &TM)
    const {
  return SmallDataThreshold > 0 && !TM.isPositionIndependent();
}

unsigned HexagonTargetObjectFile::getSmallDataSize() const {
  return SmallDataThreshold;
}

bool HexagonTargetObjectFile::shouldPutJumpTableInFunctionSection(
    bool UsesLabelDifference, const Function &F) const {
  return EmitJtInText;
}

/// Descends any type down to "elementary" components,
/// discovering the smallest addressable one.
/// If zero is returned, declaration will not be modified.
unsigned HexagonTargetObjectFile::getSmallestAddressableSize(const Type *Ty,
      const GlobalValue *GV, const TargetMachine &TM) const {
  // Assign the smallest element access size to the highest
  // value which assembler can handle.
  unsigned SmallestElement = 8;

  if (!Ty)
    return 0;
  switch (Ty->getTypeID()) {
  case Type::StructTyID: {
    const StructType *STy = cast<const StructType>(Ty);
    for (auto &E : STy->elements()) {
      unsigned AtomicSize = getSmallestAddressableSize(E, GV, TM);
      if (AtomicSize < SmallestElement)
        SmallestElement = AtomicSize;
    }
    return (STy->getNumElements() == 0) ? 0 : SmallestElement;
  }
  case Type::ArrayTyID: {
    const ArrayType *ATy = cast<const ArrayType>(Ty);
    return getSmallestAddressableSize(ATy->getElementType(), GV, TM);
  }
  case Type::VectorTyID: {
    const VectorType *PTy = cast<const VectorType>(Ty);
    return getSmallestAddressableSize(PTy->getElementType(), GV, TM);
  }
  case Type::PointerTyID:
  case Type::HalfTyID:
  case Type::FloatTyID:
  case Type::DoubleTyID:
  case Type::IntegerTyID: {
    const DataLayout &DL = GV->getParent()->getDataLayout();
    // It is unfortunate that DL's function take non-const Type*.
    return DL.getTypeAllocSize(const_cast<Type*>(Ty));
  }
  case Type::FunctionTyID:
  case Type::VoidTyID:
  case Type::X86_FP80TyID:
  case Type::FP128TyID:
  case Type::PPC_FP128TyID:
  case Type::LabelTyID:
  case Type::MetadataTyID:
  case Type::X86_MMXTyID:
  case Type::TokenTyID:
    return 0;
  }

  return 0;
}

MCSection *HexagonTargetObjectFile::selectSmallSectionForGlobal(
    const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
  const Type *GTy = GO->getValueType();
  unsigned Size = getSmallestAddressableSize(GTy, GO, TM);

  // If we have -ffunction-section or -fdata-section then we should emit the
  // global value to a unique section specifically for it... even for sdata.
  bool EmitUniquedSection = TM.getDataSections();

  TRACE("Small data. Size(" << Size << ")");
  // Handle Small Section classification here.
  if (Kind.isBSS() || Kind.isBSSLocal()) {
    // If -mno-sort-sda is not set, find out smallest accessible entity in
    // declaration and add it to the section name string.
    // Note. It does not track the actual usage of the value, only its de-
    // claration. Also, compiler adds explicit pad fields to some struct
    // declarations - they are currently counted towards smallest addres-
    // sable entity.
    if (NoSmallDataSorting) {
      TRACE(" default sbss\n");
      return SmallBSSSection;
    }

    StringRef Prefix(".sbss");
    SmallString<128> Name(Prefix);
    Name.append(getSectionSuffixForSize(Size));

    if (EmitUniquedSection) {
      Name.append(".");
      Name.append(GO->getName());
    }
    TRACE(" unique sbss(" << Name << ")\n");
    return getContext().getELFSection(Name.str(), ELF::SHT_NOBITS,
                ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_HEX_GPREL);
  }

  if (Kind.isCommon()) {
    // This is purely for LTO+Linker Script because commons don't really have a
    // section. However, the BitcodeSectionWriter pass will query for the
    // sections of commons (and the linker expects us to know their section) so
    // we'll return one here.
    if (NoSmallDataSorting)
      return BSSSection;

    Twine Name = Twine(".scommon") + getSectionSuffixForSize(Size);
    TRACE(" small COMMON (" << Name << ")\n");

    return getContext().getELFSection(Name.str(), ELF::SHT_NOBITS,
                                      ELF::SHF_WRITE | ELF::SHF_ALLOC |
                                      ELF::SHF_HEX_GPREL);
  }

  // We could have changed sdata object to a constant... in this
  // case the Kind could be wrong for it.
  if (Kind.isMergeableConst()) {
    TRACE(" const_object_as_data ");
    const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GO);
    if (GVar->hasSection() && isSmallDataSection(GVar->getSection()))
      Kind = SectionKind::getData();
  }

  if (Kind.isData()) {
    if (NoSmallDataSorting) {
      TRACE(" default sdata\n");
      return SmallDataSection;
    }

    StringRef Prefix(".sdata");
    SmallString<128> Name(Prefix);
    Name.append(getSectionSuffixForSize(Size));

    if (EmitUniquedSection) {
      Name.append(".");
      Name.append(GO->getName());
    }
    TRACE(" unique sdata(" << Name << ")\n");
    return getContext().getELFSection(Name.str(), ELF::SHT_PROGBITS,
                ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_HEX_GPREL);
  }

  TRACE("default ELF section\n");
  // Otherwise, we work the same as ELF.
  return TargetLoweringObjectFileELF::SelectSectionForGlobal(GO, Kind, TM);
}

// Return the function that uses the lookup table. If there are more
// than one live function that uses this look table, bail out and place
// the lookup table in default section.
const Function *
HexagonTargetObjectFile::getLutUsedFunction(const GlobalObject *GO) const {
  const Function *ReturnFn = nullptr;
  for (auto U : GO->users()) {
    // validate each instance of user to be a live function.
    auto *I = dyn_cast<Instruction>(U);
    if (!I)
      continue;
    auto *Bb = I->getParent();
    if (!Bb)
      continue;
    auto *UserFn = Bb->getParent();
    if (!ReturnFn)
      ReturnFn = UserFn;
    else if (ReturnFn != UserFn)
      return nullptr;
  }
  return ReturnFn;
}

MCSection *HexagonTargetObjectFile::selectSectionForLookupTable(
    const GlobalObject *GO, const TargetMachine &TM, const Function *Fn) const {

  SectionKind Kind = SectionKind::getText();
  // If the function has explicit section, place the lookup table in this
  // explicit section.
  if (Fn->hasSection())
    return getExplicitSectionGlobal(Fn, Kind, TM);

  const auto *FuncObj = dyn_cast<GlobalObject>(Fn);
  return SelectSectionForGlobal(FuncObj, Kind, TM);
}